
Filomat 30:11 (2016), 2973–2984
DOI 10.2298/FIL1611973K

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A procedure is provided for computing the replicated exercise prices of a given portfolio. We
highlight a matrix-based framework for analyzing option replication. The new matrix formulation allows
the development of efficient computational methods in order to determine the replicated exercise prices of
a given portfolio by using the theory of positive bases in vector lattices.

1. Introduction

An important implication of the work of Ross in [14], is the existence of options that cannot be replicated
by the primitive securities when markets are incomplete. Therefore, perfect risk transfer is not possible
since some payoffs cannot be replicated by trading in marketed securities. In [1], Aliprantis and Tourky
concluded that Ross’s findings are, in fact, negative since they assert that in an incomplete market one
cannot expect to replicate the payoff of each option even if the underlying asset is traded. Moreover, they
reach the following remarkable complementary conclusion: If the markets are strongly resolving and the
number of securities is less than half the number of states of the world, then (generically) not a single
option can be replicated by traded securities. In [4], Baptista extended the aforementioned result in [1], to
accommodate cases where the condition on the number of primitive securities is not imposed. In particular,
it is proved that if there exists no binary payoff vector in the asset span, then for each portfolio there exists
a set of nontrivial exercise prices of full measure such that any option on the portfolio with an exercise
price in this set is non-replicated. Also, as it is remarked in [4], the class of markets without binary vectors
is dense in Rm, in the sense of Lebesgue measure. It is also worth mentioning that the results of Ross for
two-date security markets with finitely many states holds for security markets with more than two dates,
see [2, 3]. In [13], the authors examined both the results of Baptista, [4], and Aliprantis and Tourky, [1].
They proposed a characterization of markets without binary vectors as follows: Consider a two-period
security market X, if 1 = (1, 1, ..., 1) ∈ X, then X does not contain binary vectors if and only if for any
nonconstant vector x ∈ X at least one nontrivial option of x is non-replicated. In [13] it is proved that in
these markets for any x ∈ X the set of nontrivial exercise prices of x contains at most k−3 replicated exercise
prices, where k ≤ m. In previous work, [5–12], we have shown that it is possible to construct computational
methods in order to efficiently compute vector sublattices and lattice-subspaces ofRm or C[a, b]. In addition,
these methods have been successfully applied in portfolio insurance, completion of security markets and
option replication. This work further explores the results provided in [13] as well as various techniques
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for the computation of positive bases and vector sublattices presented in [5–12]. This paper proceeds as
follows: Section 2 briefly introduces the basic notation and terminology. In Section 3, we present our main
results as well as the related algorithmic procedure in order to determine replicated exercise prices for a
given portfolio. Conclusions are provided in Section 4. The Appendix, i.e. Section 5, presents a Matlab
implementation of the proposed algorithm.

2. Preliminaries

For any x = (x(1), x(2), ..., x(m)) ∈ Rm, the set supp(x) = {i|x(i) , 0} is the support of x. The vectors x, y ∈ Rm

have disjoint supports if supp(x) ∩ supp(y) = ∅. An ordered subspace Z of Rm is a vector sublattice or a Riesz
subspace ofRm if for any x, y ∈ Z the supremum and the infimum of the set {x, y} inRm belong to Z.Assume
that X is an ordered subspace of Rm and B = {b1, b2, ..., bµ} is a basis for X. Then B is a positive basis of X if
for each x ∈ X it holds that x is positive if and only if its coefficients in the basis B are positive.

A positive basis B = {b1, b2, ..., bµ} is a partition of the unit if the vectors bi have disjoint supports and∑µ
i=1 bi = 1. The existence of positive bases is not always ensured, but in the case where X is a vector

sublattice of Rm then X always has a positive basis. Recall that a nonzero element x0 of X+ is an extremal
point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0 implies x = λx0, for a real number λ. Since each element bi of
the positive basis of X is an extremal point of X+, a positive basis of X is unique in the sense of positive
multiples. For computational methods regarding positive bases with applications in economics we refer to
[5–9, 11].

