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Abstract. In this note we are interested in isotropic totally real Lorentzian submanifolds of indefinite
complex space forms. We show that such submanifolds are always H-umbilical warped product immersions
and we determine also the warping function.

1. Introduction

The notion of isotropic submanifold was first introduced in [8] by O’Neill for immersions of Riemannian
manifolds and recently extended by Cabrerizo, Fernandez and Gomez in [2] to the pseudo-Riemannian
case. A submanifold is called isotropic if and only if for any point p and any tangent vector X at a point p,
we have that

〈h(X,X), h(X,X)〉 = λ(p) 〈X,X〉2 , (1)

where h denotes the second fundamental form of the immersion and λ is a function on the submanifold.
Here we will study Lagrangian isotropic immersions of a Lorentzian manifold into a complex Lorentzian

space form. The similar problem in the Riemannian case is completely solved in [6], [11] and [5]. The starting
ingredients in the proof in the Riemannian case is the fact that the unit sphere in the tangent space at a
point is compact. Of course in the Lorentzian case it is not possible to follow the same procedure. One
might expect the argument as well as the result to be more complicated but this is not the case. Where in
the Riemannian case some special immersions of locally symmetric spaces appear, in the Lorentzian case
we show the following:

Theorem 1.1. Let M be a Lagrangian Lorentzian isotropic submanifold of a complex space form then M is H-umbilical.

The notion of an H-umbilical Lagrangian submanifold was first introduced by Chen in [3] who in [4]
also gave a classification of the H umbilical submanifolds in indefinite complex Euclidean spaces. From
that classification, the isotropic immersions can be determined. For that reason, in the last part of the paper,
we restrict ourselves to the case that the holomorphic sectional curvature is nonvanishing and we describe
the isotropic Lagrangian immersions explicitly.
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2. Preliminaries

Throughout this paper we will assume that M is a Lagrangian Lorentzian submanifold M of a complex
space form M̃. We use the standard formulas of Gauss and Weingarten for a submanifold. Thus introducing
the second fundamental form h and the shape operators A by

∇̃XY = ∇XY + h(X,Y)

∇̃Xξ = −AξX + ∇⊥Xξ.

Here as usual ∇̃ denotes the Levi Civita connection on the ambient space and if no confusion is possible we
will always identify M with its image in M̃.

As M is Lagrangian we have that the complex structure J interchanges the tangent and the normal space.
Using the formulas of Gauss and Codazzi this implies that

∇
⊥

X JY = J∇XY
AJXY = −Jh(X,Y) = AJYX.

The latter formula implies that the cubic form < h(X,Y), JZ > is totally symmetric in all components.
We refer to [1] for the construction of the standard models of indefinite complex space forms CPn

s (4c̃),
when c̃ > 0, CHn

s (4c̃), when c̃ < 0 and Cn
s . For our purposes it is sufficient to know that there exist

pseudo-Riemannian submersions, called Hopf fibrations,

Π : S2n+1
2s (c̃)→ CPn

s (4c̃) : z 7→ z · C?

if c̃ > 0 and if c̃ < 0 by
Π : H2n+1

2s+1 (c̃)→ CHn
s (4c̃) : z 7→ z · C?,

where

S2n+1
2s (c̃) = {z ∈ Cn+1

|bs,n+1(z, z) = 1
c̃ },

H2n+1
s+1 (c̃) = {z ∈ Cn+1

|bs+1,n+1(z, z) = 1
c̃ }

and bp,q is the standard Hermitian form with index p on Cq. For our convenience, we will assume that we
have chosen an orthonormal basis such that the first p odd terms appear with a minus sign.

