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Abstract. In this paper we study the geometry of relative superior Mandelbrot sets through S-iteration
scheme. Our results are quit significant from other Mandelbrot sets existing in the literature. Besides this,
we also observe that S-iteration scheme converges faster than Ishikawa iteration scheme. We believe that
the results of this paper can be inspired those who are interested in creating automatically aesthetic patterns.

1. Introduction

Complex graphics of nonlinear dynamicl systems is an exciting area of interest with diverse applications
in sciences, art, textile industries, engineering and many other areas of human activity. The Mandelbrot
set is the most popular infinitely complex object in the fractal theory given by Benoit Mandelbrot [11].
This object has been discussed extensively by researchers right from its advent [3, 11, 14]. Mandelbrot
set and its and its various extensions have been studied in [4–10, 12, 13]. This object has been analyzed
from different aspects, external and internal perturbation of Mandelbrot set has been discussed in [2]. Rani
and Kumar [16] introduced the superior Mandelbrot sets using Mann iteration scheme. Rana et al. [15]
introduced relative superior Mandelbrot sets using Ishikawa iteration seheme. They also explored relative
superior Mandelbrot sets of quadraties, cubic and other complex values polynomials and discuss some
related properties.

In this paper we generate the fractals using S-iteration scheme. Our results are entirely different from
other Mandelbrot sets existing in the present literature.

2. Preliminaries

Let {zn : n = 1, 2, 3, ...}, denoted by {zn} be a sequence of complex numbers. Then, we say lim
n→∞

zn = ∞ if

for given M > 0, there exists N > 0 such that for all n > N, we must have |zn| >M. Thus all the values of zn

lies outside a circle of radius M for sufficiently large values of n. Let

Q(z) = a0zn + a1zn−1 + a2zn−2 + · · · + an−1z1 + anz0; a0 , 0
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be a polynomial of degree n, where n > 2. The coefficients are allowed to be complex numbers. In other
words, it follows that Qc(z) = z2 + c.

Definition 2.1. ([9]) Let X be a nonempty set and f : X→ X. For any point x0 ∈ X, the Picard’s orbit is defined as
the set of iterates of a point x0, that is,

O( f , x0) = {xn; xn = f (xn−1), n = 1, 2, 3, ...}.

In functional dynamics, we have existence of two different types of points. Points that leave the interval
after a finite number are in stable set of infinity. Points that never leavet he interval after any number of
iterations have bounded orbits. So, an orbit is bounded if there exists a positive real number, such that the
modulus of every point in the orbit is less than this number. The collection of points that are bounded, i.e.,
there exists M, such that |Qn(z)| ≤M for all n, is called as a prisoner set while the collection of points that are
in the stable set of infinity is called the escape set. Hence, the boundary of the prisoner set is simultaneously
the boundary of escape set and that is Mandelbrot set for Q.

Definition 2.2. ([9]) The Mandelbrot set M for the quadratic Qc(z) = z2 + c is defined as the collection of all c ∈ C
for which the orbit of the point 0 is bounded, that is

M = {c ∈ C : {Qn
c (0)}; n = 0, 1, 2, ...}

is bounded

An equivalent formulation is

M = {c ∈ C : {Qn
c (0)} does not tend to∞ as n→∞}.

We choose the initial point 0, as 0 is the only critical point of Qc.

3. S-iteration Scheme for Relative Superior Mandelbrot sets

Let X be a subset of real or complex numbers and f : X → X. For x0 ∈ X, we construct the sequences
{xn} and {yn} in X in the following manner:

y0 = (1 − s′0)x0 + s′0 f (x0),

y1 = (1 − s′1)x1 + s′1 f (x1),

yn = (1 − s′n)xn + s′n f (xn),

where 0 < s′n ≤ 1 and s′n is convergent to non-zero number, and

x0 = (1 − s0) f (x0) + s0 f (y0),

x1 = (1 − s1) f (x1) + s1 f (y1),

xn = (1 − sn−1) f (xn−1) + sn−1 f (yn−1),

where 0 < sn ≤ 1 and sn is convergent to non-zero number [1].