Suppose that, agents trade x1, x2, ..., xn non-redundant (linearly independent) securities in period t = 0,

future payoffs of x1, x2, ..., xn are collected in a matrix A =
[
xi( j)

] j=1,2,...,m

i=1,2,...n
∈ Rm×n where xi( j) is the payoff of

one unit of security i in state j. It is clear that the matrix A is of full rank and the asset span is denoted by
X = Span(A). A vector in Rm is said to be marketed or replicated if x is the payoff of some portfolio θ (called
the replicating portfolio of x), or equivalently if x ∈ X. In the following, we shall denote by 1 the riskless bond
i.e., the vector 1 = (1, 1, ..., 1). A vector x is a binary vector if x , 0 = (0, 0, ..., 0), x , 1 and x(i) = 0 or x(i) = 1,
for any i. If both c(x, α) = (x − α1)+ > 0 and p(x, α) = (α1 − x)+ > 0, we say that the call option c(x, α) and
the put option p(x, α) are non trivial and the exercise price α is a non trivial exercise price of x. If c(x, α) and
p(x, α) belong to X then we say that c(x, α) and p(x, α) are replicated. If we suppose that 1 ∈ X and at least
one of c(x, a), p(x, a) is replicated, then both of them are replicated since by the put-call parity we have,
x − α1 = c(x, α) − p(x, α). For notation not defined here the interested reader may refer to [9, 13] and the
references therein.

We present a new matrix formulation of the study of markets without binary vectors, in order to develop
efficient computational methods for option replication. Suppose that a security market X is generated by
a given collection of non-redundant securities x1, x2, ..., xn of Rm. In the theory of security markets it is a
usual practice to take call and put options with respect to the riskless bond 1 = (1, 1, ..., 1). The completion,
F1(X), of X by options is exactly the subspace of Rm generated by all options written on the elements of
X ∪ {1}. Since the payoff space is Rm, which is a vector lattice, in the case where 1 ∈ X then F1(X) is exactly
the vector sublattice generated by X. In addition, if X is a vector sublattice of Rm then F1(X) = X therefore
any option is replicated. Note that the vectors x1, x2, ..., xn are not presupposed to be positive. A basic set of
marketed securities is a set of linearly independent and positive vectors of X such that the vector sublattice
of Rm generated by such a set is F1(X). It is well-known that a basic set of marketed securities always exist.
For any x =

∑µ
i=1 λibi ∈ F1(X), let a1 = min{λi|i = 1, 2, ..., µ}, a2 = min{λi|λi > a1}, ..., ak = min{λi|λi > ak−1}.

The numbers a1, a2, ..., ak will be referred as the essential coefficients of x, with respect to the basis {bi}. A vector
x ∈ Rm is a nonconstant vector if x is not a multiple of 1, i.e., x , λ1 for any λ ∈ R.

3. Main Results

We highlight a matrix-based framework, for analyzing option replication. The proposed matrix for-
mulation will enable us to develop efficient computational methods in order to determine the replicated
exercise prices of a portfolio by using the theory of vector lattices and positive bases. Suppose that a security
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market X is generated by a given collection of linearly independent vectors y1, y2, ..., yn of Rm. As we have
already mentioned, a basic set of marketed securities x1, x2, ..., xn for the market X always exists. Also, the
sublattice generated by a basic set of marketed securities is exactly F1(X) and F1(X) has a positive basis
which is a partition of the unit, i.e., the vectors b1, b2, ..., bµ have disjoint supports and

∑µ
i=1 bi = 1. Let us

denote by A the matrix

A =


x1(1) x2(1) . . . xn(1)
x1(2) x2(2) . . . xn(2)
...

...
...

...
x1(m) x2(m) . . . xn(m)


where xi( j) is the payoff of one unit of security i in state j. Also, if b1, b2, ..., bµ is a positive basis for F1(X)
which is a partition of the unit, then

B =


b1(1) b2(1) . . . bµ(1)
b1(2) b2(2) . . . bµ(2)
...