In [1] it is shown that locally any indefinite complex space form is holomorphically isometric to either
Cn

s , CPn
s (4c̃), or CHn

s (4c̃). Remark that, by replacing the metric < ., . > by − < ., . >, we have that CHn
s (4c̃) is

holomorphically anti-isometric with CPn
n−s(−4c̃). For that purpose, we may assume that n − 2s ≥ 0 and if

n − 2s = 0, we only need to consider Cn
s and CPn

s (4c̃).
In order to study, or explicitly obtain examples of Lagrangian submanifolds, usually it is more convenient

to work with horizontal submanifolds. In that aspect, we first recall some basic facts from [9] which relate
Lagrangian submanifolds of respectively CPn

s (4c̃) and CHn
s (4c̃) to horizontal immersions in respectively

S2n+1
2s (c̃) and H2n+1

2s+1 (c̃). Here a horizontal immersion f : Mn
s → S2n+1

2s (c̃) (respectively, f : Mn
s → H2n+1

2s+1 (c̃)) is an
immersion which satisfies i f (p) ⊥ f∗(TpMn

s ) for all p ∈Mn
s , where i =

√
−1.

Theorem 2.1 ([9]). Let c̃ > 0 and let Π : S2n+1
2s (c̃) → CPn

s (4c̃) be the Hopf fibration. If f : Mn
s → S2n+1

2s (c̃) is a
horizontal immersion, then F = Π ◦ f : Mn

s → CPn
s (4c̃) is a Lagrangian immersion.

Conversely, let Mn
s be a simply connected manifold and let F : Mn

s → CPn
s (4c̃) be a Lagrangian immersion. Then

there exist a 1-parameter family of horizontal lifts f : Mn
s → S2n+1

2s (c̃) such that F = Π ◦ f . Any two such lifts f1 and
f2 are related by f1 = eiθ f2, where θ is a constant.

The analogous statement for c̃ < 0 also holds if one replaces S2n+1
2s (c̃) by H2n+1

2s+1 (c̃) and CPn
s (4c̃) by CHn

s (4c̃).
Remark that both immersions have the same induced metric and that also the second fundamental forms
of both immersions are closely related. For more details see [9].
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Next we will introduce the notion of an isotropic submanifold. In Riemannian geometry this was first
introduced by O’Neill in [8]. Isotropic submanifolds of pseudo-Riemannian manifolds were defined in [2].
There a submanifold is said to be (pseudo) isotropic if and only if for every point p of M:

< h(u,u), h(u,u) >= λ(p),

does not depend on the choice of u ∈
∑

p = {u ∈ TpM| < u,u >= ±1}. If λ is a constant function, the
immersion is called constant (pseudo) isotropic.

In the same paper it is also shown that for an immersion to be pseudo isotropic it is sufficient (and
equivalent) to work with either spacelike (or timelike) vectors. However it is not equivalent to consider
only null vectors. We will also use the following lemma of [2]:

Lemma 2.2. Let F : M → M̃ be an isometric pseudo-riemannian immersion. Then the immersion is (pseudo)-
isotropic if and only if for any tangent vectors x, y, z,w ∈ TpM, we have that

< h(x, y), h(z,w) > + < h(y, z), h(x,w) > + < h(z, x), h(y,w) >= λ(p){< x, y >< z,w > +

< y, z >< x,w > + < z, x >< y,w >}

3. Construction of a Frame

Throughout this section we will assume that Mn
1 is a Lagrangian, Lorentzian submanifold of a complex

space form M̃. We either will assume that M̃ = Cn
1 , CPn

1(4) or CHn(−4) and so we will assume that
c ∈ {−1, 0, 1}. We shall also assume that the dimension satisfies n > 2.

Let p ∈M. We call a null frame at a point p, a frame {e1, . . . , en} such that

< ei, e j >= (1 − δi j), i, j ∈ {1, 2}
< ek, e` >= δk`, k, ` ∈ {3, . . . ,n}
< ei, ek >= 0, i ∈ {1, 2}, k ∈ {3, . . . ,n}.

First, we have the following lemma:

Lemma 3.1. If for any null vector v ∈ TpM we have that h(v, v) is a null vector orthogonal to Jv, then p is a totally
geodesic point.

