On Mixed C-Semigroups of Operators on Banach Spaces

Masoud Mosallanezhad ${ }^{\text {a }}$, Mohammad Janfada ${ }^{\text {b }}$
${ }^{a}$ Department of pure Mathematics, Ferdowsi University of Mashhad, International Campus, P.O. Box 1159-91775 Mashhad, Iran.
${ }^{b}$ Department of pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775 Mashhad, Iran.

Abstract

In this paper an H -generalized Cauchy equation $S(t+s) C=H(S(s), S(t))$ is considered, where $\{S(t)\}_{t \geq 0}$ is a one parameter family of bounded linear operators and $H: B(X) \times B(X) \rightarrow$ $B(X)$ is a function. In the special case, when $H(S(s), S(t))=S(s) S(t)+D(S(s)-T(s))(S(t)-T(t))$ with $D \in B(X)$, solutions of H-generalized Cauchy equation are studied, where $\{T(t)\}_{t \geq 0}$ is a C-semigroup of operators. Also a similar equations are studied on C-cosine families and integrated C-semigroups.

1. Introduction and Preliminaries

Suppose that X is a Banach space and A is a linear operator in X with domain $D(A)$ and range $R(A)$. For given $x \in D(A)$, the abstract Cauchy problem for A with the initial value x, consists of finding a solution $u(t)$ to the initial value problem

$$
A C P(A ; x)\left\{\begin{array}{l}
\frac{d u(t)}{d t}=A u(t), \quad t \in \mathbb{R}_{+} \\
u(0)=x
\end{array}\right.
$$

where by a solution we mean a function $u: \mathbb{R}_{+} \rightarrow X$, which is continuous for $t \geq 0$, continuously differentiable for $t>0, u(t) \in D(A)$ for $t \in \mathbb{R}_{+}$and $A C P(A ; x)$ is satisfied (see [15]).

If $C \in B(X)$, the space of all bounded linear operators on X, is injective, then a one-parameter C-semigroup (regularized semigroup) of operators is a family $\{T(t)\}_{t \in \mathbb{R}_{+}} \subset B(X)$ for which $T(0)=C$, and $T(s+t) C=T(s) T(t)$, $s, t \geq 0$, and also is strongly continuous, i.e. for each $x \in X$ the mapping $t \mapsto T(t) x$ is continuous. An operator $A: D(A) \rightarrow X$ with the domain

$$
D(A)=\left\{x \in X: \lim _{t \rightarrow 0} \frac{T(t) x-C x}{t} \text { exists in the range of } C\right\}
$$

define by $A x:=C^{-1} \lim _{t \rightarrow 0} \frac{T(t) x-C x}{t}$ for $x \in D(A)$ is called the infinitesimal generator of $T(t)$. With $C=I$, the identity operator on X, the C-semigroup $\{T(t)\}_{t \geq 0}$ is said to be a C_{0}-semigroup. Regularized semigroups and their connection with the $A C P(A ; x)$ have been studied, e.g., in [2, 11, 13, 16].

[^0]Another important family of operators which is related to the following second order ACP

$$
C P(A ; x ; y)\left\{\begin{array}{l}
\frac{d^{2} u(t)}{d t^{2}}=A u(t), \quad t \in \mathbb{R} \\
u(0)=x, u^{\prime}(0)=y
\end{array}\right.
$$

is the C-cosine operator function. If $C \in B(X)$ and $\{C(t) ; t \in \mathbb{R}\} \subseteq B(X)$ is a strongly continuous family of operators, then $\{C(t)\}_{t \in \mathbb{R}}$ is a C-cosine operator function on X (see [8]) if it satisfy
(a) $C(0)=C$;
(b) $[C(t+s)+C(t-s)] C=2 C(t) C(s), t, s \in \mathbb{R}$;

The associated sine operator function $\mathcal{S}($.$) is defined by the formula \mathcal{S}(t)=\int_{0}^{t} C(s) d s, t \in \mathbb{R}$. The second infinitesimal generator (or simply the generator) A of $S($.$) is defined as A x=C^{-1} \lim _{t \rightarrow 0} \frac{2}{t^{2}}(S(t)-C) x$ with natural domain. A C-cosine operator family gives the solution of a well-posed Cauchy problem. For more details on the theory of cosine operator function we refer to [8, 10, 13, 17].