Definition 3.1. ([15, 16]) The sequences {xn} and {yn} constructed above is called S-scheme sequences of iterations
or relative superior sequences of iterates. We denote it by RSO(x0, sn, s

′
n, t).

Now we define Mandelbrot sets for function with respect to S-scheme iterates.

Definition 3.2. Relative superior Mandelbrot set (RSM) for the function of the form Qc(z) = zn + c, where n =
1, 2, 3, ..., is defined as the collection of c ∈ C for which the orbit of 0 is bounded, i.e.,

RSM = {c ∈ C : {Qk
c(0)}; k = 0, 1, 2, ...}

is bounded.

We now define escape citerions for these sets.
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3.1. Relative Superior Escape Criterions for Quadratics

The following result gives us escape criterions for the functions Qc(z) = z2 + c = Q′c(z) in respect to
S-iteration scheme.

Theorem 3.3. Let us assume that |z| ≥ |c| > 2/s and |z| ≥ |c| > 2/s′, where 0 < s ≤ 1, 0 < s′ ≤ 1 and c is a complex
number.

Define

z1 = (1 − s)(z2 + c) + sQc(z),

...

zn = (1 − s)(z2
n−1 + c) + sQc(zn−1),

where Qc(z) be a quadratic polynomial in terms of s′ and n = 2, 3, 4, .... Then |zn| → ∞ as n→∞.

Proof. For Q′c(z) = z2 + c, consider

|Qc(z)| =
∣

∣

∣(1 − s′)z + s′Q′c(z)
∣

∣

∣

=
∣

∣

∣(1 − s′)z + s′(z2 + c)
∣

∣

∣

=
∣

∣

∣(1 − s′)z + s′z2 + s′c
∣

∣

∣

≥
∣

∣

∣s′z2 + (1 − s′)z
∣

∣

∣ − |s′c|

≥
∣

∣

∣s′z2 + (1 − s′)z
∣

∣

∣ − |s′z|

≥
∣

∣

∣s′z2
∣

∣

∣ − |(1 − s′)z| − s′ |z|

=
∣

∣

∣s′z2
∣

∣

∣ − |z| + |s′z| − s′ |z|

≥ |z| (|s′z| − 1).

Also for
zn = (1 − s) f (zn−1) + sQc(z),

we obtain
|z1| =

∣

∣

∣(1 − s)(z2 + c) + s |z| (|s′z| − 1)
∣

∣

∣

=
∣

∣

∣(1 − s)z2 + (1 − s)c + s |z| |s′z| − s |z|
∣

∣

∣

=
∣

∣

∣ss′ |z| · |z| − s |z| + (1 − s)z2 + (1 − s)c
∣

∣

∣

≥
∣

∣

∣ss′ |z| · |z| − s |z| − (s − 1)z2
∣

∣

∣ − |(1 − s)c|

≥
∣

∣

∣ss′
∣

∣

∣z2
∣

∣

∣ − s |z|
∣

∣

∣ −
∣

∣

∣(s − 1)z2
∣

∣

∣ − (1 − s) |z|

≥ ss′
∣

∣

∣z2
∣

∣

∣ − s |z| − (s − 1)
∣

∣

∣z2
∣

∣

∣ − |z| + s |z|

≥ (ss′ − s + 1)
∣

∣

∣z2
∣

∣

∣ − |z|

≥ |z| ((ss′ − s + 1) |z| − 1) .

Since |z| > 2/s and |z| > 2/s′ it follows
|z| > 2/(ss′)

> 2/(ss′ − s + 1),

which implies that
(ss′ − s + 1)|z| − 1 > 1.

Hence there exists λ > 0 such that (ss′ − s + 1)|z| − 1 > 1 + λ. Consequently

|z1| > (1 + λ) |z| ,

...

|zn| > (1 + λ)n |z| .
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Hence |zn| −→ ∞ as n→∞.

Corollary 3.4. Suppose that |c| > 2/s and |c| > 2/s′. Then the relative superior orbit of S-iteration scheme
RSO(Qc, 0, s, s

′) escape to infinity.

In the proof of theorem we used the facts that |z| ≥ |c| and |z| > 2/s as well as |z| > 2/s′. Hence the
following corollary is the refinement of the escape criterion discussed in the above theorem.