Proof. As M is Lorentzian and Lagrangian, a null vector which is orthogonal to Jv is automatically a multiple
of Jv. It follows that

h(v, v) = f (v)Jv,

and because of the isotropy condition, see Lemma 2.2, we must have that

< h(v, v), h(v,u) >= λ < v, v >< v,u >= 0,

for any u ∈ TpM. Consequently we must have that

0 = f (v) < Jv, h(v,u) >= f (v) < h(v, v), Ju >= f (v)2 < v,u >

Hence f (v) = 0 and any null vector satisfies h(v, v) = 0.
We now take an arbitrary null frame at the point p and write

v = e1 −
1
2

n∑
k=3

a2
ke2 +

n∑
k=3

akek.
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It is immediate that for any choice of a3, . . . , an the vector v is a null vector. So, therefore we must have that

0 = h(v, v)

= h(e1, e1) + 2
n∑

k=3

akh(ek, e1)

−

n∑
k3

a2
kh(e1, e2) +

n∑
k,`=3

aka`h(ek, e`)

+ (
n∑

k=3

a2
k)

n∑
k=3

a`h(e`, e2) + 1
4 (

n∑
k=3

a2
k)2h(e2, e2)

As the above expression vanishes is a polynomial in a3, . . . , an which vanishes identically, it follows that the
only now vanishing components of h are

h(e1, e2) = h(e3, e3) = · · · = h(en, en) (2)

As the cubic form is totally symmetric this immediately implies that p is a totally geodesic point.

Therefore, if we now assume that p is not a totally geodesic point, we must have that there exists a null
vector v such that v and AJvv = −Jh(v, v) are linearly independent. As before, using Lemma 2.2 we have for
any vector u that

< AJvv,AJvu >=< h(v, v), h(v,u) >= λ < v, v >< v,u >= 0.

Taking in particular v = u, we get that AJv is a null vector. Moreover, using the fact that AJv is a symmetric
operator, we also get that AJvAJvv = 0. In view of our assumption, if necessary be rescaling v we can now
take a null frame such that e1 = v and e2 = AJvv. It immediately follows that

AJe1 e1 = e2

AJe1 e2 = AJvAJvv = 0.

showing that the space spanned by {e1, e2} is invariant under AJe1 . As AJe1 is a symmetric operator it follows
that the space {e1, e2}

⊥ is also invariant. As the metric restricted to the latter space is positive definite and
the operator is symmetric, we can take orthonormal vectors {e3, . . . , ek} in this space such that

AJe1 ek = λkek.

Then we have:

Lemma 3.2. For all k ∈ {3, . . . ,n}, we have that

λ3
k = − 1

4λ.

Moreover, for all w ∈ {e1, e2}
⊥, we have that h(w,w) =< w,w > (−2λ2

3 Je1 + λ3 Je2).

Proof. First, we compute AJe2 using Lemma 2.2 and the definition of Je2. We have for k, ` ∈ {3, . . . ,n} that

< AJe2 ek, e` > =< h(ek, e`), Je2 >

=< h(ek, e`), h(e1, e1) >
= −2 < h(ek, e1), h(e`, e1) >
= −2 < AJe1 ek,AJe1 e` >
= −2λkλ`δk`.

This implies that
AJe2 ek = −2λ2

kek.
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Hence we see that on {e1, e2}
⊥ both operators AJe1 and AJe2 are simultaneously diagonalisable. Next we use

again Lemma 2.2. We have that

−2λ3
k =< AJe2 ek,AJe1 ek >

=< h(e2, ek), h(e1, ek) >

= 1
2 (λ < e1, e2 >< ek, ek > − < h(e1, e2), h(ek, ek) >)

= 1
2λ.