...
...

...
b1(m) b2(m) . . . bµ(m)


is the matrix where bi( j) is the j coordinate of the vector bi.

Lemma 3.1. For each x ∈ F1(X), the essential coefficients of x are the different coordinates of x.

Proof. Let x = (x(1), x(2), ..., x(m)) and x =
∑µ

i=1 λibi. If j ∈ supp(bk), for some k ∈ {1, ..., µ}, then x( j) =∑µ
i=1 λibi( j) = λkbk( j). Since the basis is a partition of the unit we have that bk( j) = 1, so x( j) = λk. From the

definition of the essential coefficients of x the lemma is true.

Suppose that

S1 = supp(b1),S2 = supp(b2), ...,Sµ = supp(bµ)

and denote by mi the minimum element of the set Si for each i = 1, ..., µ, i.e.,

m1 = min(S1),m2 = min(S2), ...,mµ = min(Sµ).

Lemma 3.2. For each x ∈ X it holds x =
∑µ

i=1 x(mi)bi.

Proof. Suppose that x = (x(1), x(2), ..., x(m)) and x =
∑µ

i=1 λibi then x(m1) =
∑µ

i=1 λibi(m1). Since m1 ∈ S1, we
have that b1(m1) = 1 and bρ(m1) = 0, for ρ = 2, 3, ..., µ. Therefore, x(m1) = λ1 and by using similar arguments
one can prove that x(mi) = λi, for i = 2, 3, ..., µ.

Let β1 = min{x(mi)|i = 1, 2, ..., µ}, β2 = min{x(mi)|x(mi) > β1, |i = 1, 2, ..., µ}, . . . , βk = max{x(mi)|i =
1, 2, ..., µ}, then we have the following proposition.

Proposition 3.3. For any x ∈ F1(X) and a ∈ R we have:

(i) c(x, a) =
∑µ

i=1(x(mi) − a)+bi and p(x, a) =
∑µ

i=1(a − x(mi))+bi,
(ii) the interval Kx = (β1, βk) is the set of nontrivial exercise prices of x.

Proof. (i) From lemma 3.2 we have x =
∑µ

i=1 x(mi)bi, so c(x, a) = (x − a1)+ =
(∑µ

i=1 x(mi)bi − a1
)+

. Since

the basis {bi} is a partition of the unit we have
∑µ

i=1 bi = 1, and the vectors bi have disjoint supports,
therefore

c(x, a) =
( µ∑

i=1

x(mi)bi − a
µ∑

i=1

bi

)+
=

( µ∑
i=1

(
x(mi)− a

)
bi

)+
=

µ∑
i=1

max{x(mi)− a, 0}bi =

µ∑
i=1

(
x(mi)− a

)+
bi.

The proof for the put option is analogous.
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(ii) Trivial.

The following analysis based on row leader elements is important for the construction of our proposed
computational method. Let us call the row leader, the leftmost nonzero element of each row of the matrix

C = BT =


b1(1) b1(2) . . . b1(m)
b2(1) b2(2) . . . b2(m)
...

...
...

...
bµ(1) bµ(2) . . . bµ(m)

 ,
and let us denote by c1 j1 , c2 j2 , ..., cµ jµ the row leader elements of C.

Proposition 3.4. For each portfolio x ∈ X with x = (x(1), x(2), ..., x(m)) we have that

x =

µ∑
i=1

x( ji)bi,

where j1, j2, ..., jµ are the column indices of the row leader elements of C.

Proof. It is clear that, ji = mi, for i = 1, 2, ..., µ, therefore from lemma 3.2 it holds x =
∑µ

i=1 x(mi)bi =∑µ
i=1 x( ji)bi.

Theorem 3.5. Suppose that the asset span X does not contain binary vectors and x is a nonconstant vector of X.