Another useful tool to find solutions of the $\operatorname{ACP}(A ; x)$ is the notion of integrated C-semigroups. A strongly continuous family $\{S(t)\}_{t \geq 0}$ of bounded operators on X is called a integrated C-semigroup if $S(0)=0$, $S(t) C=C S(t), t>0$, and

$$
S(s) S(t) x=\int_{0}^{s}(S(r+t)-S(r)) C x d r=S(t) S(s) x, \quad(s, t>0, x \in X)
$$

An operator $A: D(A) \subseteq X \rightarrow X$ which is defined as follows

$$
x \in D(A) \text { and } A x=y \Leftrightarrow S(t) x-C x=\int_{0}^{t} S(s) y d s
$$

is called the infinitesimal generator of $\{S(t)\}_{t \geq 0}$. Indeed $\{S(t)\}_{t \geq 0}$ is uniquely determined by A (see Proposition 1.3 [9])

Integrated semigroups extend the theory of C_{0}-semigroups to abstract Cauchy problems with operators which do not satisfy the Hille-Yosida conditions. For more information on this subject one may see [1, 3, 4, 7, 9, 12, 14?].

A generalized Cauchy equation

$$
S(t+s)=S(s) S(t)+\alpha(S(s)-T(s))(S(t)-T(t)), \quad(s, t>0)
$$

where $\{T(t)\}_{t \geq 0}$ is a C_{0}-semigroup and $\alpha \in \mathbb{C}$, was first studied in $[5,6]$ which is called also a mixed semigroup. Trivially with $\alpha=0$ this equation reduces to a C_{0}-semigroup.
In Section 2, we will consider a regularized type extension of this equation and study its solutions. Also its corresponding ACP will be introduced in a special case. In Section 3, a mixed type regularized cosine family is considered and its properties are studied. Next in Section 4, a similar regularized integrated mixed semigroup will be examined and properties of its solutions will be investigated.

2. Mixed Regularized Semigroups

Let X be a Banach space and C be an injective operator in $B(X)$. A family $\{S(t)\}_{t \geq 0} \subseteq B(X)$ is said to satisfy a H -generalized Cauchy equation if

$$
\begin{equation*}
S(t+s) C=H(S(s), S(t)), \quad(s, t>0) \tag{1}
\end{equation*}
$$

where $H: B(X) \times B(X) \rightarrow B(X)$ is a function. If $H(S(s), S(t))=S(s) S(t)$, then $\{S(t)\}_{t \geq 0}$ satisfies in the first condition of C-semigroups of operators.

In this section, we consider a special case when

$$
\begin{equation*}
H(S(s), S(t))=S(s) S(t)+D(S(s)-T(s))(S(t)-T(t)), \quad(s, t>0) \tag{2}
\end{equation*}
$$

where $\{T(t)\}_{t \geq 0}$ is a C-semigroup of operators with the infinitesimal generator A_{0} and $D \in B(X)$. In this case we say that $\{S(t)\}$ is a H-C-semigroup. Trivially $D=0$ is the C-semigroup condition.

Now consider the equation (1) with H as in (2). Define the operator $A: D(A) \subseteq X \rightarrow X$ by $A(x)=$ $C^{-1} \lim _{s \rightarrow 0} \frac{S(s) x-C x}{s}$, where $D(A)=\left\{x \in X: \lim _{s \rightarrow 0} \frac{S(s) x-C x}{s}\right.$ exists in the range of $\left.C\right\}$. We shall think of A as the infinitesimal generator of $\{S(t)\}_{t \geq 0}$.

The following are some examples of $H-C$-semigroups.
Example 2.1. Suppose that X is a Banach space, $A, B, C \in B(X), C$ is injective and $C A=A C$. Put

$$
S(t)=C e^{t A}+t(B-A) C e^{t A} \quad(t>0)
$$

Then one can see that with $D=-I,\{S(t)\}_{t \geq 0}$ is a H-C-semigroup where $T(t)=C e^{t A}$.
In this case, one can see that $S(s) S(t)=S(t) S(s), s, t \geq 0$ if and only if A commutes with B. It will be proved that with $D=-I$, every uniformly continuous H-C-semigroup is of this form.

Example 2.2. Let $X=L^{p}(\Omega, \mu)$, for some σ-finite measureable space Ω. Suppose that $q_{1}, q_{2}, q_{3}: \Omega \rightarrow \mathbb{C}$ are measurable functions for which q_{1} is bounded and nonzero almost everywhere and q_{2}, q_{3} satisfy

$$
\operatorname{ess~sup}_{s \in \Omega} \operatorname{Re} q_{i}(s)<\infty, \quad i=2,3
$$

where $\operatorname{Re} q_{i}(s)$ is the real part of $q_{i}(s)$. Then it is easy to verify that with $D=-I$, the family

$$
S(t) f:=\left(1-t q_{2}+t q_{3}\right) q_{1} e^{t q_{2}} f, \quad(t \in[0, \infty))
$$

of operators on X defines a H-C-semigroup where $T(t) f:=q_{1} e^{t q_{2}} f$ and $C f:=q_{1} f$.
In the following lemma some elementary properties of $H-C$-semigroups is presented.
Lemma 2.3. Let $\{S(t)\}_{t \geq 0} \subseteq B(X)$ be a strongly continuous family, which satisfies (1) with H as (2).