Therefore both operators AJe1 and AJe2 on {e1, e2}
⊥ are a multiple of the identity. We write λ3 = · · · = λn = µ

with λ = −4µ3.
To conclude the proof we now take a unit length vector w, orthogonal to both e1 and e2. Using the

previous remarks it follows that the vector

ξ = h(w,w) + 2µ2 Je1 − µJe2,

is orthogonal to both Je1 and Je2. Moreover using again Lemma 2.2 we have that

< ξ, ξ > =< h(w,w) + 2µ2 Je1 − µJe2, h(w,w) + 2µ2 Je1 − µJe2 >

= λ + 4µ2 < h(w,w), Je1 > −2µ < h(w,w), Je2 > −4µ3

= λ + 4µ3 + 4µ3
− 4µ3 = 0.

Hence it follows that
h(w,w) = −2µ2 Je1 + µJe2,

which concludes the proof of the lemma.

We now write µ = εα2, where ε = ±1 and α is positive. From the previous lemma it follows that
µ3 = −4λ = εα6 and thus α3 =

√
−ελ
2 . We now make the following change of frame, which will change our

null frame into a pseudo orthonormal frame. We put

u1 = 1
2α (−2µe1 + e2)

u2 = 1
2α (2µe1 + e2)

uk = ek,

where k = 3, . . . ,n. In order to check that it is a pseudo orthonormal basis, we only need to compute
< u1,u1 >= − < u2,u2 >. Doing so we find that

< u1,u1 >= 1
4α2 (−4µ) = −ε.

In terms of the new basis we can express the second fundamental form by

AJu1 u1 = 1
4α2 (4µ2AJe1 e1 + AJe2 e2)

= 1
4α2 (4µ2e2 − 8µ3e1)

=
2µ2

α u1

= 2α3u1

AJu1 u2 = 1
4α2 (−4µ2AJe1 e1 + AJe2 e2)

= −
2µ2

α u2

= −2α3u2 = AJu2 u1

AJu1 uk = 1
2α (−4µ2)uk = −2α3uk

AJu2 u2 = 1
4α2 (4µ2AJe1 e1 + AJe2 e2)

= 2α3u1
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AJu2 uk = 0

AJuk u` = δk`2αµu1 = 2εα3δk`

Note that it immediately follows from the above expressions that the mean curvature vector H(p) is in
the direction of Ju1 and that the Lagrangian submanifold is an H-umbilical submanifold in the sense of
Chen, which completes the proof of Theorem 1.

From now on we will assume that M is not totally geodesic. Therefore, if necessary by restricting to an
open and dense subset we may assume that α is non vanishing. As nH(p) = 2(n − 1)α3 Ju1 this implies that
α is a differentiable function and that u1 can be extended to a differentiable vector field on M. Therefore,
we have shown the following result:

Theorem 3.3. Let M be an isotropic Lorentzian Lagrangian submanifold. Let p be a non totally geodesic point of M.
Then in a neighborhood of p there exist pseudo orthonormal vector fields U1, . . . ,Un such that

< U1,U1 >= −ε < U2,U2 >= ε < Uk,Uk >= 1,

and such that

h(X,Y) =2α3ε < X,Y > JU1 + 2 < X,U1 > εα
3 JY

+ 2 < Y,U1 > εα
3 JX + 8 < X,U1 >< Y,U1 > α

3 JU1.

Using the Codazzi equation, we then have

Lemma 3.4. We have that

X(α) = 0,
∇U1 U1 = 0,
∇XU1 = −U1(logα)X,

for any vector field X orthogonal to U1.

Proof. From the formula for the second fundamental form we get that

(∇h)(Z,X,Y) = 3Z(logα)h(X,Y) + 2α3ε < X,Y > J∇ZU1 + 2 < X,∇ZU1 > εα
3 JY

+ 2 < Y,∇ZU1 > εα
3 JX + 8 < X,∇ZU1 >< Y,U1 > α

3 JU1

+ 8 < X,U1 >< Y,∇ZU1 > α
3 JU1 + 8 < X,U1 >< Y,U1 > α

3 J∇ZU1.

(3)

By the Codazzi equation we know that

(∇h)(Z,X,Y) − (∇h)(X,Z,Y) = 0.

