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On the Structure of the Pointwise Density Sets on the Real Line
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Abstract. The paper concerns some local properties of the sets with pointwise density points in terms of
measure and category on the real line. We also construct nonmeasurable and not having the Baire property
sets with pointwise density point.

1. Preliminaries

Let R be the set of real numbers,N be the set of positive integers, Q denote the set of rational numbers
and λ be the Lebesgue measure on R. By λ∗ and λ∗ we shall denote the inner and outer Lebesgue measure
on R, respectively. Let L be the σ-algebra of Lebesgue measurable sets and Ba the σ-algebra of sets having
the Baire property on R. We say that a set has the Baire property if it is a symmetric difference between an
open set and a set of the first category. Let L denote the σ-ideal of Lebesgue null sets,K denote the σ-ideal
of the first category sets on the real line. Let Tnat be the natural topology on R. If A ⊂ R and α, x ∈ R, then
αA = {αa : a ∈ A}, A − x = {a − x : a ∈ A} and A′ denote the complement of A in R. We shall denote the
characteristic function of a set A ⊂ R by χA.

2. Introduction

The following equivalences are well known (cf. [5, p. 681] )

lim
h→0+

λ(A ∩ [x0 − h, x0 + h])
2h

= 1

⇔

lim
n→∞

λ(A ∩ [x0 −
1
n , x0 + 1

n ])
2
n

= 1

⇔

a sequence of characteristic functions
{
χn(A−x0)∩[−1,1]

}
n∈N

is convergent in measure λ to the function χ[−1,1],
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for A ∈ L and x0 ∈ R and they mean that x0 is a density point of a set A.
The last characterisation of the Lebesgue density point become the motivation to introduce the concept of
pointwise density point on the real line (denote briefly by p-density point).

Definition 2.1. Let A ⊂ R and x0 ∈ R. We shall say that

a) x0 is a pointwise density point of a set A if the sequence
{
χn(A−x0)∩[−1,1]

}
n∈N

is convergent everywhere to the
function χ[−1,1],

b) x0 is a left-side pointwise density point of a set A if the sequence
{
χn(A−x0)∩[−1,0]

}
n∈N

is convergent everywhere
to the function χ[−1,0],

c) x0 is a right-side pointwise density point of a set A if the sequence
{
χn(A−x0)∩[0,1]

}
n∈N

is convergent everywhere
to the function χ[0,1],

d) x0 is a pointwise dispersion point (left-side pointwise dispersion point, right-side pointwise dispersion point) of
a set A if x0 is a pointwise density point (left-side pointwise density point, right-side pointwise density point)
of a set A′.

Observation 2.2. A point x0 ∈ R is a pointwise density point of a set A ⊂ R if and only if [−1, 1] ⊂ lim inf
n→∞

n(A−x0).

Similarly

Observation 2.3. A point x0 ∈ R is a left-side (right-side) pointwise density point of a set A ⊂ R if and only if
[−1, 0] ⊂ lim inf

n→∞
n(A − x0) ([0, 1] ⊂ lim inf

n→∞
n(A − x0)).

Let us define the operator of p-density point of a set A ⊂ R by

Φp(A) = {x ∈ R : x is a pointwise density point of A}.

As the consequence of definition we have the following proposition.

Proposition 2.4. Let A,B ⊂ R and y ∈ R. Then

1. Φp(∅) = ∅, Φp(R) = R,
2. Φp(A ∩ B) = Φp(A) ∩Φp(B),
3. Φp(A) ⊂ A,
4. Φp(A) + y = Φp(A + y),
5. Φp(A) = ∅, whenever A ∈ L or A ∈ K.

Recall that the set of density points of a measurable set A ∈ L is always a measurable set i.e. Φd(A) ∈ L (cf.
[5, p. 682]). The next theorem shows that the operator Φp is significantly different from the corresponding
operator of Lebesgue density Φd.