1. If $I+D$ is injective and for any $s, t \geq 0, T(s) S(t)=S(t) T(s)$, then $S(s) S(t)=S(t) S(s)$, for all $s, t \geq 0$ and in particular $S(s) C=C S(s)$.
2. If D is injective and $S(s) S(t)=S(t) S(s)$ for all $s, t \geq 0$, then for any $s, t \geq 0, T(s) S(t)=S(t) T(s)$.
3. If $S(s) S(t)=S(t) S(s)$ for all $s, t \geq 0$ and $x \in D(A)$, then for any $t \geq 0, S(t) x, T(t) x \in D(A)$ and $A S(t) x=S(t) A x$, $A T(t) x=T(t) A(x)$. In addition, $S(t) x, T(t) x \in D\left(A_{0}\right)$ and $A_{0} S(t) x=S(t) A_{0} x, A_{0} T(t) x=T(t) A_{0}(x)$ for any $x \in D\left(A_{0}\right)$.

Proof. Suppose that $I+D$ is injective and for any $s, t \geq 0, T(s) S(t)=S(t) T(s)$. For $s, t \geq 0$, we have

$$
\begin{aligned}
S(s) S(t)+D(S(s)-T(s))(S(t)-T(t)) & =S(t+s) C=S(s+t) C \\
& =S(t) S(s)+D(S(t)-T(t))(S(s)-T(s))
\end{aligned}
$$

which implies that

$$
(I+D)(S(s) S(t)-S(t) S(s))=0
$$

This proves 1.
Suppose that D is injective and for any $s, t \geq 0, S(s) S(t)=S(t) S(s)$. For $s, t \geq 0$, we have

$$
\begin{aligned}
S(s) S(t)+D(S(s)-T(s))(S(t)-T(t)) & =S(t+s) C=S(s+t) C \\
& =S(t) S(s)+D(S(t)-T(t))(S(s)-T(s))
\end{aligned}
$$

which implies that

$$
D(S(t) T(s)-T(s) S(t)+T(t) S(s)-S(s) T(t))=0
$$

Thus injectivity of D yields that 2.
To show 3, let $x \in D(A)$. Then $\lim _{s \rightarrow 0} \frac{S(s) x-C x}{s}$ exists in the range of C. For given $t \geq 0$ we have

$$
\frac{S(s) S(t) x-C S(t) x}{s}=S(t) \frac{S(s) x-C x}{s} .
$$

Now let $y:=\lim _{s \rightarrow 0} \frac{S(s) x-C x}{s}$ which is in the range of C. If $y=C z$ for some $z \in X$, then

$$
\lim _{s \rightarrow 0} \frac{S(s) S(t) x-C S(t) x}{S}=S(t) y=S(t) C z=C S(t) z
$$

It follows that $\lim _{s \rightarrow 0} \frac{S(s) S(t) x-C S(t) x}{s}$ is in the range of C and

$$
\begin{aligned}
A S(t) x & =C^{-1} \lim _{s \rightarrow 0} \frac{S(s) S(t) x-C S(t) x}{s} \\
& =C^{-1} S(t) y=S(t) C^{-1} y=S(t) A x
\end{aligned}
$$

The last part of 3 can be proved similarly.
Set $A_{1}=(1+D) A-D A_{0}$, where A_{0} is the infinitesimal generator of the C-semigroup $\{T(t)\}_{t \geq 0}$ and A is the infinitesimal generator of $\{S(t)\}_{t \geq 0}$. The next result reads as follows.

Theorem 2.4. Suppose that $\{S(t)\}_{t \geq 0} \subseteq B(X)$ is a family, which is strongly continuous with $S(0)=C$ and satisfies (1) with H as (2).

1. Let $T_{1}(t)(x)=(1+D) S(t) x-D T(t) x, x \in X$ and $C D=D C$. Then $\left\{T_{1}(t)\right\}_{t \geq 0}$ is a C-semigroup of operators, whose infinitesimal generator is an extension of A_{1}.
2. If $D+I$ is invertible, then the solution of (1) with H as (2) in the strong operator topology is of the form

$$
S(t) x=D(D+I)^{-1} T(t) x+(1+D)^{-1} T_{1}(t) x, \quad x \in X
$$

Proof. Trivially $T_{1}(0)=C$, since $T(0)=C=S(0)$. Also for $s, t \geq 0$, using (1) and (2), and a simple calculation one may see that $T_{1}(s+t) C=T_{1}(s) T_{1}(t)$.
Now we are going to show that an extension of $A_{1}=(1+D) A-D A_{0}$ is the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \geq 0}$. Let B be the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \geq 0}$. For given $x \in D\left(A_{1}\right)=D(A) \cap D\left(A_{0}\right)$, by definition of $D(A)$ and $D\left(A_{0}\right), \lim _{t \rightarrow 0} \frac{T(t) x-C x}{t}$ and $\lim _{t \rightarrow 0} \frac{S(t) x-C x}{t}$ are in the range of C. Thus