Corollary 3.5. (Escape Criterion) Suppose that |z| > max(|c| , 2/s, 2/s′). Then |zn| > (1 + λ)n |z| and |zn| −→ ∞

as n→∞.

Corollary 3.6. Suppose that |zk| > max(|c| , 2/s, 2/s′) for some k ≥ 0. Then |zk+1| > (1+λ)n |zk| and |zk+1| −→ ∞ as
n→∞.

This corollary gives us an algorithm for computing the relative superior Mandelbrot sets of Qc for any
c. Given any point |z| ≤ |c|, we have computed the relative superior orbit of z. If for some n, |zn| lies outside
the circle of radius max(|c| , 2/s, 2/s′), we guarantee that the orbit escapes. Hence, z is not in the relative
superior Mandelbrot sets. On the other hand, if |zn| never exceeds this bound, then by definition of the
relative superior Mandelbrot sets, we can make extensive use of this algorithm in the next section.

3.2. Relative Superior Escape Criterion for Cubic Polynomials

We prove the following result for the function Qa,b(z) = z3 + az + b = Q′
a,b

(z) with respect to S-iteration

scheme.

Theorem 3.7. Suppose |z| > |b| > (|a| + 2/s)1/2 and |z| > |b| > (|a| + 2/s′)1/2 exist, where 0 < s ≤ 1, 0 < s′ ≤ 1 and
a, b are in complex plane.

Define

z1 = (1 − s)(z3 + az + b) + sQa,b(z),

...

zn = (1 − s)(z3
n−1 + azn−1 + b) + sQa,b(zn−1), n = 2, 3, ...,

where Qa,b(z) is the function of s′. Then |zn| → ∞ as n→∞.

Proof. For Q′
a,b

(z) = z3 + az + b, consider

∣

∣

∣Qa,b(z)
∣

∣

∣ =
∣

∣

∣(1 − s′)z + s′Q′a,b(z)
∣

∣

∣

=
∣

∣

∣(1 − s′)z + s′(z3 + az + b)
∣

∣

∣

=
∣

∣

∣s′z3 + s′az + (1 − s′)z + s′b
∣

∣

∣

≥
∣

∣

∣s′z3 + s′az + (1 − s′)z
∣

∣

∣ − |s′b|

≥
∣

∣

∣s′z3 + s′az
∣

∣

∣ − |(1 − s′)z| − s′ |z|

= |z| (s′(
∣

∣

∣z2 + a
∣

∣

∣) − 1 + s′ − s′)

≥ |z| (s′(
∣

∣

∣z2 + a
∣

∣

∣) − 1).

Also for

zn = (1 − s) f (zn−1) + sQa,b(z),
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we obtain
|z1| =

∣

∣

∣(1 − s)(z3 + az + b) + sQa,b(z)
∣

∣

∣

=
∣

∣

∣(1 − s)(z3 + az + b) + s |z| (s′(
∣

∣

∣z2 + a
∣

∣

∣) − 1)
∣

∣

∣

=
∣

∣

∣(1 − s)(z3 + az) + (1 − s)b + ss′ |z| (
∣

∣

∣z2 + a
∣

∣

∣) − s |z|
∣

∣

∣

=
∣

∣

∣ss′ |z| (
∣

∣

∣z2 + a
∣

∣

∣) − s |z| + (1 − s)(z3 + az) + (1 − s)b
∣

∣

∣

≥
∣

∣

∣ss′ |z| (
∣

∣

∣z2 + a
∣

∣

∣) − s |z| + (1 − s)(z3 + az)
∣

∣

∣ − |(1 − s)b|

≥
∣

∣

∣ss′ |z| (
∣

∣

∣z2 + a
∣

∣

∣) − s |z| + (1 − s)(z3 + az)
∣

∣

∣ − (1 − s) |z|

≥
∣

∣

∣ss′ |z| (
∣

∣

∣z2 + a
∣

∣

∣) − s |z|
∣

∣

∣ −
∣

∣

∣(s − 1)(z3 + az)
∣

∣

∣ − (1 − s) |z|

≥ ss′ |z| (
∣

∣

∣z2 + a
∣

∣

∣) − s |z| − (s − 1) |z| (
∣

∣

∣z2 + a
∣

∣

∣) − |z| + s |z|

= (ss′ − s + 1) |z| (
∣

∣

∣z2 + a
∣

∣

∣) − |z|

≥ |z| ((ss′ − s + 1)(
∣

∣

∣z2 + a
∣

∣

∣) − 1)