Theorem 2.5 (cf. [2]). There exists a set A ∈ L such that Φp(A) < L.

The dual theorem for the sets with the Baire property is also true.

Theorem 2.6 (cf. [2]). There exists a set A ∈ Ba such that Φp(A) < Ba.

Although it is possible to find the sets from theorem 2.5, 2.6 it turns out that the family Tp = {A ∈ L :
A ⊂ Φp(A)} forms topology containing Tnat. The crucial properties of this topology are investigated in [2].
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3. The Main Results

3.1. Local properties of sets with pointwise density points
Definition 3.1 (cf. [1]). The sets of the form⋃

i∈N

(ai, bi) and
⋃
i∈N

[ai, bi]

are called a right-side open interval set and right-side closed interval set at a point x0 ∈ R, respectively, if bi+1 < ai < bi
for i ∈N and limi→∞ bi = x0.

A left-side open interval set and left-side closed interval set at a point x0 ∈ R is defined in the same way.

Definition 3.2 (cf. [1]). The sets of the form⋃
i∈N

(ai, bi) and
⋃
i∈N

[ai, bi]

are called a left-side open interval set and left-side closed interval set at a point x0 ∈ R, respectively, if ai < bi < ai+1
for i ∈N and limi→∞ ai = x0.

The union of left-side or right-side open interval (closed interval) sets at the same point x0 is called an
open (closed) interval set at a point x0. Notice that if A =

⋃
i∈N[ai, bi] is a closed interval set at the point x0,

then int(A) =
⋃

i∈N(ai, bi) and A4 int(A) = A\ int(A) = {a1, a2, ...} ∪ {b1, b2, ...}. Thus the results proved below
for closed interval sets,

⋃
i∈N[ai, bi], are also true for open interval sets,

⋃
i∈N(ai, bi). In the sequel we call

open and closed interval sets simply interval sets.
In the similar line of thought to the proof of Lemma 2 in [1] we can prove the below lemma.

Lemma 3.3. If A ⊂ R is a right-side (left-side) interval set at 0 then lim supn→∞nA is the residual set on (0,∞)
((−∞, 0)).

By Lemma 3.3 and Observations 2.2, 2.3 we obtain the following proposition.

Proposition 3.4. If A ⊂ R is an interval set (right-side interval, left-side interval) at 0 then 0 is neither pointwise
dispersion point (right-side pointwise dispersion point, left-side pointwise dispersion point) of the set A nor pointwise
density point ( right-side pointwise density point, left-side pointwise density point) of the set A ∪ {0}.

Proof. To obtain a contradiction, suppose that there exists a right-side interval set A ⊂ R such that 0 is a
p-dispersion point of this set. Hence 0 ∈ Φp(A′) and this means that

[0, 1] ⊂ lim inf
n→∞

nA′ = R\ lim sup
n→∞

nA.

Clearly, lim supn→∞ nA is not a residual set on (0,∞). This contradicts the Lemma 3.3. In the cases of the
left-side interval and the interval set the proofs runs as before.

Theorem 3.5. If 0 is a pointwise density point of a set A ∈ Ba, then there exists ε > 0 such that A ∩ (−ε, ε) is a
residual set on the interval (−ε, ε).

Proof. Let A ∈ Ba be a set such that 0 ∈ Φp(A). By contradiction, suppose the assertion of the Theorem 3.5 is
false. There is no loss of generality if we assume that A ∩ (0, ε) is not a residual set on (0, ε) for every ε > 0.
Let B =

⋃
∞

i=1[ai, bi] be right-side interval set at 0 such that [ai, bi] ⊂ (0, ε) and A ∩ [ai, bi] ∈ K for every i ∈ N
(the existence of set B follows from the definition of the sets having the Baire property, residual and meager
sets). Let E = A ∩ B. Then E ∈ K and by Lemma 3.3 lim supk→∞kB is a residual set on (0,∞) and

lim sup
k→∞

k (A′ ∩ B) = lim sup
k→∞

k (B\E) =

= lim sup
k→∞

(kB\kE) ⊃
(
lim sup

k→∞
kB

)
\

⋃
k∈N

kE

 .
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It implies that lim sup
k→∞

k (A′ ∩ B), lim sup
k→∞

kA′ are the residual sets on (0,∞). Hence

lim inf
k→∞

(kA ∩ (0, 1)) = (0, 1)\ lim sup
k→∞

(kA′ ∩ (0, 1)) ∈ K.