First we take Z, X = Y mutually orthogonal and orthogonal to U1. We take the component in the
direction of JU1. Using (3) we get that Z(logα)2α3ε = 0.

Next we take Z orthogonal to U1 and X = Y = U1. Using the fact that Z(α) = 0 and (3) we get from the
JU1 component of the Codazzi equation that:

0 = 2 < Z,∇U1 U1 > εα
3
− 8 < Z,∇U1 U1 > εα

3

implying that ∇U1 U1 = 0.
Finally, using now the same Codazzi equation, but looking at the general component, we find that

−2α3 J∇ZU1 + 8α3 J∇ZU1 = 3U1(logα)(−2α3 JZ),

which completes the proof.
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Using the above lemma we now can describe the pseudo Riemannian structure of M completely. Indeed
we have

Theorem 3.5. Let M be an isotropic Lorentzian Lagrangian submanifold. Let p be a non totally geodesic point of M.
Then in a neighborhood of p, M is locally isometric with a warped product manifold I × 1

α
N. Moreover, if we denote

the standard variable on I by t, with ∂
∂t = U1 and < ∂

∂t ,
∂
∂t >= −ε, then α depends only on t and satisfies the following

ordinary differential equation:
(logα)′′ − ((lo1(α))′)2 = −cε − 8α6

and N is a real space form with constant sectional curvature c−4εα6
−ε((logα)′)2

α2 .

Proof. We define two distribution T1 and T2 in a neighborhood of U. We call T1 = span{U1}
⊥ and T2 =

span{U1}. It follows immediately from the previous lemma that both distributions are integrable. We also
get that T2 is autoparallel. As [Z,U1] is orthogonal to U1 for Z orthogonal to U1, it follows also from the
previous lemma that T1 is spherical with mean curvature normal βE1, where β = U1(logα). Therefore
according to [12], see also [10] we have that M admits locally a warped product structure M = I ×e f N with
f : I→ R satisfying

∂ f
∂t

= −β = −U1(logα).

where f and α only depend on the variable t, with ∂
∂t = U1. It is clear from the above, that if necessary by

applying a homothety to N that we may assume that e f = 1
α .

Note that by applying the formulas of O’Neill, see Chapter 7 of [7], we get that the curvature tensor RN

is given by (taking also into account that the definition of the curvature tensor therein is the opposite of the
definition we use here):

RN(X,Y)Z = R(X,Y)Z − ε 1
α2 ( ∂α∂t )2(< Y,Z > X− < X,Z > Y).

where X,Y,Z are vector fields orthogonal to U1. By the Gauss equation we have that

< R(X,Y)Z,W > = c(< Y,Z >< X,W > − < X,Z >< Y,W >)
+ < h(Y,Z), h(X,W) > − < h(X,Z), h(Y,W) >

= (c − 4εα6)(< Y,Z >< X,W > − < X,Z >< Y,W >).

Combining both equations, using the fact that f = 1
α it now follows that N is a space of constant sectional

curvature 1
α2 (c − 4εα6

− ε((logα)′)2). Note that as this is the sectional curvature of N, the above number
cannot depend on t.

Finally from the Gauss equation, for a vector field X orthogonal to U1, we find on the one hand that

< R(X,U1)U1,X > = −ε < X,X > c+ < h(X,X), h(U1,U1) > − < h(X,U1), h(X,U1) >

= (−εc − 8α6).

However using the definition and the previous lemma, we obtain that

< R(X,U1)U1,X > =< −∇U1∇XU1,X > − < ∇[X,U1]U1,X >

=< ∇U1 U1(logα)X,X > +U1(logα) < [X,U1],X >

= U1(U1(logα)) < X,X > +U1(logα) < ∇XU1,X >

= (U1(U1(logα)) − (U1(logα))2) < X,X > .