≥ |z| ((ss′ − s + 1)(
∣

∣

∣z2
∣

∣

∣ − |a|) − 1)

= |z| (ss′ − s + 1)(
∣

∣

∣z2
∣

∣

∣ − |a| − 1/(ss′ − s + 1))

≥ |z| (ss′ − s + 1)(
∣

∣

∣z2
∣

∣

∣ − (|a| + 1/(ss′ − s + 1))).

Since |z| > (|a| + 2/s)1/2 and |z| > (|a| + 2/s′)1/2 it follows

|z| > (|a| + 2/(ss′))1/2

and hence
∣

∣

∣z2
∣

∣

∣ − |a| > 2/(ss′ − s + 1),

which implies that

(ss′ − s + 1)(
∣

∣

∣z2
∣

∣

∣ − (|a| + 1/(ss′ − s + 1))) > 1.

Hence there exists γ > 1 such that |z1| > γ |z| . Repeating the argument n times, we get |zn| > γ
n |z|. Therefore,

the relative superior orbit of z, under the cubic polynomial Qa,b(z) tends to infinity. This completes the
proof.

Corollary 3.8. Suppose that |b| > (|a| + 2/s)1/2 and |b| > (|a| + 2/s′)1/2 exists. Then the relative superior orbit
RSO(Qa,b, 0, s, s

′) escapes to infinity.

Corollary 3.9. (Escape criterion) Suppose that |z| > max(|b| , (|a| + 2/s)1/2, (|a| + 2/s′)1/2). Then |zn| → ∞ as
n→∞.

Corollary 3.10. Assume that |zk| > max(|b| , (|a| + 2/s)1/2, (|a| + 2/s′)1/2) for some k ≥ 0. Then |zk+1| > γ
n |zk| and

|zn| → ∞ as n→∞.

3.3. A General Escape Criterion

We will obtain a general escape criterion for polynomials of the form Gc(z) = zn + c.

Theorem 3.11. For general function Gc(z) = zn + c, n = 1, 2, 3, ..., where 0 < s ≤ 1, 0 < s′ ≤ 1 and c is a complex
number.

Define
z1 = (1 − s)(zn + c) + sGc(z),

...

zn = (1 − s)(zn
n−1 + c) + sGc(zn−1).

Thus the general escape criterion is max(|c| , (2/s)1/n−1, (2/s′)1/n−1).
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Proof. We shall proof the theorem by induction for n = 1, we get Gc(z) = z + c, so the escape criterion is
|c|, which is obvious, i.e., |z| > max(|c| , 0, 0). For n = 2, we get Gc(z) = z2 + c so, the escape criterion is
|z| > max(|c| , 2/s, 2/s′) (Corollary 3.5). For n = 3, we get Gc(z) = z3 + c so, the result follows from Corollary
3.9 with a = 0 and b = c such that the escape criterion is |z| > max(|c| , (2/s)1/2, (2/s′)1/2).Hence the theorem is
true for n = 1, 2, 3, .... Now suppose that theorem is true for any n. Let Gc(z) = zn+1 + c and |z| ≥ |c| > (2/s)1/n

as well as |z| ≥ |c| > (2/s′)1/nexists then for G′c(z) = zn+1 + c, consider

|Gc(z)| =
∣

∣

∣(1 − s′)z + s′G′c(z)
∣

∣

∣

=
∣

∣

∣(1 − s′)z + s′(zn+1 + c)
∣

∣

∣

=
∣

∣

∣(1 − s′)z + s′zn+1 + s′c
∣

∣

∣

≥
∣

∣

∣s′zn+1 + (1 − s′)z
∣

∣

∣ − |s′c|

≥
∣

∣

∣s′zn+1 + (1 − s′)z
∣

∣

∣ − |s′z|

≥
∣

∣

∣s′zn+1
∣

∣

∣ − |(1 − s′)z| − s′ |z|

=
∣

∣

∣s′zn+1
∣

∣

∣ − |z| + s′ |z| − s′ |z|

≥ |z| (|s′zn| − 1).