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{T_{1}(t) x-C x}{t} & =\lim _{t \rightarrow 0} \frac{(1+D) S(t) x-D T(t) x-C x}{t} \\
& =(I+D) \lim _{t \rightarrow 0} \frac{S(t) x-C x}{t}+D \lim _{t \rightarrow 0} \frac{T(t) x-C x}{t}
\end{aligned}
$$

exists in the range of C. It follows that $x \in D(B)$ and $A_{1}(x)=B(x)$. Thus the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \geq 0}$ is an extension of A_{1}. This proves 1 .
2 is evident.
For $D=-I$, the equation (1) reduces to

$$
\begin{equation*}
S(s+t) C-S(s) S(t)=(T(s)-S(s))(S(t)-T(t)) \quad(s, t>0) . \tag{3}
\end{equation*}
$$

or equivalently

$$
S(s+t) C-T(s+t) C=T(s) S(t)-S(s) T(t) \quad(s, t>0)
$$

Also in this case, with A_{0} and A as above we have the following theorem which characterize solutions of (3).

Theorem 2.5. Let $\{S(t)\}_{t \geq 0}$ be a strongly continuous commuting family satisfying (3). Then

1. For any $x \in D(A) \cap D\left(A_{0}\right), C S(t) x$ is a differentiable function of t and $\frac{d}{d t} C S(t) x=C\left[A_{0} S(t) x+\left(A-A_{0}\right) T(t) x\right]$.
2. For any $x \in D(A) \cap D\left(A_{0}\right), S(t) x=T(t) x+t\left(A-A_{0}\right) T(t) x$.

Proof. For $x \in D(A) \cap D\left(A_{0}\right)$, applying Lemma 2.3 we have

$$
\begin{aligned}
\frac{d}{d t} S(t) C x & =\lim _{h \rightarrow 0} \frac{S(h+t) C x-S(t) C x}{h} \\
& =\lim _{h \rightarrow 0} \frac{S(h) S(t) x+(T(h)-S(h))(S(t)-T(t)) x-S(t) C x}{h} \\
& =\lim _{h \rightarrow 0} \frac{T(h) S(t) x-C S(t) x}{h}+\lim _{h \rightarrow 0} \frac{S(h) T(t) x-C T(t) x}{h}-\lim _{h \rightarrow 0} \frac{T(h) T(t) x-C T(t) x}{h} \\
& =C\left[A_{0} S(t) x+A T(t) x-A_{0} T(t) x\right] .
\end{aligned}
$$

This complete the proof of 1 .
For establishing 2 , let $x \in D(A) \cap D\left(A_{0}\right)$. By the part 1 we have

$$
\begin{aligned}
C(S(t) x-T(t) x) & =\int_{0}^{t} \frac{d}{d \tau} C T(t-\tau) S(\tau) d \tau \\
& =\int_{0}^{t}\left(-C T(t-\tau) A_{0} S(\tau) x\right) \\
& +\left(C\left[A_{0} S(\tau) T(t-\tau) x+\left(A-A_{0}\right) T(\tau) T(t-\tau) x\right]\right) d \tau \\
& =\int_{0}^{t}\left(A-A_{0}\right) T(t) C x d \tau \\
& =t\left(A-A_{0}\right) T(t) C x=t C\left(A-A_{0}\right) T(t) x
\end{aligned}
$$

Now injectivity of C completes the proof of 2 .
Theorem 2.5 show that for $D=-I$ if $\{S(t)\}_{t \geq 0}$ is the mixed semigroup with the generator A and $\{T(t)\}_{t \geq 0}$ is the C-semigroup generated by A_{0} then $u(t)=S(t) x$ is a solution of the following inhomogeneous ACP

$$
\left\{\begin{array}{l}
\frac{d u(t)}{d t}=A_{0} u(t)+\left(A-A_{0}\right) f(t), \quad t \in \mathbb{R}_{+}, \\
u(0)=C x, \quad x_{0} \in D(A) \cap D\left(A_{0}\right),
\end{array}\right.
$$

with $f(t)=T(t) x$.
In the following theorem it will be proved that multiplication of a H -C-semigroup and a C -semigroup is a H -C-semigroup if these two families commute.

Theorem 2.6. Let $\{V(t)\}_{t \geq 0}$ be a C-semigroup with the infinitesimal generator B which commute with $D \in B(H)$ and $\{S(t)\}_{t \geq 0}$ be a commuting strongly continuous H-C-semigroup with the C-semigroup $\{T(t)\}_{t \geq 0}$ which also commute with $\{V(t)\}_{t \geq 0}$. Then $W(t):=V(t) S(t)$ is a $H-C^{2}$-semigroup with the infinitesimal generator $A+B$ where A and A_{0} are the infinitesimal generators of $\{S(t)\}_{t \geq 0}$ and $\{T(t)\}_{t \geq 0}$, respectively.

