The Small Inductive Dimension of Subsets of Alexandroff Spaces

Vitalij A. Chatyrko ${ }^{\text {a }}$, Sang-Eon Han ${ }^{\text {b }}$, Yasunao Hattori ${ }^{\text {c }}$
${ }^{a}$ Department of Mathematics, Linkoping University, 58183 Linkoping, Sweden
${ }^{b}$ Department of Mathematics Educations, Institute of Pure and Applied Mathematics, Chonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
${ }^{\text {c }}$ Department of Mathematics, Shimane University, Matsue, Shimane, 690-8504, Japan

Abstract

. We describe the small inductive dimension ind in the class of Alexandroff spaces by the use of some standard spaces. Then for ind we suggest decomposition, sum and product theorems in the class. The sum and product theorems there we prove even for the small transfinite inductive dimension trind. As an application of that, for each positive integers k, n such that $k \leq n$ we get a simple description in terms of even and odd numbers of the family $\mathbb{S}(k, n)=\left\{S \subset K^{n}:|S|=k+1\right.$ and ind $\left.S=k\right\}$, where K is the Khalimsky line.

1. Introduction

Recall ([J]) that a topological space X is called Alexandroff if for each point $x \in X$ there is the minimal open set $V(x)$ containing x. We will keep the notation along the text. It is easy to see that for each point $y \in V(x)$ we have $V(y) \subset V(x)$. This implies that if X is a T_{0}-space and $x, y \in X$ then $V(x)=V(y)$ iff $x=y$. Moreover, if X is a T_{1}-space then $V(x)=\{x\}$ for each point $x \in X$, i.e. an Alexandroff space X is a T_{1}-space iff X is discrete. Alexandroff spaces appear by a natural way in studies of topological models of digital images. They are quotient spaces of the Euclidean spaces \mathbb{R}^{n} defined by special decompositions (see [Kr]). Some studies of Alexandroff spaces from the general topology point of view can be found in [A] and [D].

We will follow the definition of the small inductive dimension ind suggested in $[\mathrm{P}]$. Let X be a space and n an integer ≥ 0. Then
(a) ind $X=-1$ iff $X=\emptyset$;
(b) ind $X \leq n$ iff for each point $x \in X$ and each open set V containing x there is an open set W such that $x \in W \subset V$ and ind $B d_{X} W<n$;
(c) ind $X=\infty$ iff ind $X \leq n$ does not valid for each integer $n \geq 0$.

[^0]It is easy to see that if ind $X=n$ for some integer $n \geq 0$ then the cardinality of X is greater than n.
Let us also recall ([P]) that for a space X and any subspace Y of X we have ind $Y \leq$ ind X.
Example 1.1. Let E be the topological space (\mathbb{R}, τ), where \mathbb{R} is the set of real numbers and τ is the topology on \mathbb{R} defined by the base $\mathcal{B}=\{[x, \infty): x \in \mathbb{R}\}$. It is easy to see that E is a connected Alexandroff T_{0}-space such that ind $B=\infty$ for each $B \in \mathcal{B}$. Moreover, for each integer $n \geq 0$ the subspace $E(n)=\{0,1, \ldots, n\}$ of E has ind $E(n)=n$ and any subspace Y of E of cardinality $n+1$ is homeomorphic to $E(n)$. Since the spaces $E(n), n=0,1, \ldots$, will play some role in the paper, we will keep the notation along the text.

In [WW1] P. Wiederhold and R. G. Wilson started to study the behavior of the small inductive dimension ind in the Alexandroff T_{0}-spaces. In particular (cf. [WW1] and [WW2]),
(A) they proved the product theorem (see Remark 2.11) for ind;
(B) they showed that if (X, τ) is an Alexandroff T_{0}-space and \leq_{τ} is its specialization partial order (i.e. $x \leq_{\tau} y$ iff $\left.x \in C l_{X}(\{y\})\right)$ then the small inductive dimension of (X, τ) is equal to the partial order dimension of (X, τ) defined as the supremum of all lengths of chains in $\left(X, \leq_{\tau}\right)$; and
(C) they observed that the quotient spaces of the Euclidean spaces \mathbb{R}^{n} defined by some standard decompositions based on the model of Kronheimer $([\mathrm{Kr}])$ have the dimension ind equal to n.

Let us also note that the coincidence of three kinds of dimension (one of them is ind) on partially ordered sets (close related to Alexandroff spaces) is established in [EKM].

In this paper we describe the dimension ind in the class of Alexandroff spaces by the use of spaces $E(n), n=0,1, \ldots$ (Proposition 2.1). Then for ind we suggest decomposition, sum and product theorems in the class (Propositions 2.2, 2.3 and 2.5 , respectively). Let us note that the product theorem is written as an equality and thus it is stronger than the theorem from [WW1]. The sum and product theorems there we prove even for the small transfinite inductive dimension trind (Propositions 4.3 and 4.4).

As an application of these results, for each positive integers k, n such that $k \leq n$ we get a simple description in terms of even and odd numbers of the family $\mathbb{S}(k, n)=\left\{S \subset K^{n}:|S|=k+1\right.$ and ind $\left.S=k\right\}$, where K is the Khalimsky line (see Remarks 3.2 and 3.7). (Let us note that each element of the family $\mathbb{S}(k, n)$ is homeomorphic to the space $E(k)$.) Observe that for any subspace A of K^{n} we have
(D) ind $A=n$ iff A contains an element of $\mathbb{S}(n, n)$, and
(E) ind $A=k<n$ iff A contains an element of $\mathbb{S}(k, n)$ and it contains no element from $\mathbb{S}(k+1, n)$.

Furthermore, we suggest some simple calculations of n-dimensional subsets of cardinality $n+1$ in the closures of the minimal neighborhoods of points in K^{n} as follows (Remark 3.7). The closure $C l_{K^{n}} V(x)$ in K^{n} of the minimal open neighborhood $V(x)$ of a point $x=\left(x_{1}, \ldots, x_{n}\right)$ with m odd coordinates contains exactly $2^{2 n-m} \cdot n!n$-dimensional in the sense of ind subsets of cardinality $n+1$ (of course, each of theses sets is homeomorphic to the space $E(n)$).