Comparing both expressions now completes the proof of the theorem. Note that the above differential
equation could also be obtained by deriving the expression for the sectional curvature of N with respect to t.
However using that approach we would have needed to consider separately the case when α is constant.



F. Dillen, L. Vrancken / Filomat 30:10 (2016), 2857–2867 2864

Note that by using a standard existence and uniqueness theorem we could now complete the classifi-
cation. However, using amongst others the Hopf maps described earlier we will give now a more explicit
description of the isotropic submanifolds. Note that the case that c = 0 follows immediately from the results
of [4]. Therefore we will restrict ourselves in the remainder of the paper to the case that c = −1 or c = 1. In
both of these cases, we will look at its horizontal lift, denoted by F, as described previously.

From the previous theorem we know that there exists a constant δ such that

c − 4εα6
− ε((logα)′)2 = δα2.

This implies that either c − 4εα6
− ε((logα)′)2 vanishes identically on M or it vanishes nowhere on M. Note

that, if c = 1 and ε = −1, δ is necessarily strictly positive. Similarly if c = −1 and ε = 1, δ is necessarily
strictly negative.

In view of the previous theorem we can introduce coordinates t such that ∂
∂t = U1 and s1, . . . , sn−1 such

that ∂
∂si

belongs to T1.

3.1. Case 1
We suppose δ , 0. We first introduce two vector valued functions V and W by

V = ( βα + 2iα2)F + 1
αU1)

W = (− εcα F + (− βα + 2iα2)U1.

It follows immediately that

< W,W >= δ

< V,V >= − εδc = −εδc
< V,W >= 0
< V, iW >= 0.

Denoting by D the covariant derivative of Cn+1 it follows from Lemma 3.4 that

DXV = 0

DU1 V = ( β
2

α −
cε
α − 8α5

−
β2

α + 4iα2β − −εcα )F

+ ( βα + 2iα2
−

β
α + 2iα2)U1

= 4iα3V

DU1 W = −2iα3W
DXW = −εδαW,

where X belongs to the distribution T1.
We introduce now a function κ depending only on the variable t by the differential equation

∂κ
∂t = 2α3.

It now follows that the maps Ṽ = e−2iκV and W̃ = eiκW do not depend anymore on the variable t. Hence
e−2iκV is a constant vector of Cn+1 (with non vanishing length) and eiκW describes a map of the (n-1)-
dimensional manifold in the (n-1)-dimensional complex hyperplane orthogonal to e−2iκV.

As for X and Y tangent to T1, we have that

DXW̃ = −εδαXeiκ

DX(DYW̃) = −εδαeiκDXY

= −εδαeiκ(∇XY + 2iε < X,Y > α3U1− < X,Y > cF)

= −εδαeiκ((∇XY)T1+ < X,Y > (−εβU1 + 2iεα3U1 − cF))

= dW̃((∇XY)T1 ) + α2δ < X,Y > W̃,



F. Dillen, L. Vrancken / Filomat 30:10 (2016), 2857–2867 2865

where (.)T1 denotes the component of (.) in the direction of the distribution T1. From this we see that the
e−iκW describes a totally geodesic horizontal submanifold. Moreover, as

F = 1
δεα ((−β + 2iα3)V −W),

we find that after applying an isometry, the immersion is the image after the Hopf map of either