(i) If k = 2, each nontrivial call option of x is non-replicated. If k > 2, each of the intervals (β1, β2), [β2, β3), ...,
[βk−2, βk−1) contains at most one call-replicated exercise price, therefore there are at most k − 2 call-replicated
exercise prices of x.

(ii) If k = 2, each nontrivial put option of x is non-replicated. If k > 2, each of the intervals (β2, β3], ...,(βk−2, βk−1],
(βk−1, βk) contains at most one put-replicated exercise price, therefore there are at most k − 2 put-replicated
exercise prices of x.

(iii) If we suppose moreover that 1 ∈ X, we have: If k = 3, each nontrivial option of x is non-replicated. If k > 3, each
of the intervals (β2, β3), [β3, β4), ..., [βk−2, βk−1) contains at most one replicated exercise price, therefore there are
at most k − 3 replicated exercise prices of x.

Proof. (i) From propositions 3.3 and 3.4 we have that c(x, a) =
∑µ

i=1

(
x( ji)−a

)+
.Note that β1 = min{x(mi)|i =

1, 2, ..., µ} = min{x( ji)|i = 1, 2, ..., µ} and βk = max{x(mi)|i = 1, 2, ..., µ} = max{x( ji)|i = 1, 2, ..., µ}. Suppose
that a ∈ (β1, βk) then

c(x, a) =
∑
i∈Φ

(x( ji) − a)bi, where Φ = {i|x( ji) > a}.

Let βk = x( jk) then a < x( jk). If, in addition, a > x( ji) for each i ∈ Φ \ {k} then

c(x, a) = (x( jk) − a)bk = (βk − a)bk < X,

since it is a positive multiple of a binary vector and X does not contain binary vectors. Therefore, for
any a ∈ [βk−1, βk) we have that c(x, a) < X hence a is not a call-replicated exercise price. Since x is a
nonconstant vector it has at least two different coordinates, so k ≥ 2.
If k = 2, then for each a ∈ (β1, β2) any call option written on x with replicated exercise price a is
nonreplicated. Indeed,

c(x, a) = (β1 − a)+b1 + (β2 − a)+b2 = (β2 − a)b2
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which is a positive multiple of a binary vector, contradiction.
Let a, a′ are different exercise prices and a, a′ ∈ (β1, β2) or a, a′ ∈ [βr, βr+1) for some r = 2, 3, ..., k − 2.
Suppose that c(x, a) =

∑
i∈Φ(x( ji) − a)bi and c(x, a′) =

∑
i∈Φ(x( ji) − a′)bi belong to X then

c(x, a) − c(x, a′) =
∑
i∈Φ

(a′ − a)bi ∈ X,

contradiction since X does not contain binary vectors. Hence there are at most k − 2 call-replicated
exercise prices.

(ii) The proof is analogous to (i).
(iii) Trivial.

Note that the proofs of Proposition 3.3 and Theorem 3.5 are presented here for consistency reasons regarding
the notion of row leader elements. The original proofs are included in [13].

Our previous analysis based on row leader elements will provide an efficient computational method
in order to calculate the replicated exercise prices of a given portfolio. According to theorem 3.5, we shall
present the proposed formulation for the option replication problem based on a matrix notation.

Recall that A is the m × n matrix with columns being the vectors of the basic set of marketed securities.
Recall that, the matrix A has full column rank i.e., rank(A) = n. B denotes the m × µ matrix whose columns
are the vectors of the positive basis of F1(X) and this basis is a partition of the unit. First, we express the
columns of A in terms of the positive basis by solving n linear systems as follows:

B · Y = A.

The resulting matrix Y, is the matrix whose i column entries are the coefficients in terms of the positive
basis B of the i column of A. If x ∈ X is a nonconstant portfolio then, from proposition 3.4, x =

∑µ
i=1 x( ji)bi

and let us denote by W the matrix

W =


x( j1)
x( j2)
...

x( jµ)

 .
For r = 1, ..., k − 3, we define the matrices Wr, from the matrix W, by putting x( ji) = 0, i = 1, 2, ..., µ

whenever x( ji) < βr+2. For each matrix Wr =


w1
w2
...

wµ

 we define a corresponding matrix Jr, where Jr =


z1
z2
...

zµ


such that zi =

{
1, wi , 0
0, wi = 0 , i = 1, 2, ..., µ. Also, for r = 1, ...k − 3, we define the matrices Zr =

[
Y Jr

]
.