We also discuss the behavior of the transfinite extension of ind in Alexandroff spaces (Section 4).

2. Properties of the Small Inductive Dimension in Alexandroff Spaces

The following trivial known facts about Alexandroff spaces will be useful in the paper.
(A) If a space X is Alexandroff and $Y \subset X$, then the subspace Y of X is also Alexandroff and for each point $y \in Y$ the set $V(x) \cap Y$ is the minimal open neighborhood of y in Y.
(B) If spaces X and Y are Alexandroff, then the topological product $X \times Y$ is also Alexandroff and for each point $(x, y) \in X \times Y$ the set $V(x) \times V(y)$ is the minimal neighborhood of (x, y) in $X \times Y$.
(C) If spaces $X_{\alpha}, \alpha \in A$, are Alexandroff, then the topological union $\oplus_{\alpha \in A} X_{\alpha}$ is also Alexandroff and for each $\alpha \in A$ and each point $x \in X_{\alpha}$ the set $V(x)$ (defined in the Alexandroff space X_{α}) is the minimal open neighborhood of x in the space $\oplus_{\alpha \in A} X_{\alpha}$.

Let us also list some simple known facts about the dimension ind behavior in Alexandroff spaces. Let X be an Alexandroff space and n an integer ≥ 0. Then the following is valid.
(D) ind $X \leq n$ iff $\sup \left\{\right.$ ind $\left.B d_{X} V(x): x \in X\right\} \leq n-1$.

In particular, ind $X=0$ iff for every $x, y \in X$ we have either $V(x)=V(y)$ or $V(x) \cap V(y)=\emptyset$. Moreover, if X is a T_{0}-space then ind $X=0$ iff X is discrete.
(E) If ind $X=n$, then there is a point x such that ind $B d_{X} V(x)=n-1$ and ind $C l_{X} V(x)=n$.

Proposition 2.1. Let X be an Alexandroff space. Then ind $X \geq n \geq 0$ iff X contains a subspace which is homeomorphic to the space $E(n)$.

In particular, if the cardinality of X is equal to $n+1$ then ind $X=n$ iff X is homeomorphic to $E(n)$.
Proof: The sufficiency follows from the monotonicity of ind and the fact that ind $E(n)=n$. For the necessity apply an induction on $n \geq 0$. Let ind $X \geq n=0$. Hence, X contains a point which is homeomorphic to $E(0)$. Assume that the statement is valid for $n<k \geq 1$. Let ind $X \geq k$. Note that there is a point $x \in X$ such that ind $B d_{X} V(x) \geq k-1$. By the inductive assumption there are points x_{0}, \ldots, x_{k-1} of $B d_{X} V(x)$ and a homeomorphism $f: Y=\left\{x_{0}, \ldots, x_{k-1}\right\} \rightarrow E(k-1)$ such that $f\left(x_{i}\right)=i$ for each $i \leq k-1$. It is easy to see that $V\left(x_{k-1}\right) \subsetneq \cdots \subsetneq V\left(x_{0}\right)$. Since $x_{k-1} \in B d_{X} V(x)$, there is a point $x_{k} \in V(x) \cap V\left(x_{k-1}\right)$. Note that $V\left(x_{k}\right) \subsetneq V\left(x_{k-1}\right)$ and the mapping $g: Z=\left\{x_{0}, \ldots, x_{k}\right\} \rightarrow E(k)$, defined by $g\left(x_{i}\right)=i$ for each $i \leq k$, is a homeomorphism.

Let X be an Alexandroff space and $0<$ ind $X=n<\infty$.
Put $\mathcal{F}(X)=\left\{Y \subseteq X:\right.$ there is a homeomorphism $\left.f_{Y}: E(n) \rightarrow Y\right\}$ and $X_{0}=\cup\left\{V\left(f_{Y}(n)\right): Y \in \mathcal{F}(X)\right\}$.
Proposition 2.2. Let X be an Alexandroff space and ind $X=n$ for some integer $n>0$. Then
(i) for each $Y \in \mathcal{F}(X)$ either $\left|V\left(f_{Y}(n)\right)\right|=1$ or the subspace topology on the set $V\left(f_{Y}(n)\right)$ is trivial; in particular, for any $Y_{1}, Y_{2} \in \mathcal{F}(X)$ we have either $V\left(f_{Y_{1}}(n)\right) \cap V\left(f_{Y_{2}}(n)\right)=\emptyset$ or $V\left(f_{Y_{1}}(n)\right)=V\left(f_{Y_{2}}(n)\right)$;
(ii) the set X_{0} is open in X, ind $X_{0}=0$ and ind $\left(X \backslash X_{0}\right)=n-1$; moreover, $X_{0}=\cup\left\{\left\{f_{Y}(n)\right\}: Y \in \mathcal{F}(X)\right\}$ and for each $Y \in \mathcal{F}(X)$ we have $Y \cap X_{0}=\left\{f_{Y}(n)\right\}$;
(iii) there are disjoint subsets X_{0}, \ldots, X_{n} of X such that $X=\cup_{j=0}^{n} X_{j}$ and for each $i \leq n$ we have ind $X_{i}=0$ (the set X_{i} is discrete in itself, whenever $X \backslash \cup_{j<i} X_{j}$ is a T_{0}-space); moreover, $X_{i} \supseteq \cup\left\{\left\{f_{Y}(n-i)\right\}: Y \in \mathcal{F}(X)\right\}$ and the set $\cup_{j=0}^{i} X_{j}$ is open in X.