Proof. Trivially $T(0)=C^{2}$. Also for any $s, t \geq 0$,

$$
\begin{aligned}
W(s+t) C^{2} & =V(s+t) C S(s+t) C \\
& =V(s) V(t)[S(s) S(t)+D(S(s)-T(s))(S(t)-T(t))] \\
& =W(s) W(t)+D(W(s)-V(s) T(s))(W(t)-V(t) T(t))
\end{aligned}
$$

Thus $\{W(t)\}_{t \geq 0}$ is a $H-C^{2}$-semigroup which is obviously strongly continuous. Also for any $x \in D(A) \cap D(B)$,

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{W(t) x-C^{2} x}{h}=\lim _{t \rightarrow 0} \frac{V(t) S(t) x-C S(t) x}{t}+\frac{C S(t) x-C^{2} x}{t} \\
& C^{2} B x+C^{2} A x .
\end{aligned}
$$

Thus

$$
C^{-2} \lim _{t \rightarrow 0} \frac{W(t) x-C^{2} x}{h}=(B+A) x
$$

3. Mixed C-Cosine Family

Let X be a Banach space and C be an injective operator in $B(X)$. A family $\{S(t)\}_{t \in \mathbb{R}} \subseteq B(X)$ is said to satisfy a H -C-cosine Cauchy equation if

$$
\begin{equation*}
[S(s+t)+S(s-t)] C=H(S(s), S(t)) \tag{4}
\end{equation*}
$$

where $H: B(X) \times B(X) \rightarrow B(X)$ is a function. If $H(S(s), S(t))=2 S(s) S(t)$, then $\{S(t)\}_{t \in \mathbb{R}}$ satisfy in the first condition of C-cosine family of operators.

In this section we consider a special case when

$$
\begin{equation*}
H(S(s), S(t))=2 S(s) S(t)+2 D(S(s)-T(s))(S(t)-T(t)) \quad(s, t \in \mathbb{R}) \tag{5}
\end{equation*}
$$

where $\{T(t)\}_{t \in \mathbb{R}}$ is a C-cosine family of operators and $D \in B(X)$. Trivially $D=0$ is a the C-cosine condition.
Now consider the equation (4) with H as in (5). Let $A: D(A) \subseteq X \rightarrow X$ be defined as $A(x)=$ $C^{-1} \lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) x-C x]$, where $D(A)=\left\{x \in X: \lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(s) x-C x]\right.$ exists in the range of $\left.C\right\}$. We shall think of A as the infinitesimal generator of $\{S(t)\}_{t \in \mathbb{R}}$.

Lemma 3.1. Let $\{S(t)\}_{t \in \mathbb{R}} \subseteq B(X)$ be a strongly continuous family, with $S(0)=C$ and it satisfies (4) with H as (5). Then

1. $S(s)=S(-s)$ and $S(s) C=C S(s)$ for all s.
2. If $I+D$ is injective and for any $s, t, T(s) S(t)=S(t) T(s)$, then $S(s) S(t)=S(t) S(s)$ for all s, t.
3. If D is injective and $S(s) S(t)=S(t) S(s)$ for all s, t, then for any $s, t, T(s) S(t)=S(t) T(s)$.
4. If $\{S(t)\}_{t \in \mathbb{R}}$ is a commuting family and $x \in D(A)$ then for any $t, S(t) x \in D(A)$ and $A S(t) x=S(t) A x$.

Proof. Letting $s=0$ in (4) we get

$$
\begin{equation*}
[S(t)+S(-t)] C=2 C S(t)+2 D(0)=2 C S(t) \quad(t \in \mathbb{R}) \tag{6}
\end{equation*}
$$

so

$$
S(t) C+S(-t) C=2 C S(t) \text { and } S(-t) C+S(t) C=2 C S(-t) \quad(t \in \mathbb{R})
$$

Subtracting these equalities and using injectivity of C we find

$$
S(t)=S(-t) \quad(t \in \mathbb{R})
$$

So by (6) we obtain $2 S(t) C=2 C S(t)$ or $S(t) C=C S(t)$ for all $t \in \mathbb{R}$. This prove 1 .
For proving 2 , let $I+D$ be injective and for any $s, t, T(s) S(t)=S(t) T(s)$. From part 1 we have

$$
\begin{align*}
2 S(s) S(t)+2 D(S(s)-T(s))(S(t)-T(t)) & =[S(s+t)+S(s-t)] C \\
& =[S(t+s)+S(t-s)] C \tag{7}\\
& =2 S(t) S(s)+2 D(S(t)-T(t))(S(s)-T(s)),
\end{align*}
$$