(i) c = 1, ε = −1 and δ = r2. In this case

F = 1
δεα (e−iκry1, . . . , e−iκryn, (−β + 2iα3)e2iκ),

with −y2
1 + · · · + y2

n = 1,

(ii) c = 1, ε = 1 and δ = r2. In this case

F = 1
δεα ((−β + 2iα3)e2iκ, e−iκry1, . . . , e−ikapparyn),

with y2
1 + · · · + y2

n = 1,

(iii) c = 1, ε = 1 and δ = −r2. In this case

F = 1
δεα (e−iκry1, . . . , e−iκryn, (−β + 2iα3)e2iκ),

with −y2
1 + y2

2 + · · · + y2
n = −1,

(iv) c = −1, ε = 1 and δ = −r2. In this case

F = 1
δεα ((−β + 2iα3)e2iκ, e−iκry1, . . . , e−ikapparyn),

with −y2
1 + y2

2 + · · · + y2
n = −1,

(v) c = −1, ε = −1 and δ = −r2. In this case

F = 1
δεα (e−iκry1, . . . , e−iκryn, (−β + 2iα3)e2iκ),

with −y2
1 − y2

2 + y2
3 + · · · + y2

n = −1,

(vi) c = −1, ε = −1 and δ = r2. In this case

F = 1
δεα ((−β + 2iα3)e2iκ, e−iκry1, . . . , e−ikapparyn),

with −y2
1 + y2

2 + · · · + y2
n = 1,

where α, β and κ are determined by

∂κ
∂t = 2α3

∂α
∂t = αβ
∂β
∂t = β2

− cε − 8α6,

with first integrand given by
c − 4εα6

− εβ2 = δα2.
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3.2. Case 2
We have δ = 0. Note that this case is only possible if c = ε = −1 or if c = ε = 1. As before it follows

that W̃ is a constant vector. As it is now a null vector we may assume it is (1, 0, . . . , 0, 1). As the manifold
N, as given in Theorem 4, is now a flat space we can take local flat coordinates s1, . . . , sn−1. We denote by
1 = α < ., . > the usual flat metric on N. We have that 1( ∂

∂si
, ∂
∂s j

) = δi jεi, where ε1 = ε and ε2 = · · · = εn−1 = 1.

Given that the warping function of the metric is 1
α , it follows from Theorem 3.3 and Lemma 3.4 we have

Ftt = 2iα3Ft + cεF

Fsit = (−β − 2iα3)Fsi

Fsi,s j = 1( ∂
∂si
, ∂
∂s j

) 1
α2 (−εβFt − cF + 2iα3εFt).

Recall that as before

1
α2 (−εβFt − cF + 2iα3εFt). = ε

αW(t) = ε
α e−iκW̃ (4)

Integrating the above expression with respect to the variables s, taking into account that

∂
∂t

e−iκ

α = e−iκ

α (−2iα3
− β),

as well as assuming that at the origin we have the standard basis as initial conditions, it follows that we can
write

F(t, s1, . . . , sn−1) = ε
α ( 1

2

n−1∑
j=1

ε js2
j , s1, . . . , sn−1, 1

2

n−1∑
j=1

ε js2
j ) + B(t),

where the curve B(t) can be determined in the following way. Using (4) it first follows that

Ft = (−β − 2iα3)(F + αe−iκ(1, 0, . . . , 0, 1).

This gives us that
B′(t) = (−2iα3

− β)(B(t) + ae−iκ(1, 0, . . . , 0, 1).

Introducing now a function τ by the condition that

∂
∂tτ = 2a5,

it follows that we can write B(t) = (b0(t), . . . , bn(t)), where

b0(t) = (−iτ − 1
2α

2) e−iκ

α + (p0 + iq0) e−iκ

α

b j(t) = (p j + iq j) e−iκ

α

bn(t) = (−iτ − 1
2α

2) e−iκ

α + (pn + iqn) e−iκ

α

The fact that F is contained in a sphere with radius c then implies that 0 = p1 = · · · = pn−1, pn = p1 + 1, qn = q1

and p1 = 1/2ε(1 +
∑n−1

j=1 ε jq2
j ).

Note that the differential equation for α can be also explicitly solved in this case. It follows that either

α = ( 1
2 )

1
3

α = (1/4(1 − tanh2(3t)))
1
6 .

From this the functions κ and τ can also be determined.
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