Proof: (i): Assume that $\left|V\left(f_{Y}(n)\right)\right|>1$ and the subspace topology on the set $V\left(f_{Y}(n)\right)$ is not trivial. So there is a point $z \in V\left(f_{Y}(n)\right)$ such that $V(z) \subsetneq V\left(f_{Y}(n)\right)$. It is easy to see that the subspace $Z=Y \cup\{z\}$ of X is homeomorphic to the space $E(n+1)$. We have a contradiction.
(ii): It is easy to see that the set X_{0} is open in X, ind $X_{0}=0, X_{0}=\cup\left\{\left\{f_{Y}(n)\right\}: Y \in \mathcal{F}(X)\right\}$, and ind $\left(X \backslash X_{0}\right) \leq$ $n-1$. Consider a $Y \in \mathcal{F}(X)$. Since ind $X_{0}=0$, we have $\left|Y \cap X_{0}\right|=1$ and $\left|Y \cap\left(X \backslash X_{0}\right)\right|=n-1$. This implies that $Y \cap X_{0}=\left\{f_{Y}(n)\right\}$ and ind $\left(X \backslash X_{0}\right)=n-1$.
(iii): Apply (ii).

Proposition 2.3. Let X be an Alexandroff space and $X=X_{1} \cup X_{2}$, where $X_{i}, i=1,2$, is closed in X. Then ind $X=\max \left\{\right.$ ind X_{1}, ind $\left.X_{2}\right\}$.

Proof: Put $n=\max \left\{\right.$ ind X_{1}, ind $\left.X_{2}\right\}$. It is enough to show that if $n<\infty$ then $n \geq$ ind X. Assume that $n<$ ind X. By Proposition 2.1 the space X contains a subspace Y which is homeomorphic to the space $E(n+1)$. Note that $Y=\left(Y \cap X_{1}\right) \cup\left(Y \cap X_{2}\right)$ and the sets $\left(Y \cap X_{1}\right),\left(Y \cap X_{2}\right)$ are closed in Y. Hence at least one of them is equal to Y. Let $\left(Y \cap X_{1}\right)=Y$. So ind $X_{1} \geq n+1$. We have a contradiction.

Corollary 2.4. Let X be an Alexandroff space and $X=\cup_{i=1}^{k} X_{i}$, where k is a positive integer and for each $i \leq k$ the set X_{i} is closed in X. Then ind $X=\max \left\{\right.$ ind $\left.X_{i}: i \leq k\right\}$.

Proposition 2.5. Let X and Y be non-empty Alexandroff spaces. Then we have ind $(X \times Y)=$ ind $X+$ ind Y.

Proof: First, let us show that ind $(X \times Y) \leq$ ind $X+$ ind Y. Put $n=$ ind $X+i n d Y$. Apply induction on $n \geq 0$. Consider a point $(x, y) \in X \times Y$ and note that

$$
B d_{X \times Y}(V(x) \times V(y))=\left(B d_{X} V(x) \times C l_{Y} V(y)\right) \cup\left(C l_{X} V(x) \times B d_{Y} V(y)\right)
$$

So the case $n=0$ is trivial. If $n>0$ then by the inductive assumption we have

$$
\max \left\{\operatorname{ind}\left(B d_{X} V(x) \times C l_{Y} V(y)\right), \text { ind }\left(C l_{X} V(x) \times B d_{Y} V(y)\right)\right\} \leq n-1
$$

It follows from Proposition 2.3 that ind $\left(B d_{X \times Y}(V(x) \times V(y))\right) \leq n-1$. Hence, ind $(X \times Y) \leq n$.
Now let us show that ind $(X \times Y) \geq$ ind $X+$ ind Y. Apply again induction on $n \geq 0$. Note that the case $n=0$ is trivial. Let $n>0$. We consider a point $x \in X$ such that ind $C l_{X} V(x)=$ ind X and ind $B d_{X} V(x)=$ ind $X-1$, and a point $y \in Y$ such that ind $C l_{Y} V(y)=$ ind Y and ind $B d_{Y} V(y)=$ ind $Y-1$. By the inductive assumption we have

$$
\operatorname{ind}\left(C l_{X} V(x) \times B d_{Y} V(y)\right)=\operatorname{ind}\left(B d_{X} V(x) \times C l_{Y} V(y)\right)=n-1
$$

This implies that ind $(X \times Y) \geq n$.
Remark 2.6. Let us notice that the inequality ind $(X \times Y) \leq$ ind $X+$ ind Y for non-empty Alexandroff T_{0}-spaces X, Y was announced in [WW1].

Corollary 2.7. Let X_{i} be an non-empty Alexandroff space for each $i \leq k$, where k is some positive integer. Then ind $\left(\prod_{i=1}^{k} X_{i}\right)=\sum_{i=1}^{k}$ ind X_{i}. In particular, ind $\left(\prod_{i=j}^{k} E\left(i_{j}\right)\right)=\sum_{j=1}^{k} i_{j}$, where i_{j} is an integer ≥ 1 for each $j \leq k$.
Corollary 2.8. Let $X=\prod_{i=1}^{m} E\left(n_{i}\right)$, where n_{i} is a positive integer for each $i \leq m$. Then there is a subset Y of X such that Y is homeomorphic to the space $E\left(\sum_{i=1}^{m} n_{i}\right)$.

Now, we will consider the finite powers $E(1)^{n}, n \geq 2$.
Let n and i be integers such that $1 \leq i \leq n$. We will use the following notations:
(a) Let $\pi_{i}^{n}: E(1)^{n} \rightarrow E(1)$ be the projection of $E(1)^{n}$ onto the i-th coordinate.
(b) Let $\iota_{i}^{n}: E(1)^{n-1} \rightarrow E(1)^{n}$ be the mapping of $E(1)^{n-1}$ into $E(1)^{n}$ defined by $\iota_{i}^{n}\left(x_{1}, \ldots, x_{n-1}\right)=\left(y_{1}, \ldots, y_{n}\right)$, where $y_{i}=0$ and the ordered $(n-1)$-tuple $\left(x_{1}, \ldots, x_{n-1}\right)$ coincides with the ordered $(n-1)$-tuple $\left(y_{1}, \ldots, \widehat{y_{i}} \ldots, y_{n}\right)$ with removed y_{i}.
Proposition 2.9. We have ind $\left(\cup_{i=1}^{n}\left(\pi_{i}^{n}\right)^{-1}(0)\right)=n-1$.
(Note that $\cup_{i=1}^{n}\left(\pi_{i}^{n}\right)^{-1}(0)=E(1)^{n} \backslash\{(1, \ldots, 1)\}$.)
Proof: Note that for each $i \leq n$ the closed subset $\left(\pi_{i}^{n}\right)^{-1}(0)$ of $E(1)^{n}$ is homeomorphic to $E(1)^{n-1}$, and hence ind $\left(\pi_{i}^{n}\right)^{-1}(0)=n-1$. Then one can apply Corollary 2.4.