On the other hand $T(s) T(t)=T(t) T(s)$ (see [8]) and by hypothesis $S(t) T(s)=T(s) S(t)$. Thus (7) implies that

$$
(I+D)(S(s) S(t)-S(t) S(s))=0, \quad(s, t \in \mathbb{R})
$$

Now injectivity of $I+D$ implies 2 .
Suppose that D is injective and for any $s, t, S(s) S(t)=S(t) S(s)$. Applying this condition on (7) we get

$$
D(S(t) T(s)-T(s) S(t)+T(t) S(s)-S(s) T(t))=0 \quad(s, t \in \mathbb{R})
$$

which implies 3.
For proving 4, let $x \in D(A)$. So $y:=\lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) x-C x]$ exists in the range of C. Put $y=C z$ for some $z \in X$. Now for a given t by part 2 we have

$$
\frac{2}{h^{2}}[S(h) S(t) x-C S(t) x]=S(t) \frac{2}{h^{2}}[S(h) x-C x] \quad(t \in \mathbb{R})
$$

Thus

$$
\lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) S(t) x-C S(t) x]=S(t) y=S(t) C z=C S(t) z \quad(t \in \mathbb{R})
$$

This implies that $\lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) S(t) x-C S(t) x]$ is in the range of C and also

$$
\begin{aligned}
A S(t) x & =C^{-1} \lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) S(t) x-C S(t) x] \\
& =C^{-1} S(t) y=S(t) C^{-1} y=S(t) A x
\end{aligned}
$$

Theorem 3.2. Suppose that $\{S(t)\}_{t \in \mathbb{R}} \subseteq B(X)$ is a commuting strongly continuous family with $S(0)=C$ and it satisfies (4) with H as (5). Let $T_{1}(t) x:=(1+D) S(t) x-D T(t) x, x \in X$, then $\left\{T_{1}(t)\right\}_{t \in \mathbb{R}}$ is a C-cosine family. Furthermore if A_{0} is the infinitesimal generator of the C-cosine family $\{T(t)\}_{t \in \mathbb{R}}$, then an extension of $A_{1}:=(1+D) A-D A_{0}$ is the generator of $\left\{T_{1}(t)\right\}_{t \in \mathbb{R}}$.

Proof. Applying (5) and Lemma 3.1 we get

$$
\begin{aligned}
{\left[T_{1}(t+s)+T_{1}(t-s)\right] C x } & =[((1+D) S(t+s)-D T(t+s))+((1+D) S(t-s)-D T(t-s))] C x \\
& =[(1+D)(S(t+s)+S(t-s))-D(T(t+s)+T(t-s))] C x \\
& =[(1+D)(2 S(t) S(s)+2 D(S(t)-T(t))(S(s)-T(s)))-D(2 T(t) T(s))] x \\
& =2[(1+D) S(t) S(s)+D(1+D) S(t) S(s)-D(1+D) S(t) T(s) \\
& -D(1+D) T(t) S(s)+D(1+D) T(t) T(s)-D T(t) T(s)] x \\
& =2\left[(1+D)^{2} S(t) S(s)-D(1+D) S(t) T(s)\right. \\
& \left.-D(1+D) T(t) S(s)+D^{2} T(t) T(s)\right] x \\
& =2[(1+D) S(t)-D T(t)][(1+D) S(s)-D T(s)] x \\
& =2 T_{1}(t) T_{1}(s) x .
\end{aligned}
$$

Moreover $T_{1}(0) x=(1+D) S(0) x-D T(0) x=(1+D) C x-D C x=C x$. These establish the C-cosine properties of $\left\{T_{1}(t)\right\}_{t \in \mathbb{R}}$.
We are going to show that an extension of $A_{1}=(1+D) A-D A_{0}$ is the infinitesimal generator of $\left\{T_{1}(t)\right\}$. Let B be the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \in \mathbb{R}}$. For a given $x \in D\left(A_{1}\right)=D(A) \cap D\left(A_{0}\right)$, by definition of $D(A)$ and $D\left(A_{0}\right), \lim _{h \rightarrow 0} \frac{2}{h^{2}}[T(h) x-C x]$ and $\lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) x-C x]$ are in the range of C. Thus

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{2}{h^{2}}\left[T_{1}(h) x-C x\right] & =\lim _{h \rightarrow 0} \frac{2}{h^{2}}[(1+D) S(h) x-D T(h) x-C x] \\
& =(I+D) \lim _{h \rightarrow 0} \frac{2}{h^{2}}[S(h) x-C x]+D \lim _{h \rightarrow 0} \frac{2}{h^{2}}[T(h) x-C x]
\end{aligned}
$$

exists in the range of C. This implies that $x \in D(B)$ and $A_{1}(x)=B(x)$ and the proof is complete.