This contradicts the fact that 0 is a pointwise density point of A. Similarly, there exists ε > 0 such that
A ∩ (−ε, 0) is a residual set on (−ε, 0). Finally, there exists ε > 0 such that A ∩ (−ε, ε) is a residual set on
(−ε, ε).

The next theorem show us that analogue of Theorem 3.5 in terms of measure is not valid.

Theorem 3.6. There exists a set B ∈ L such that 0 ∈ Φp(B) and B ∩ (−ε, ε) is not a full measure set on an interval
(−ε, ε) for every ε > 0.

Proof. Let A = [−1, 1] \
∞⋃

n=2

[
1
n −

1
n4 ,

1
n

]
and A′ be complement of set A with respect to the interval [−1, 1].

Hence A′ =
∞⋃

n=2

[
1
n −

1
n4 ,

1
n

]
. Let us fix k ∈N. Hence

λ((kA′) ∩ [−1, 1]) = λ

k
∞⋃

n=k

[1
n
−

1
n4 ,

1
n

] =

=

∞∑
n=k

λ
(
k
[1
n
−

1
n4 ,

1
n

])
=

∞∑
n=k

k
n4 .

Thus
∞∑

k=1

λ((kA′) ∩ [−1, 1]) =

∞∑
k=1

∞∑
n=k

k
n4 =

=

∞∑
n=1

n(n + 1)
2n4 =

1
2

∞∑
n=1

1
n2 +

1
2

∞∑
n=1

1
n3 < ∞.

By the Borel-Cantelli lemma

λ

(
lim sup

k→∞
((kA′) ∩ [−1, 1])

)
= 0.

Let E = lim supk→∞ ((kA′) ∩ [−1, 1]) and D =
⋃
∞

k=1

(
1
k E

)
. Then λ(D) = 0. Let ε > 0. It is easy to observe that

λ(A ∩ (−ε, ε)) < 2ε. Set B = A ∪D, then we get that B ∈ L and 0 ∈ Φp(B). Certainly,

[−1, 1] \ E = [−1, 1] \ lim sup
k→∞

((kA′) ∩ [−1, 1]) =

= lim inf
k→∞

((kA) ∩ [−1, 1]) ⊂ lim inf
k→∞

((kB) ∩ [−1, 1]) .

Moreover, if x ∈ E, then x
k ∈ D ⊂ B for every k ∈N.

Hence E ⊂ lim infk→∞ ((kB) ∩ [−1, 1]). Finally, [−1, 1] ⊂ lim infk→∞ ((kB) ∩ [−1, 1]). Thus 0 ∈ Φp(B).

Before we formulate a remark on the proof of Theorem 3.6 we recall the following definitions.

Definition 3.7 (cf. [6]). We shall say that the sequence {χAn }n∈N of characteristic functions of subsets of the interval
[−1, 1] completely converges to χ[−1,1] if an only if

∞∑
n=1

λ([−1, 1] \ An) < ∞.
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Definition 3.8 (cf. [7]). We shall say that a point x ∈ R is a complete density point of a set A ∈ L if and only if the
sequence

{
χn(A−x0)∩[−1,1]

}
n∈N

completely converges to the function χ[−1,1].

Remark 3.9. Observe that in the proof of Theorem 3.6 we can use any interval set A, for which 0 is a complete density
point.

3.2. Nonmeasurable sets with pointwise density points
Definition 3.10 (cf. [4]). We shall say that a set H ⊂ R is a Burstin set if and only if H is both a Bernstein set and
a Hamel base.