Proposition 2.10. Let X be the disjoint union $Y \cup\{p\}$ of a closed subset Y with ind $Y \leq n \geq 0$ and a point p. Then ind $X \leq n+1$.

One can easily show Proposition 2.10 by a standard argument, so we omit the proof.
Let us consider the following subsets of $E(1)^{2}$:
$D(2)=\{(0,1),(1,0)\}, S_{1}=\{(0,0),(0,1),(1,1)\}, S_{2}=\{(0,0),(1,0),(1,1)\} . S_{3}=\{(1,1),(0,1),(1,0)\}$ and $S_{4}=$ $\{(1,0),(0,1),(0,0)\}$.

Observe that the subspace $D(2)$ is discrete, the subspaces S_{1}, S_{2} are homeomorphic to $E(2)$ and ind $S_{3}=$ ind $S_{4}=1$. Put $S_{2}=\left\{S_{1}, S_{2}\right\}$. Then for every integer $n>2$ consider the subspace

$$
D(n)=\{(1,0, \ldots, 0),(0,1, \ldots, 0), \ldots,(0,0, \ldots, 1)\}
$$

of $E(1)^{n}$ and define by induction the family

$$
\mathbb{S}_{n}=\left\{\iota_{m}^{n}(S) \cup\{(1, \ldots, 1)\}: S \in \mathbb{S}_{n-1}, m \leq n\right\}
$$

of subsets of $E(1)^{n}$.

Remark 2.11. Note that each element S of \mathbb{S}_{n} consists of $n+1$ points which can be ordered in a sequence p_{0}, \ldots, p_{n} such that $p_{0}=(0, \ldots, 0), p_{n}=(1, \ldots, 1)$ and for each $i \leq n-1$ the point p_{i+1} obtained from the point p_{i} through replacing 0 by 1 in one of the coordinates.

Proposition 2.12. For each integer $n \geq 2$ we have the following.
(a) The space $D(n)$ is discrete.
(b) $\left|\mathbb{S}_{n}\right|=n$!
(c) Every element S of Φ_{n} is homeomorphic to $E(n)$ and so ind $S=n$.
(d) For every subspace A of $E(1)^{n}$ which contains no element of \mathbb{S}_{n} we have ind $A<n$.

Proof: (a), (b) and (c) are evident. Let us show (d). Apply induction on $n \geq 2$. For $n=2$ the statement is evident. Let $n>2$. Put $x=(1, \ldots, 1) \in E(1)^{n}$. We notice that x is an isolated point in $E(1)^{n}$. If $x \notin A$, then ind $A \leq n-1$ by Proposition 2.9. Assume that $x \in A$ and A does not contain any $S \in \mathbb{S}_{n}$. For each $i \leq n$ put $A_{i}=A \cap\left(\pi_{i}^{n}\right)^{-1}(0)$. Since $x \in A$, if we regard $\left(\pi_{i}^{n}\right)^{-1}(0)$ as $E(1)^{n-1}$ by a natural way, A_{i} does not contain any member of \mathbb{S}_{n-1}. Hence, by the inductive assumption, we have ind $A_{i} \leq n-2$. Note that A_{i} is a closed subset of A, and hence the union $\cup_{i=1}^{n} A_{i}=A \backslash\{x\}$ is a closed subset of A. Moreover, by Proposition 2.9, we have ind $\left(\cup_{i=1}^{n} A_{i}\right) \leq n-2$. Now it follows from Proposition 2.10 that ind $A \leq n-1$.

Remark 2.13. Since the space $E(1)^{2}$ contains the discrete subspace $D(2)$ of cardinality 2 , there is no embedding of $E(1)^{2}$ into $E(n)$ for any integer $n \geq 1$.

3. The Small Inductive Dimension in Khalimsky Spaces

In the present section, we shall consider the dimension properties in Khalimsky spaces. Let K be the Khalimsky line ($[\mathrm{K}]$), i.e. the topological space (\mathbb{Z}, τ), where \mathbb{Z} is the set of integers and τ is the topology of \mathbb{Z} generated by the base $\mathcal{B}=\{\{2 k+1\},\{2 k-1,2 k, 2 k+1\}: k \in \mathbb{Z}\}$. Let us recall that K is a connected Alexandroff T_{0}-space with ind $K=1$. Note that for each odd integer n the subset $R_{n}=\{n, n+1\}$ (resp. $L_{n}=\{n-1, n\}$) of K can be identified with the space $E(1)$. In addition, we notice some simple facts about K.
[Fact 3.1] For the minimal open neighborhoods of points in the Khalimsky line, we have the following.
(a) For each even integer n the set $V(n)$ (resp. $C l_{K} V(n)$) is homeomorphic to $V(0)=\{-1,0,1\}$ (resp. $\left.C l_{K} V(0)=\{-2,-1,0,1,2\}\right)$.
(b) For each odd integer n the set $V(n)\left(\right.$ resp. $\left.C l_{K} V(n)\right)$ is homeomorphic to $V(1)=\{1\}$ (resp. $C l_{K} V(1)=$ $\{0,1,2\}$).
(c) The set $C l_{K} V(0)$ is the union of its closed subsets $\{-2,-1,0\}$ and $\{0,1,2\}$.