The previous theorem implies that if $(I+D)$ is invertible then the solution $S(t)$ of (4) with H as (5) is of the form

$$
S(t) x=D(D+I)^{-1} T(t) x+(1+D)^{-1} T_{1}(t) x, \quad(x \in X) .
$$

4. Mixed Integrated Semigroups

In this section we consider the following equation for C-integrated case

$$
\begin{equation*}
V(s) V(t)-\int_{0}^{s}(V(t+\tau)-V(\tau)) C d \tau=D(V(s)-W(s))(W(t)-V(t)) \quad(s, t>0) \tag{8}
\end{equation*}
$$

where $\{W(t)\}_{t \geq 0}$ is a integrated C-semigroup and $D \in B(X)$. This equation is called a mixed integrated C-semigroup.

Proposition 4.1. Let $\{V(t)\}_{t \geq 0}$ be a mixed integrated C-semigroup.

1. If $I+D$ is injective and for any $s, t \geq 0, V(s) W(t)=W(t) V(s)$, then $V(s) V(t)=V(t) V(s)$ for all $s, t \geq 0$.
2. If D is injective and $V(s) V(t)=V(t) V(s)$ for all $s, t \geq 0$, then for any $s, t \geq 0, V(s) W(t)=W(t) V(s)$.

Proof. For any $s, t \geq 0$, we have

$$
\begin{equation*}
\int_{0}^{s}(V(t+\tau)-V(\tau)) C d \tau=\int_{0}^{t}(V(s+\tau)-V(\tau)) C d \tau \tag{9}
\end{equation*}
$$

since

$$
\begin{aligned}
\int_{0}^{s}(V(t+\tau)-V(\tau)) C d \tau & =\int_{0}^{s} V(t+\tau) C d \tau-\int_{0}^{s} V(\tau) C d \tau \\
& =\int_{t}^{s+t} V(\tau) C d \tau-\int_{0}^{s} V(\tau) C d \tau \\
& =\int_{0}^{s+t} V(\tau) C d \tau-\int_{0}^{t} V(\tau) C d \tau-\int_{0}^{s} V(\tau) C d \tau \\
& =\int_{0}^{s} V(\tau) C d \tau+\int_{s}^{s+t} V(\tau) C d \tau-\int_{0}^{t} V(\tau) C d \tau-\int_{0}^{s} V(\tau) C d \tau \\
& =\int_{0}^{t}(V(s+\tau)-V(\tau)) C d \tau
\end{aligned}
$$

First suppose that $V(s) W(t)=W(t) V(s)$ for any $s, t \geq 0$. It follows from the definition of $\{V(t)\}_{t \geq 0}$ that

$$
\begin{aligned}
V(s) V(t) & =\int_{0}^{s}(V(t+\tau)-V(\tau)) C d \tau+D(V(s)-W(s))(W(t)-V(t)) \\
& =\int_{0}^{s}(V(t+\tau)-V(\tau)) C d \tau+D(V(s) W(t)-V(s) V(t)-W(s) W(t)+W(s) V(t))
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
V(t) V(s) & =\int_{0}^{t}(V(s+\tau)-V(\tau)) C d \tau+D(V(t)-W(t))(W(s)-V(s)) \\
& =\int_{0}^{t}(V(s+\tau)-V(\tau)) C d \tau \\
& +D(V(t) W(s)-V(t) V(s)-W(t) W(s)+W(t) V(s))
\end{aligned}
$$

Hence by (9) we have

$$
I+D(V(s) V(t))=I+D(V(t) V(s))
$$

Now injectivity of $I+D$ implies that $V(s) V(t)=V(t) V(s)$.
The proof of (2) is similar and so we omit it.
Now suppose that A_{0} is the infinitesimal generator of the integrated C-semigroup $\{W(t)\}_{t \geq 0}$. With $A_{1}=$ $(1+D) A-D A_{0}$, we have the following result.

Theorem 4.2. Suppose that $\{V(t)\}_{t \geq 0} \subseteq B(X)$ is a family with $V(0)=0$ and it satisfies (8).

1. Let $T_{1}(t)(x)=(1+D) V(t) x-D W(t) x, x \in X$. Then $\left\{T_{1}(t)\right\}_{t \geq 0}$ is a integrated C-semigroup of operators whose infinitesimal generator is an extension of A_{1}.
2. If $D+I$ is invertible then the solution of (8) in the strong operator topology is of the form

$$
V(t) x=D(D+I)^{-1} W(t) x+(1+D)^{-1} T_{1}(t) x, \quad x \in X
$$

Proof. Trivially $T_{1}(0)=0$, since $W(0)=0=V(0)$. Also for $s, t \geq 0$, using (8), and a simple calculation one may observe that $T_{1}(t) \mathrm{C}=C T_{1}(t)$ as well as

$$
\begin{aligned}
\int_{0}^{s}\left(T_{1}(t+\tau)-T_{1}(\tau)\right) C d \tau & =\int_{0}^{s}((1+D) V(t+\tau)-D W(t+\tau)-(1+D) V(\tau)+D W(\tau)) C d \tau \\
& =(1+D) \int_{0}^{s}(V(t+\tau)-V(\tau)) C d \tau-D \int_{0}^{s}(W(t+\tau)-W(\tau)) C d \tau \\
& =(1+D)[V(s) V(t)-D(V(s)-W(s))(W(t)-V(t))]-D[W(s) W(t)] \\
& =(1+D)^{2} V(s) V(t)-(1+D) D V(s) W(t)-(1+D) D W(s) V(t)+D^{2} W(s) W(t) \\
& =[(1+D) V(s)-D W(s)][(1+D) V(t)-D W(t)] \\
& =T_{1}(s) T_{1}(t) x
\end{aligned}
$$