In order to calculate the replicated exercise prices of x, we must compute all a ∈ (β1, βk) such that
c(x, a) =

∑µ
i=1(x(mi) − a)+bi ∈ X.

According to the previous discussion, we have to solve for r = 1, 2, ..., k − 3 the corresponding linear
system

Zr ·


p1
p2
...

pn
ar


= Wr.

If ar ∈ (βr+1, βr+2) then ar is a replicated exercise price for x.
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Remark 3.6. It is clear that a slight modification of the previous procedure can provide the corresponding computa-
tional method for the put options.

Example 3.7. Consider the following 5 vectors x1, x2, ..., x5 in R10,


x1
x2
x3
x4
x5

 =


0 1 0 1 1 1 1 2 2 1
1 1 1 2 1 1 1 2 1 2
1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 2 2 1
2 1 2 1 1 1 1 1 1 1


and X = [x1, x2, ..., x5].

A positive basis which is a partition of the unit is the following

b1
b2
b3
b4
b5
b6


=



1 0 1 0 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0


.

Let x = −x1+x2+3x3+3x4 = (7, 6, 7, 10, 6, 6, 6, 12, 8, 7). According to lemma 3.1 the essential coefficients
of x are the different elements of x i.e., essential coefficients = {7, 6, 10, 12, 8}. Also, S1 = supp(b1) = {1, 3}, S2 =
supp(b2) = {2, 5, 6, 7}, S3 = supp(b3) = {4}, S4 = supp(b4) = {8}, S5 = supp(b5) = {10}, S6 = supp(b6) = {9}. Then
m1 = min(S1) = 1, m2 = min(S2) = 2, m3 = min(S3) = 4, m4 = min(S4) = 8, m5 = min(S5) = 10, m6 =
min(S6) = 9. Finally, one gets x = x(1)b1 + x(2)b2 + x(4)b3 + x(8)b4 + x(10)b5 + x(9)b6.

Suppose that a is a replicated exercise price of x. The row leader elements are the entries c11, c22, c34,
c48, c5 10, c69 of the matrix C = BT. So, j1 = 1, j2 = 2, j3 = 4, j4 = 8, j5 = 10, j6 = 9 and

c(x, a) =
(
x(1) − a

)+
b1 +

(
x(2) − a

)+
b2 +

(
x(4) − a

)+
b3 +

(
x(8) − a

)+
b4 +

(
x(10) − a

)+
b5 +

(
x(9) − a

)+
b6

Also, β1 = 6, β2 = 7, β3 = 8, β4 = 10, β5 = 12 and since 1∈ X (1 = x5 − x4 + x1), we have that a < (β1, β2]
and a < [β4, β5), therefore we search for replicated exercise prices inside the intervals (7, 8) and [8, 10). Let
a ∈ (7, 8), since x(1) = 7, x(2) = 6, x(4) = 10, x(8) = 12, x(10) = 7, x(9) = 8 we have

c(x, a) =
(
x(4) − a

)
b3 +

(
x(8) − a

)
b4 +

(
x(9) − a

)
b6. (1)

On the other hand, a is a replicated exercise price of x i.e., c(x, a) ∈ X hence

c(x, a) =
∑5

i=1 ρixi = ρ1(b2 + b3 + 2b4 + b5 + 2b6) + ρ2(b1 + b2 + 2b3 + 2b4 + 2b5 + b6)+
ρ3(b1 + b2 + 2b3 + 2b4 + b5 + b6) + ρ4(b1 + b2 + b3 + 2b4 + b5 + 2b6) + ρ5(2b1 + b2 + b3+
b4 + b5 + b6) = (ρ2 + ρ3 + ρ4 + 2ρ5)b1 + (ρ1 + ρ2 + ρ3 + ρ4 + ρ5)b2 + (ρ1 + 2ρ2 + 2ρ3+
ρ4 + ρ5)b3 + (2ρ1 + 2ρ2 + 2ρ3 + 2ρ4 + ρ5)b4 + (ρ1 + 2ρ2 + ρ3 + ρ4 + ρ5)b5 + (2ρ1 + ρ2+
ρ3 + 2ρ4 + ρ5)b6.