Lemma 3.1. For each subset A of the Khalimsky line K with ind $A=1$ there is an odd integer n such that either $R_{n} \subset A$ or $L_{n} \subset A$.

Proof: The lemma is a base of induction for the proof of Theorem 3.3. Since ind $A=1$ there is a point $x \in A$ such that ind $C l_{A} V^{\prime}(x)=1$, where $V^{\prime}(x)$ is the minimal open neighborhood of x in A. Since $V^{\prime}(x)=V(x) \cap A$, where $V(x)$ is the minimal open neighborhood of x in K, we have $C l_{A} V^{\prime}(x) \subset A \cap C l_{K} V(x)$. If x is an odd number, then $R_{x} \subset A \cap C l_{K} V(x)$ or $L_{x} \subset A \cap C l_{K} V(x)$, because ind $A \cap C l_{K} V(x)=1$. Now, we suppose that x is an even number. If $\{x-1, x+1\} \cap\left(A \cap C l_{K} V(x)\right)=\emptyset$, then $A \cap C l_{K} V(x) \subset\{x-2, x, x+2\}$. This implies that $A \cap C l_{K} V(x)$ is discrete, and hence ind $A \cap C l_{K} V(x)=0$. This is a contradiction. Hence, $\{x-1, x+1\} \cap\left(A \cap C l_{K} V(x)\right) \neq \emptyset$, and hence $\{x-1, x\} \subset A \cap C l_{K} V(x)$ or $\{x, x+1\} \subset A \cap C l_{K} V(x)$. This completes the proof. \square

Put $\mathbb{S}(1)=\left\{R_{2 n+1}, L_{2 n+1}: n \in \mathbb{Z}\right\}$. Let k be any integer ≥ 2. For each positive integer $j \leq k$ consider a subspace Y_{j} of K which is either $R_{n_{j}}$ or $L_{n_{j}}$ for some odd integer n_{j}. The product $Y_{1} \times \cdots \times Y_{k}$ can be identified with $E(1)^{k}$ and put $\mathbb{S}\left(Y_{1} \times \cdots \times Y_{k}\right)=\mathbb{S}_{k}$. Set $\mathbb{S}(k)=\cup\left\{\mathbb{S}\left(Y_{1} \times \cdots \times Y_{k}\right):\left(Y_{1}, \ldots, Y_{k}\right) \in \mathbb{S}(1)^{k}\right\}$.

Remark 3.2. Note that the family $\mathbb{S}(n), n \geq 2$, consists of subsets P of K^{n} of cardinality $n+1$ which can be defined as follows. For each $P \in \mathbb{S}(n)$ there exist a sequence a_{1}, \ldots, a_{n} of n even integers, a sequence b_{1}, \ldots, b_{n} of n odd integers and a bijection $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$
such that
(a) $\left|a_{i}-b_{i}\right|=1$ for each $i \leq n$,
(b) $P=\left\{x_{1}, \ldots, x_{n+1}\right\}$, where $x_{1}=\left(a_{1}, \ldots, a_{n}\right), x_{n+1}=\left(b_{1}, \ldots, b_{n}\right)$ and for each $i \leq n$ the point x_{i+1} is obtained from the point x_{i} through replacing in the $\sigma(i)$-th coordinate the even number $a_{\sigma(i)}$ by the odd number $b_{\sigma(i)}$.

Let k be any positive integer with $k \leq n$. Put $\mathbb{S}(k, n)=\{P: P \subset S, S \in \mathbb{S}(n)$ and $|P|=k+1\}$. We notice that $\mathbb{S}(n, n)=\mathbb{S}(n)$. It follows from Proposition 2.12 and Example 1.1 that each $P \in \mathbb{S}(k, n)$ is homeomorphic to $E(k)$.

Theorem 3.3. Let A be a subspace of K^{n} for some positive number n and k be a positive number such that $k \leq n$. Then ind $A \geq k$ iff A contains an element of the family $\mathbb{S}(k, n)$.

Proof: The "if" part is obvious. Hence we shall show the "only if" part by the induction on n. For $n=1$ the statement follows from Lemma 3.1. Let $n \geq 2$ and $k \leq n$. Consider a subset A of K^{n} with ind $A \geq k$. Let us notice that there is a point $x=\left(x_{1}, \ldots, x_{n}\right) \in A$ such that ind $C l_{A} V^{\prime}(x) \geq k$, where $V^{\prime}(x)$ is the minimal neighborhood of x in A. Since $V^{\prime}(x)=V(x) \cap A$, where $V(x)$ is the minimal neighborhood of x in K^{n}, we have $C l_{A} V^{\prime}(x) \subset A \cap C l_{K^{n}} V(x)$. Recall that $V(x)=V\left(x_{1}\right) \times \cdots \times V\left(x_{n}\right)$, where $V\left(x_{i}\right)$ is the minimal neighborhood of x_{i} in K for each $i \leq n$. Without loss of generality, we can assume (by the use of Fact 3.1 and Corollary 2.4 if necessary) that ind $\left(A \cap C l_{K^{n}} V((1, \ldots, 1))\right) \geq k$. Let us note that

$$
C l_{K^{n}} V((1, \ldots, 1))=\left(C l_{K} V(1)\right)^{n}=\{(1, \ldots, 1)\} \cup \bigcup_{i=1}^{n}\left(p_{i}^{n}\right)^{-1}(\{0,2\}),
$$