Now we are going to show that an extension of $A_{1}=(1+D) A-D A_{0}$ is the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \geq 0}$. Let B be the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \geq 0}$. For a given $x \in D\left(A_{1}\right)=D(A) \cap D\left(A_{0}\right)$, by definition of $D(A)$ and $D\left(A_{0}\right), \int_{0}^{t} V(s) y d s=V(t) x-C x \Leftrightarrow A x=y$ and $\int_{0}^{t} W(s) y d s=W(t) x-C x \Leftrightarrow A_{0} x=y$. Thus

$$
\begin{aligned}
\int_{0}^{t} T_{1}(s) y d s & =\int_{0}^{t}[(1+D) V(s)-D W(s)] y d s \\
=(1+D)(V(t) x-C x) & -D(W(t) x-C x)=T_{1}(t) x-C x
\end{aligned}
$$

if and only if $A_{1} x=y$. This implies that $x \in D(B)$ and $A_{1}(x)=B(x)$. Thus the infinitesimal generator of $\left\{T_{1}(t)\right\}_{t \geq 0}$ is an extension of A_{1}. This proves (1).
(2) is trivial.

References

[1] W. Arendt, Resolvent positive operators and integrated semigroups, Proc. Lond. Math. Soc. 54 (3) (1987) 321-349.
[2] E. B. Davies, M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida approximation, Proc. Lond. Math. Soc. 55 (3) (1987) 181-208.
[3] R. deLaubenfels, Integrated semigroups, C-semigroups and the abstract Cauchy problem, Semigroup Forum 41(1) (1990) 83-95.
[4] A. Ducrot, P. Magal, K. Prevost, Integrated semigroups and parabolic equations, Part I: linear perburbation of almost sectorial operators, J. Evol. Equ. 10 (2010) 263-291.
[5] S. Harshinder, The mixed semigroup relation, Indian J. Pure Appl. Math. 9 (4) (1978) 255-267.
[6] S. Harshinder, A. B. Buche, On some analytic properties of the modified exponential-cosine operator. Indian J. Pure Appl Math 10 (8) (1979) 913-919.
[7] H. Kellermann, M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989) 160-180.
[8] C. C. Kuo, S. Y. Shaw, C-cosine functions and the abstract Cauchy problem, I*. J. Math. Anal. Appl 210 (1997) 632-646.
[9] C. C. Kuo, S. Y. Shaw, On α-times integrated C-semigroups and the abstract Cauchy problem, Studia Math. 142(3) (2000) $201-217$.
[10] C. C. Kuo, Note on local integrated C-cosine function and abstract Cauchy problems, Taiwanese J. Math. 17 (3) (2013) 957-980.
[11] C.-C. Kuo, Additive perturbations of local C-semigroups, Acta Mathematica Scientia, 35B(6) (2015) 1566-1576.
[12] M. Kostić, On analytic integrated semigroups, Novi. Sad. J. Math. 33(1) (2005) 127-135.
[13] M. Kostić , Hille-Yosida theorems for local convoluted C-semigroups and cosine functions, Filomat 25(4) (2011) 177-190.
[14] F. Neubrander, Integrated semigroups and their application to the abstract Cauchy problem, Pacific J. Math. 135 (1988) 111-155.
[15] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences: 44. Springer-Verlag, New York, 1983.
[16] J. Qiang, M. Li, Q. Zheng, The applications of C-semigroups to the Dirac equation, Appl. Math. Lett. 22 (2009) 422-427.
[17] T. Takenaka, S. Piskarev, Local C-cosine families and N-times integrated local cosine families, Taiwanese J. Math. 8(3) (2004) 515-545.
[18] I.I. Vrabie, C_{0}-Semigroups and Applications, Elsevier Science B. V. , 2003.

[^0]: 2010 Mathematics Subject Classification. Primary 47D60 ; Secondary 34G10, 47D03
 Keywords. C-semigroup, Mixed semigroup, C-integrated semigroup, C-cosine family.
 Received: 01 June 2014; Accepted: 26 August 2016
 Communicated by Dragan S. Djordjević
 Corresponding author: Mohammad Janfada
 Email addresses: masvame63@gmail.com (Masoud Mosallanezhad), janfada@um.ac.ir (Mohammad Janfada)