Therefore, by using equation (1) we have,

(ρ2 + ρ3 + ρ4 + 2ρ5)b1 + (ρ1 + ρ2 + ρ3 + ρ4 + ρ5)b2 + (ρ1 + 2ρ2 + 2ρ3 + ρ4 + ρ5+
a)b3 + (2ρ1 + 2ρ2 + 2ρ3 + 2ρ4 + ρ5 + a)b4 + (ρ1 + 2ρ2 + ρ3 + ρ4 + ρ5)b5 + (2ρ1+
ρ2 + ρ3 + 2ρ4 + ρ5 + a)b6 = x(4)b3 + x(8)b4 + x(9)b6
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from which we conclude to the following system of equations

0 1 1 1 2 0
1 1 1 1 1 0
1 2 2 1 1 1
2 2 2 2 1 1
1 2 1 1 1 0
2 1 1 2 1 1


·



p1
p2
p3
p4
p5
a


=



0
0

x(4)
x(8)

0
x(9)


. (2)

If the resulting a belongs to the interval (7, 8) then a is a replicated exercise price for x. For the case a ∈ [8, 10)
one has to follow a similar procedure. In this example there is no replicated exercise price a for x.

In matrix terms and according to our definitions for the matrices Wr, Jr and Zr, the previous procedure
is equivalent to the following analysis,

A =
[

x1 x2 x3 x4 x5

]
=



0 1 1 1 2
1 1 1 1 1
0 1 1 1 2
1 2 2 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
2 2 2 2 1
2 1 1 2 1
1 2 1 1 1


, B =

[
b1 b2 b3 b4 b5 b6

]
=



1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0


and by solving the system B · Y = A we have

Y =



0 1 1 1 2
1 1 1 1 1
1 2 2 1 1
2 2 2 2 1
1 2 1 1 1
2 1 1 2 1


.

Recall that the row leader elements are the entries c11, c22, c34, c48, c5 10, c69 of matrix C = BT. Therefore,
we have

W =



x( j1)
x( j2)
x( j3)
x( j4)
x( j5)
x( j6)


=



x(1)
x(2)
x(4)
x(8)
x(10)
x(9)


=



7
6

10
12
7
8


and for r = 1, 2 we have matrices Wr, Jr and Zr as follows,

W1 =



0
0

10
12
0
8


, W2 =



0
0

10
12
0
0


, J1 =



0
0
1
1
0
1


, J2 =



0
0
1
1
0
0





V. N. Katsikis / Filomat 30:11 (2016), 2973–2984 2980

Z1 =
[
Y J1

]
=



0 1 1 1 2 0
1 1 1 1 1 0
1 2 2 1 1 1
2 2 2 2 1 1
1 2 1 1 1 0
2 1 1 2 1 1


, Z2 =

[
Y J2

]
=



0 1 1 1 2 0
1 1 1 1 1 0
1 2 2 1 1 1
2 2 2 2 1 1
1 2 1 1 1 0
2 1 1 2 1 0


.

Then we compute a by solving the systems

Z1 ·



p1
p2
p3
p4
p5
a


= W1, Z2 ·



p1
p2
p3
p4
p5
a


= W2.

Note that, the first system is the system provided by equation (2).