where $p_{i}^{n}:\left(C l_{K} V(1)\right)^{n} \rightarrow C l_{K} V(1)$ is the projection of $\left(C l_{K} V(1)\right)^{n}$ onto the i-th coordinate. First, we assume that $(1, \ldots, 1) \notin A$. Then, by Corollary 2.4, it follows that $k \leq \operatorname{ind}\left(A \cap C l_{K^{n}} V((1, \ldots, 1))\right)=\operatorname{ind}(A \cap$ $\left.\cup_{i=1}^{n}\left(\left(p_{i}^{n}\right)^{-1}\{0,2\}\right)\right) \leq n-1$. By Corollary 2.4 again, there are $i \leq n$ and $j \in\{0,2\}$ such that ind $\left(A \cap\left(p_{i}^{n}\right)^{-1}(j) \geq k\right.$. Let $q_{i}^{n}:\left(C l_{K} V(1)\right)^{n} \rightarrow\left(C l_{K} V(1)\right)^{n-1}$ be the projection defined by $q_{i}^{n}\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)$, $i \leq n$. Then $A \cap\left(p_{i}^{n}\right)^{-1}(j)$ is homeomorphic to $q_{i}^{n}\left(A \cap\left(\left(p_{i}^{n}\right)^{-1}(j)\right) \subset K^{n-1}\right.$. Since ind $q_{i}^{n}\left(A \cap\left(\left(p_{i}^{n}\right)^{-1}(j)\right) \geq k\right.$, by the inductive assumption, there are $P^{\prime} \in \mathbb{S}(k, n-1)$ and $S^{\prime} \in \mathbb{S}(n-1)$ such that $P^{\prime} \subset q_{i}^{n}\left(A \cap\left(\left(p_{i}^{n}\right)^{-1}(j)\right)\right.$ and $P^{\prime} \subset S^{\prime}$. Let $\kappa_{i}^{n}: C l_{K} V(1)^{n-1} \rightarrow C l_{K} V(1)^{n}$ be the mapping of $C l_{K} V(1)^{n-1}$ into $C l_{K} V(1)^{n}$ defined by $\kappa_{i}^{n}\left(y_{1}, \ldots, y_{n-1}\right)=\left(z_{1}, \ldots, z_{n}\right)$, where

$$
z_{k}=\left\{\begin{aligned}
y_{k}, & \text { if } 1 \leq k \leq i-1 \\
j, & \text { if } k=i, \\
y_{k-1}, & \text { if } i+1 \leq k \leq n-1
\end{aligned}\right.
$$

We put $P=\kappa_{i}^{n}\left(P^{\prime}\right)$ and $S=\{(1, \ldots, 1)\} \cup \kappa_{i}^{n}\left(S^{\prime}\right)$. Then $P \subset A \cap\left(p_{i}^{n}\right)^{-1}(j) \subset A$ and $P \subset S$. Furthermore, by the definition of $\mathbb{S}(n)$ and $\mathbb{S}(k, n)$, we have $S \in \mathbb{S}(n)$ and $P \in \mathbb{S}(k, n)$.

Next, we suppose that $(1, \ldots, 1) \in A$. Then, it follows from Proposition 2.10 that ind $\left(A \cap\left(\cup_{i=1}^{n}\left(p_{i}^{n}\right)^{-1}(\{0,2\})\right)\right) \geq$ $k-1$. Let $i, j, p_{i}^{n}, q_{i}^{n}$ and κ_{i}^{n} be defined as in the above. By a similar argument as above, we can have $P^{\prime} \in \mathbb{S}(k-1, n-1)$ and $S^{\prime} \in \mathbb{S}(n-1)$ such that $P^{\prime} \subset q_{i}^{n}\left(A \cap\left(\left(p_{i}^{n}\right)^{-1}(j)\right)\right)$ and $P^{\prime} \subset S^{\prime}$. We put $P=\{(1, \ldots, 1)\} \cup \mathcal{K}_{i}^{n}\left(P^{\prime}\right)$ and $S=\{(1, \ldots, 1)\} \cup \kappa_{i}^{n}\left(S^{\prime}\right)$. Then $P \subset A$ and $P \subset S$. Furthermore, by the definition of $\mathbb{S}(n)$ and $\mathbb{S}(k, n)$, we have $S \in \mathbb{S}(n)$ and $P \in \mathbb{S}(k, n)$. This completes the proof.

Remark 3.4. Recall (cf. [E]) that a subset A of the Euclidean space \mathbb{R}^{n} is n-dimensional iff A contains a non-empty open subset of \mathbb{R}^{n}. For an n-dimensional subset B of K^{n} there is an open set (one can always choose a one-point set, see Remark 3.2) which is contained in B but for every one-point open subset B (for example, $B=\{(1, \ldots, 1)\}$) of K^{n} we have ind $B=0 \neq n$.

Since the Euclidean topology is regular the equivalence above can be rewritten as follows: a subset A of the Euclidean space \mathbb{R}^{n} is n-dimensional iff A contains the closure of a non-empty open subset of \mathbb{R}^{n}. Let us note that for the one-point open subset $B=\{(1, \ldots, 1)\}$ of $K^{n},\left|C l_{K^{n}} B\right|=3^{n}>n+1$. Furthermore, $C l_{K^{n}} B$ contains $2^{n} \cdot n$! different n-dimensional in the sense of ind subsets of cardinality $n+1$. More generally, the closure $C l_{K^{n}} V(x)$ of the minimal open neighborhood $V(x)$ of $x=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ with m odd coordinates contains exactly $2^{m} \cdot 4^{n-m} \cdot n!=2^{2 n-m} \cdot n!$ different n-dimensional in the sense of ind subsets of cardinality $n+1$. In fact, for $x=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$ let \mathcal{F}_{n} be the family of n-dimensional subsets of $\mathrm{Cl}_{K^{n}} V(x)$ of cardinality $n+1$. Without loss of generality we can assume that $x_{1}=\cdots=x_{m}=1$ and $x_{m+1}=$ $\cdots=x_{n}=0$. Then $\mathcal{F}_{n}=\cup\left\{S\left(Y_{1} \times \cdots \times Y_{n}\right):\left(Y_{1}, \ldots, Y_{n}\right) \in\{\{0,1\},\{1,2\}\}^{m} \times\{\{-2,-1\},\{-1,0\},\{0,1\},\{1,2\}\}^{n-m}\right\}$, where $\$\left(Y_{1} \times \cdots \times Y_{n}\right)$ is defined above. By Proposition $2.12(b)$, we have $\left|\mathcal{F}_{n}\right|=2^{m} \cdot 4^{n-m} \cdot n$!