It is well known that in ZFC there always exists a Burstin set (cf. [3], [4]).

Definition 3.11 (cf. [3]). A set A ⊂ R is a saturated nonmeasurable set if

λ∗(A) = λ∗(A′) = 0.

Clearly, every Burstin set is saturated nonmeasurable set. Recall the following characterisation.

Theorem 3.12 (cf. [3]). A set A ⊂ R is saturated nonmeasurable set if and only if λ∗(A∩ (a, b)) = λ∗(A′ ∩ (a, b)) =
b − a for every interval (a, b) ⊂ R.

As a simple exercise one can find the following proposition.

Proposition 3.13. If the sets Ak ⊂ R, k ∈N are pairwise disjoint and are saturated nonmeasurable, then for every
n ∈N the set

⋃n
k=1 Ak is a saturated nonmeasurable.

Theorem 3.14. There exists a set E ⊂ R such that E < L, λ∗(E) = 0 and 0 ∈ Φp(E).

Proof. Let H ⊂ R be a Burstin set. For every n ∈Nwe define

An = {x ∈ R : x =

n∑
i=1

qihi, qi ∈ Q\{0}, hi ∈ H, 1 ≤ i ≤ n}.

The sets of the sequence {An}n∈N are pairwise disjoint,
⋃
∞

n=1 An = R\{0} and H ⊂ A1. We prove that An is
a saturated nonmeasurable set for every n ∈ N. Let h1, h2, ..., hn−1 be mutually different elements of H. If
Hn = H\{h1, h2, ..., hn−1}, then λ∗(Hn) = λ∗(H′n) = 0. Moreover, Hn + (h1 + h2 + ... + hn−1) ⊂ An is a saturated
nonmeasurable set. Hence, by Theorem 3.12 we have that for every interval (a, b) ⊂ R

λ∗(An ∩ (a, b)) ≥ λ∗(Hn + (h1 + h2 + ... + hn−1) ∩ (a, b)) = b − a.

Since A′n ⊃ An+1, Theorem 3.12 now leads to

λ∗(A′n ∩ (a, b)) ≥ λ∗(An+1 ∩ (a, b)) = b − a.

In that way we conclude that An is a saturated nonmeasurable set and by Proposition 3.13 the set
⋃n

k=1 Ak
is a saturated nonmeasurable for every n ∈N. Let

E =

∞⋃
n=1

(
An ∩

(
−

1
n
,

1
n

))
∪ {0}.

Clearly,

E ∩
((
−

1
n
,−

1
n + 1

]
∪

[ 1
n + 1

,
1
n

))
=

((
−

1
n
,−

1
n + 1

]
∪

[ 1
n + 1

,
1
n

))
∩

n⋃
k=1

Ak.
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Then,

λ∗(E) = λ∗(E ∩ [−1, 1]) = λ∗

E ∩
∞⋃

n=1

((
−

1
n
,−

1
n + 1

]
∪

[ 1
n + 1

,
1
n

))
=

∞∑
n=1

λ∗

(
E ∩

((
−

1
n
,−

1
n + 1

]
∪

[ 1
n + 1

,
1
n

)))
=

∞∑
n=1

λ∗

((−1
n
,−

1
n + 1

]
∪

[ 1
n + 1

,
1
n

))
∩

n⋃
k=1

Ak

 = 0.

We shall prove that 0 ∈ Φp(E). Let x ∈ [−1, 1]\{0}, then there exists a unique n0 ∈ N such that x ∈ An0 . By
definition of the set An0 , we conclude that qx ∈ An0 for every q ∈ Q\{0}. Then [−1, 1] \ {0} ⊂ lim infn→∞nE
and 0 ∈ E. It implies the 0 ∈ Φp(E) and obviously E < L.