The basic steps of an algorithmic procedure that allow the accurate implementation of the previous ideas
and leads to the computation of the replicated exercise prices, are collected in the following algorithm:

Algorithm 1 Algorithm for finding the replicated exercise prices of a given portfolio.
Require: The matrix A, i.e., the payoff matrix with the non-redundant security vectors x1, x2, ..., xn specified

as columns.
1: Determine a basic set y1, y2, ..., yn of marketed securities.
2: Calculate the vector sublattice generated by y1, y2, ..., yn, which is exactly the completion by options

F1(X) of X.
3: Calculate a positive basis for F1(X) which is a partition of the unit.
4: Compute the row leader elements, according to proposition 3.4, and the interval of replicated exercise

prices for a given portfolio x.
5: Expand the securities {x1, x2, ..., xn} in terms of the positive basis {b1, b2, ..., bµ}.
6: For r = 1, 2, ..., k − 3 construct the matrices Wr, Jr, and Zr.
7: Solve the corresponding linear systems in order to compute possible replicated exercise prices.
8: Decide which of the resulting solutions are replicated exercise prices.

In the Appendix we present a Matlab-based imlementation of the previous algorithm. In order to solve
the corresponding linear systems in Step 7 of the previous algorithm the Matlab backslash operator has
been used.

3.1. Execution Times
For the purpose of monitoring the performance, we present a table with the execution times of the

reprices function for a collection of payoff matrices with various dimensions. All numerical tasks have
been performed by using the Matlab R2013a environment on an Intel(R) Core(TM) i7-3770 CPU 3.40
GHz, 3.40 GHz running on the Windows 7 Operating System. It is evident that the proposed numerical
method, based on the introduction of the reprices function (see the appendix), enables us to perform fast
computations for a variety of dimensions. A closer look at the algorithmic process suggest that a manual
procedure in order to determine the replicated exercise prices of a given nonconstant portfolio can easily
become prohibitive due to the elaborate computations involved. In fact, for a given portfolio, the more
different the coordinates are the greater the amount of calculations required. Hence, we are convinced that
the proposed approach can serve as a nice complement, with practical relevance, to the existing set of tools
for option replication.
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Table 1: Computation times
Payoff matrix dimension Time (in seconds)

10 × 7 0.006137
11 × 8 0.0057819
12 × 9 0.0064074

13 × 10 0.0076597
14 × 11 0.0087804
15 × 12 0.010308
16 × 13 0.010978
17 × 14 0.012091
18 × 15 0.01731
19 × 16 0.01976
20 × 17 0.016359

4. Conclusions

In this paper, we propose a matrix-based framework, for analyzing option replication. The new matrix
formulation allowed the development of efficient computational methods in order to determine the repli-
cated exercise prices of a given portfolio by using the theory of vector lattices and positive bases. We are
hopeful that the results of this work provide an important tool in order to study the interesting problem of
option replication, in which the space of marketed securities is a subspace of Rm.

5. Appendix

We present the Matlab code for the proposed computational method that enables us to determine
replicated exercise prices for a given nonconstant portfolio. The code is self contained.

function [Reprices,Npb] = reprices(X,x)

%***************************%

% General Information. %

%***************************%

% Synopsis:

% Reprices = reprices(X,x)

% [Reprices,Npb] = reprices(X,x)

% Input:

% X = the payoff matrix with the non-redundant

% security vectors x_1, x_2,...,x_n specified

% as columns.

% x = a given nonconstant portfolio of X.

% Output:

% Reprices = is a cell array containing the

% replicated exercise prices of x.

% Npb = positive basis of F_1(X) which is a partition

% of the unit. The i column of the Npb matrix is

% the vector bi of the positive basis.

%******************************************************%

% Determination of a basic set of marketed securities. %

%******************************************************%

if any(any(X < 0)) ˜= 0

a = max(max(abs(X)));

B = a*ones(size(X)) -X;

if any(any(B < 0)) ˜= 0

B = 2*a*ones(size(X)) - X;
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end

else

B = X;

end

Matrix = zeros(size(B));

%**********************************%

% Range of the basic curve. %

%**********************************%

% Determination of the basic curve.