Remark 3.5. Let C be a class of subsets of the Euclidean space \mathbb{R}^{n}, where $n \geq 1$, such that for every set A in \mathbb{R}^{n} we have ind $A=n$ iff A contains an element of C. Notice that each element E of C has ind $E=n$. Fix an element E of C and a point $p \in E$. Let us note that ind $(E \backslash\{p\})=n$. By the property of the family C there is an element $F \in C$ such that $F \subset E \backslash\{p\} \subset E$. Put $C^{\prime}=C \backslash\{E\}$ and note that for every set A in \mathbb{R}^{n} we have ind $A=n$ iff A contains an element of C^{\prime}. On the other hand, Theorem 3.3 does not hold if we replace the class $\$(n)$ by any its proper subclass.

Denote by K_{0} (respectively, K_{1}) the subspace of K consisting of even (respectively, odd) integers. It is clear that K_{0} and K_{1} are discrete, and hence ind $K_{0}=$ ind $K_{1}=0$. Taking into account Remark 3.2 we get the following.

Corollary 3.6. Let A be a subset of K^{n} such that either $A \cap\left(K_{0}\right)^{n}=\emptyset$ or $A \cap\left(K_{1}\right)^{n}=\emptyset$. Then ind $A \leq n-1$.
Remark 3.7. Theorem 3.3 implies that the family $\mathbb{S}(k, n)$ precisely consists of all subsets P of K^{n} with $|P|=k+1$ and ind $P=k$.

Put $Z_{j}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in K^{n}: \mid\left\{i \leq n: x_{i}\right.\right.$ is an even number $\left.\} \mid=j\right\}, 0 \leq j \leq n$. Note that the sets $Z_{j}, 0 \leq j \leq n$, are disjoint, $K^{n}=\cup_{i=0}^{n} Z_{i}$. Furthermore, since each Z_{i} contains no elements of $\mathbb{S}(1, n)$, it follows from Theorem 3.3 that ind $Z_{i}=0$ for each $j \leq n$. Hence, we get a decomposition theorem for the Khalimsky spaces K^{n} into zero-dimensional (i.e. discrete) subsets.

4. The Small Transfinite Inductive Dimension in Alexandroff Spaces

Let us note that the the small inductive dimension ind can be extended to infinite ordinals. The extension we will call the small transfinite dimension trind (cf. [E]). Observe that trind is also monotone w.r.t. subsets, i.e. for any $Y \subseteq X$ we have trind $Y \leq$ trind X.

It is easy to see that the space E from Example 1.1 has trind $E=\infty$.
Let X be a topological space and p a point such that $p \notin X$. Recall ([M]) that the join $p \vee X$ of p and X is the topological space (Y, τ), where $Y=\{p\} \cup X$ and $\tau=\{\emptyset, Y\} \cup\{\{p\} \cup A: A$ is an open subset of $X\}$. Let us notice that the point p is an open subset of $p \vee X$ and the subspace $B d_{p \vee x}\{p\}$ of $p \vee X$ is homeomorphic to the space X. Moreover, if the space X is Alexandroff then the space $p \vee X$ is also Alexandroff. Furthermore, the set $\{p\}$ (resp. $\{p\} \cup V(x)$) is the minimal open subset of $p \vee X$ containing p (resp. $x \in X$, where the set $V(x)$ is the minimal open subset of X containing x).

Below we will use disjoint copies of the corresponding spaces when it is necessary. For each ordinal $\alpha \geq 0$ choose a point p_{α} and set $Y(0)=\left\{p_{0}\right\}$. Then define by transfinite induction the space $Y(\alpha), \alpha>0$, as follows.
(a) If α is limit $\geq \omega_{0}$, then the space $Y(\alpha)$ is the topological union $\oplus_{\beta<\alpha} Y(\beta)$ of $Y(\beta), \beta<\alpha$;
(b) If α is non-limit, then $Y(\alpha)=p_{\alpha} \vee Y(\alpha-1)$.

Let us note that for each positive integer n the space $Y(n)$ is homeomorphic to the space $E(n)$.
Proposition 4.1. For each ordinal $\alpha \geq 0$ we have trind $\Upsilon(\alpha)=\alpha$.

Proof: It is clear that trind $Y(\alpha)=\alpha$ for each $0 \leq \alpha<\omega_{0}$. Then apply induction. For limit $\alpha \geq \omega_{0}$ the equality trind $Y(\alpha)=\alpha$ is evident. Assume that α is not limit and $\geq \omega_{0}$. So $\alpha=(\alpha-1)+1$ and $Y(\alpha)=p_{\alpha} \vee Y(\alpha-1)$. Note that for each point $y \in Y(\alpha)$ we have $B d V_{y} \subseteq Y(\alpha-1)$. By inductive assumption and monotonicity of trind we have trind $B d V_{y} \leq$ trind $Y(\alpha-1)=\alpha-1$. So trind $Y(\alpha) \leq \alpha$. However, $B d V_{p}=Y(\alpha-1)$ and hence trind $B d V_{y}=$ trind $Y(\alpha-1)=\alpha-1$. This implies that trind $Y(\alpha) \geq \alpha$.

Example 4.2. Let $E(1)_{B}^{\omega}$ be the Cartesian product of countably many copies of the space $E(1)$ endowed with the box topology. Note that $E(1)_{B}^{\omega}$ is a connected Alexandroff T_{0}-space with trind $E(1)_{B}^{\omega}=\infty$ containing for each integer $n \geq 1$ a copy of $E(1)^{n}$ as a closed subset. Hence $E(1)_{B}^{\omega}$ contains discrete subspaces of any finite cardinality.

Proposition 4.3. Let X be an Alexandroff space and $X=X_{1} \cup X_{2}$, where X_{i} is closed in X for each $i=1,2$. Then trind $X=\max \left\{\right.$ trind X_{1}, trind $\left.X_{2}\right\}$.