Definition 3.15 (cf. [3]). A set A ⊂ R has (∗) property, if for every B ∈ Ba such that B ⊂ A or B ⊂ A′ one has
B ∈ K.

It is easy to get the following proposition.

Proposition 3.16. If the sets Ak ⊂ R, k ∈N are pairwise disjoint and have (∗) property, then for every n ∈ N the
set

⋃n
k=1 Ak has (∗) property.

Theorem 3.17 (cf. [3]). If a set A ⊂ R has (∗) property and B ∈ Ba \K, then A ∩ B < Ba.

Theorem 3.18 (cf. [3]). Every Burstin set has (∗) property.

The analogue of Theorem 3.14 in terms of category is the following theorem.

Theorem 3.19. There exists a set E ⊂ R such that E < Ba, 0 ∈ Φp(E) and E ∩ (−ε, ε) is not a residual set on an
interval (−ε, ε) for an arbitrary ε > 0.

Proof. Let H ⊂ R be a Burstin set. For every n ∈N let us denote

An = {x ∈ R : x =

n∑
i=1

qihi, qi ∈ Q\{0}, hi ∈ H, 1 ≤ i ≤ n}.

The sets of the sequence {An}n∈N are pairwise disjoint,
⋃
∞

n=1 An = R\{0} and H ⊂ A1. For every n ∈ N we
show that, if B ⊂ A′n and B ∈ Ba, then B ∈ K. Let h1, h2, ..., hn−1 ∈ H be mutually different elements of H.
Let Hn = H\{h1, h2, ..., hn−1}. Then Hn and H′n have (∗) property. The set Hn + (h1 + h2 + ... + hn−1) has also (∗)
property and Hn + (h1 + h2 + ... + hn−1) ⊂ An. Hence B ∈ Ba and B ⊂ A′n ⊂ (Hn + (h1 + h2 + ... + hn−1))′. Thus
B ∈ K. We now show that for every n ∈ N, if B ⊂ An and B ∈ Ba, then B ∈ K. First observe that An ⊂ A′n+1.
Then, if B ⊂ An and B ∈ Ba, then by the previous part of proof, we get that B ∈ K. Therefore, we have that
An has (∗) property for every n ∈N. Define

E =

∞⋃
n=1

(
An ∩

(
−

1
n
,

1
n

))
∪ {0} .

By proof of Theorem 3.14, 0 ∈ Φp(E). We prove that E ∩ (−ε, ε) is not a residual set on an interval (−ε, ε)
for every ε > 0. Suppose contrary to our claim that there exists ε > 0 such that E ∩ (−ε, ε) is a residual
set on interval (−ε, ε). Evidently 0 ∈ Φp (E ∩ (−ε, ε)) and E ∩ (−ε, ε) ∈ Ba. By Theorem 3.5 there exists
δ > 0 such that E ∩ (−ε, ε) ∩ (−δ, δ) is a residual set on the open interval (−δ, δ). Let n0 ∈ N be a such that
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1
n0
< min(δ, ε). Then E ∩

(
−

1
n0
, 1

n0

)
is a residual set on

(
−

1
n0
, 1

n0

)
and thus E ∩

(
−

1
n0
, 1

n0

)
∈ Ba. It implies that

E ∩
(
−

1
n0+1 ,

1
n0+1

)
∈ Ba. We thus get

D =
(
E ∩

(
−

1
n0
,

1
n0

))
\

(
E ∩

(
−

1
n0 + 1

,
1

n0 + 1

))
∈ Ba.

At the same time we have

D =
((
−

1
n0
,−

1
n0 + 1

]
∪

[ 1
n0 + 1

,
1
n0

))
∩

n0⋃
n=1

An.

By Proposition 3.16 the set
⋃n0

n=1 An has (∗) property and we obtain by Theorem 3.17 that D < Ba. This
contradiction means that E ∩ (−ε, ε) is not a residual set on interval (−ε, ε) for every ε > 0. Finally by
Theorem 3.5 we have that E < Ba.
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