N = length(B(:,1));

for i = 1:N,

if norm(B(i,:),1) ˜= 0,

Matrix(i,:) = 1/norm(B(i,:),1)*B(i,:);

end

end

% Find the unique elements of the range of the basic curve.

[Unique,m] = unique(Matrix,’rows’,’first’);

Sort_m = sort(m);

Matrixnew = Matrix(Sort_m,:);

r = length(m);

%**********************************************%

% Calculation of the vector sublattice F_1(X). %

%**********************************************%

% Choose which vectors are linearly independent.

S = rref(Matrixnew’);

[I,J] = find(S);

Linearindep = accumarray(I,J,[rank(Matrixnew),1],@min)’;

M = length(B(1,:));

% A) If X=F_1(X).

if r == M

disp(’X is a vector sublattice hence any option is replicated’)

end

% B) If X˜=F_1(X).

Index1 = 1:r;

Index2 = setdiff(Index1,Linearindep);

Index = 1:N;

YY = sum(B,2)’;

TTT = setdiff(Index,Linearindep);

Id = eye(N);

KK = Id(TTT,:);

TT = YY(1,TTT)’;

T = diag(TT)*KK;

K = zeros(N);

K(TTT,:) = T;

Vec = zeros(r-M,N);

DDD = cell(r-M,1);

for i = 1:length(Index2)

DD = strmatch(Matrixnew(Index2(i),:),Matrix,’exact’);

R = length(DD);

if R >= 2,

Vector = sum(K(DD,:));

else

Vector = K(DD,:);

end

DDD{i,:} = DD;

Vec(i,:) = Vector;
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end

Sublattice = [B Vec’];

%****************************************************%

% Determination of a positive basis for F_1(X) which %

% is a partition of the unit. %

%****************************************************%

% Calculate the new basic curve for F_1(X).

Matrixnew2 = zeros(size(Sublattice));

for i = 1:N,

if norm(Sublattice(i,:),1) ˜= 0,

Matrixnew2(i,:) = 1/norm(Sublattice(i,:),1)*Sublattice(i,:);

end

end

u = Matrixnew2([Sort_m(Linearindep)’ cell2mat(DDD)’],:);

Test_Pb = u’\Sublattice’;

[f,ff] = find(Test_Pb);

Pb = Test_Pb(unique(f),:);

% Normalization of the positive basis (Npb).

Npb1 = diag(1./max(Pb,[ ],2))*Pb;

Npb = Npb1’;

Npb(Npb < 10*eps) = 0;

Npb(Npb < 1+10*eps & Npb > 1-10*eps) = 1;

%************************************************************%

% Determination of the row leader elements and the interval %

% of replicated exercise prices. %

%************************************************************%

esscoef = unique(x);

mu = length(esscoef);

if mu <= 3

Reprices = [];

return

end

[i,j] = find(Npb’);

Z = accumarray(i,j,[r,1],@min)’;

L = x(Z);

disp(’The interval of nontrivial exercise prices of x:’);

disp([esscoef(1,1),esscoef(end,1)]);

%************************************************************%

% Expansion of the primitive securities in terms of the %

% positive basis (Npb) of F_1(X). Construct the matrices Wr, %

% Jr and Zr. Solve the corresponding systems. %

%************************************************************%

X1 = Npb\X;

R_Sol = length(X(1,:))+1;

Solution = zeros(R_Sol,mu-3);

Reprices = cell(1,mu-3);

for r = 1:mu-3

K = L;

K(K < esscoef(r+2)) = 0;

Wr = K;

K(K˜=0) = 1;

Jr = K;

Zr = [X1 Jr];

Solution(:,r) = Zr\Wr;

%*********************************************************%

% Decide which of the resulting solutions are replicated %
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% exercise prices. %

%*********************************************************%

if Solution(R_Sol,r) >= esscoef(r+1,1) && ...

Solution(R_Sol,r) < esscoef(r+2,1)

Reprices{1,r} = Solution(R_Sol,r);

else

Reprices{1,r} = ’-’;

end

end
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