Also for
zn = (1 − s) f (zn−1) + sGc(z),

we obtain
|z1| =

∣

∣

∣(1 − s)(zn+1 + c) + s |z| (|s′zn| − 1)
∣

∣

∣

=
∣

∣

∣(1 − s)zn+1 + (1 − s)c + s |z| |s′zn| − s |z|
∣

∣

∣

=
∣

∣

∣ss′ |z| · |zn| − s |z| + (1 − s)zn+1 + (1 − s)c
∣

∣

∣

≥
∣

∣

∣ss′ |z| · |zn| − s |z| − (s − 1)zn+1
∣

∣

∣ − |(1 − s)c|

≥
∣

∣

∣ss′
∣

∣

∣zn+1
∣

∣

∣ − s |z|
∣

∣

∣ −
∣

∣

∣(s − 1)zn+1
∣

∣

∣ − (1 − s) |z|

≥ ss′
∣

∣

∣zn+1
∣

∣

∣ − s |z| − (s − 1)
∣

∣

∣zn+1
∣

∣

∣ − |z| + s |z|

≥ (ss′ − s + 1)
∣

∣

∣zn+1
∣

∣

∣ − |z|

≥ |z| ((ss′ − s + 1) |zn| − 1).

Since |z| > 2/s and |z| > 2/s′, it follows
|z| > 2/(ss′)

> 2/(ss′ − s + 1),

which implies that
(ss′ − s + 1)|z| − 1 > 1.

Hence there exists λ > 0 such that (ss′ − s + 1)|z| − 1 > 1 + λ. Consequently

|z1| > (1 + λ) |z| ,

...

|zn| > (1 + λ)n |z| .

Hence |zn| −→ ∞ as n→∞.

Corollary 3.12. Suppose that |c| > (2/s)1/n−1 and |c| > (2/s′)1/n−1. Then the relative superior orbit of S-iteration
scheme RSO(Gc, 0, s, s

′) escape to infinity.

Corollary 3.13. Assume that |zk| > max(|c| , (2/s)1/k−1, (2/s′)1/k−1) for some k ≥ 0.Then |zk+1| > γ
n |zk| and |zn| → ∞

as n→∞.
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This corollary gives an algorithm for computing the relative superior Mandelbrot sets for the functions
of the form Gc(z) = zn + c, n = 1, 2, 3, ....

4. Generation of Relative Superior Mandelbrot Sets

In this section we present some relative superior Mandelbrot sets for quadratic, cubic and biquadratic
functions.

4.1. Relative Superior Mandelbrot Sets for Quadratic Function

Some relative superior Mandelbrot sets are presented for quadratic function in the following figures
(Figures 1-6):

Figure 1: Relative superior Mandelbrot set for s = 1.0 and s′ = 1.0

Figure 2: Relative superior Mandelbrot set for s = 0.1 and s′ = 0.6

Figure 3: Relative superior Mandelbrot set for s = 0.1, s′ = 0.8
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Figure 4: Relative superior Mandelbrot set for s = 0.2 and s′ = 0.7

Figure 5: Relative superior Mandelbrot set for s = 0.2, s′ = 0.8

Figure 6: Relative superior Mandelbrot set for s = 0.3 and s′ = 0.5

4.2. Relative Superior Mandelbrot Sets for Cubic Function

Some relative superior Mandelbrot sets are presented for cubic function in the following figures (Figures
7-12):

Figure 7: Relative superior Mandelbrot set for s = 1.0 and s′ = 1.0
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Figure 8: Relative superior Mandelbrot set for s = 0.1 and s′ = 0.6

Figure 9: Relative superior Mandelbrot set for s = 0.1 and s′ = 0.8

Figure 10: Relative superior Mandelbrot set for s = 0.2 and s′ = 0.7

Figure 11: Relative superior Mandelbrot set for s = 0.2 and s′ = 0.8
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Figure 12: Relative superior Mandelbrot set for s = 0.3 and s′ = 0.5