Proof: Put $\alpha=\max \left\{\right.$ ind X_{1}, ind $\left.X_{2}\right\}$. Apply induction on $\alpha \geq-1$. It is trivial for $n=-1$. Consider the case $n \geq 0$. Let $x \in X$. First, suppose that $x \in X \backslash X_{2}$. Then $V(x) \subset X \backslash X_{2} \subset X_{1}$ and $B d_{X} V(x)=B d_{X_{1}} V(x)$. Hence $\operatorname{indBd}_{X} V(x)<\operatorname{ind} X_{1} \leq \alpha$. It is similar when $x \in X \backslash X_{1}$. Next, we suppose that $x \in X_{1} \cap X_{2}$. Then $B d_{X} V(x)=B d_{X_{1}}\left(V(x) \cap X_{1}\right) \cup B d_{X_{2}}\left(V(x) \cap X_{2}\right)$ and the set $V(x) \cap X_{i}$ is the minimal open neighborhood of x in X_{i} for each i. Note that $\operatorname{indBd}_{X_{i}}\left(V(x) \cap X_{i}\right)<\alpha, i=1,2$. Hence, by the inductive assumption, we have $\operatorname{indBd} d_{X} V(x) \leq \max \left\{\right.$ indB $_{X_{1}}\left(V(x) \cap X_{1}\right)$, indB $\left.d_{X_{2}}\left(V(x) \cap X_{2}\right)\right\}<\alpha$.

Recall (cf. [KM]) that every ordinal number $\alpha>0$ can be uniquely represented as $\alpha=\omega_{0}^{\xi_{1}} \cdot n_{1}+\cdots+\omega_{0}^{\xi_{k}} \cdot n_{k}$, where n_{i} are positive integers and ξ_{i} are ordinals such that $\xi_{1}>\cdots>\xi_{k} \geq 0$.

Let α, β be ordinal numbers and $\alpha=\omega_{0}^{\xi_{1}} \cdot n_{1}+\cdots+\omega_{0}^{\xi_{k}} \cdot n_{k}$ and $\beta=\omega_{0}^{\xi_{1}} \cdot m_{1}+\cdots+\omega_{0}^{\xi_{k}} \cdot m_{k}$, where n_{i}, m_{i} are non-negative integers and ξ_{i} are ordinals such that $\xi_{1}>\cdots>\xi_{k} \geq 0$.

The ordinal $\alpha \oplus \beta=\omega_{0}^{\xi_{1}} \cdot\left(n_{1}+m_{1}\right)+\cdots+\omega_{0}^{\xi_{k}} \cdot\left(n_{k}+m_{k}\right)$ is called the natural sum of α, β or the sum of ordinals in the sense of Hessenberg.

The following statement is evident.
Proposition 4.4. Let X and Y be non-empty Alexandroff spaces. Then

$$
\text { trind } X \times Y \leq \text { trind } X \oplus \text { trind } Y
$$

Remark 4.5. The equality such as in Proposition 2.5 for the small transfinite inductive dimension does not hold. In fact, let us choose for each non-negative integer i a space Z_{i} which is homeomorphic to the space $E(i)$ such that the chosen spaces are pairwise disjoint. Consider the topological union $Z=\oplus_{i=0}^{\infty} Z_{i}$ of $Z_{i}, i=0,1, \ldots$ Note that Z is an Alexandroff T_{0}-space, and trind $Z=\omega_{0}$. However, trind $(Z \times E(n))=\omega_{0}<\omega_{0}+n$ for each positive integer n.

References

[A] F. G. Arenas, Alexandroff Spaces, Acta Math. Univ. Comenian., (N.S.) 68 (1999), 501-518.
[D] Ch. Dorsett, From observations and questions in introductory topology to some answers, Q \& A in General Topology, 28 (2010), 55-64.
[E] R. Engelking, Theory of dimensions, finite and infinite, Sigma Series in Pure Mathematics, 10, Heldermann Verlag, Lemgo, 1995.
[EKM] A. V. Evako, R. Kopperman, Y. V. Mukhin, Dimensional Properties of Graphs and Digital Spaces, J. Math. Imaging Vis., 6 (1996), 109-119.
[J] P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Mathematics, 3, Cambridge University Press, Cambridge, 1982.
[K] E. D. Khalimsky, On topologies of generalized segments. Soviet Math. Dokl., 10 (1969), 1508-1511.
[Kr] E. H. Kronheimer, The topology of digital images, Topology and its Applications 46 (1992), 279-303.
[KM] K. Kuratowski, A. Mostowski, Set Theory, North Holland Publishing Company, Amsterdam, 1967.
[M] E. Melin, Digital Khalimsky Manifolds, J. Math. Imaging Vis., 33 (2009), 267-280.
[P] A. R. Pears, Dimension Theory of General Spaces, Cambridge University Press, Cambridge, 1975.
[WW1] P. Wiederhold, R. G. Wilson, Dimension for Alexandrov spaces; in R. A. Melter and A. Y. WU, eds, Vision Geometry, Proceedings of Society of Photo-Optical Instrumentation Engineers, 1832 (1993), 13-22,
[WW2] P. Wiederhold, R. G. Wilson, The Alexandroff Dimension of Digital Quotients of Euclidean Spaces, Discrete Comput. Geom., 27 (2002), 273-286.

[^0]: 2010 Mathematics Subject Classification. Primary 54A05; Secondary 54D10
 Keywords. small inductive dimension, Khalimsky line, Alexandroff space
 Received: 02 August 2014; Accepted: 16 September 2015.
 Communicated by Dragan S. Djordjević
 This research(the second author as a corresponding author) was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2016R1D1A3A03918403). The third-listed author was partially supported by Grant-in-Aid for Scientific Research (No.22540084) from Japan Society for the Promotion of Science.

 Email addresses: vitja@mai.liu.se (Vitalij A. Chatyrko), sehan@jbnu.ac.kr (Sang-Eon Han), hattori@riko.shimane-u.ac.jp (Yasunao Hattori)