4.3. Relative Superior Mandelbrot Sets for Bi-quadratic Function

Some relative superior Mandelbrot sets are presented for bi-quadratic function in the following figures
(Figures 13-18):

Figure 13: Relative superior Mandelbrot set for s = 1.0 and s′ = 1.0

Figure 14: Relative superior Mandelbrot set for s = 0.1 and s′ = 0.6

Figure 15: Relative superior Mandelbrot set for s = 0.1 and s′ = 0.8
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Figure 16: Relative superior Mandelbrot set for s = 0.2 and s′ = 0.7

Figure 17: Relative superior Mandelbrot set for s = 0.2 and s′ = 0.8

Figure 18: Relative superior Mandelbrot set for s = 0.3 and s′ = 0.5

4.4. Generalization of Relative Superior Mandelbrot Set

Following figures represents the generalization of relative superior Mandelbrot set in the following
figures (Figures 19-24):

Figure 19: Relative superior Mandelbrot set for s = 1.0, s′ = 1.0 and n = 10.
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Figure 20: Relative superior Mandelbrot set for s = 0.1, s′ = 0.6 and n = 12

Figure 21: Relative superior Mandelbrot set for s = 0.1, s′ = 0.8 and n = 7

Figure 22: Relative superior Mandelbrot set for s = 0.2, s′ = 0.7 and n = 9

Figure 23: Relative superior Mandelbrot set for s = 0.2, s′ = 0.8 and n = 8
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Figure 24: Relative superior Mandelbrot set for s = 0.3, s′ = 0.5 and n = 6

5. Comparison of Ishikawa and S-iteration Schemes

Time for generating relative superior Mandelbrot set by using MAPLE softwere given in the following
tables. Our results shows that convergence of S-iteration scheme relatively faster than Ishikawa iteration.

Table 1: Time for relative superior Mandelbrot sets for quadratic function

(α, β) Time for Ishikawa iteration Time for S-iteration scheme
(0.1, 0.6) 42.21s 16.46s
(0.1, 0.8) 34.20s 16.89s
(0.2, 0.7) 35.90s 22.07s
(0.2, 0.8) 31.04s 23.03s
(0.3, 0.5) 34.00s 25.92s

Table 2: Time for relative superior Mandelbrot sets for cubic function

(α, β) Time for Ishikawa iteration Time for S-iteration scheme
(0.1, 0.6) 67.70s 36.12s
(0.1, 0.8) 55.40s 40.0s
(0.2, 0.7) 51.93s 41.81s
(0.2, 0.8) 46.70s 43.46s
(0.3, 0.5) 54.31s 43.43s

Table 3: Time for relative superior Mandelbrot sets for bi-quadratic function

(α, β) Time for Ishikawa iteration Time for S-iteration scheme
(0.1, 0.6) 56.51s 38.98s
(0.1, 0.8) 49.92s 40.31s
(0.2, 0.7) 49.37s 44.14s
(0.2, 0.8) 46.90s 45, 75s
(0.3, 0.5) 52.17s 44.93s

Table 4: Time for generalization of relative superior Mandelbrot set

(α, β, n) Time for Ishikawa iteration Time for S-iteration scheme
(0.1, 0.6, 12) 67.59s 66.12s
(0.1, 0.8, 7) 70.37s 68.15s
(0.2, 0.7, 9) 65.98s 59.39s
(0.2, 0.8, 8) 59.50s 54.59s
(0.3, 0.5, 6) 67.51s 64.51s
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6. Conclusions

In this paper we have generated many relative superior Mandelbrot figures for S-iteration scheme. It
is noticed that there are remarkable changes found corresponding to the values of parameters s and s′. In
the dynamics of complex polynomial Q (z) = zn + c, where n ≥ 2, we observe that there are several avoids
or bulbs attached with the main body. The number of major secondary lobe is bifurcated into (n − 1) lobes.
Besides this, we also observe that S-iteration scheme converges faster than Ishikawa iteration scheme.
However for s > 1/2, the difference of timings taken by the two iteration schemes for the generation of
figures is small. We believe that the results of this paper can be inspired those who are interested in creating
automatically aesthetic patterns.
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