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Abstract. In the paper, new Fritz John type necessary optimality conditions and new Karush-Kuhn-Tucker
type necessary opimality conditions are established for the considered nondifferentiable multiobjective pro-
gramming problem involving locally Lipschitz functions. Proofs of them avoid the alternative theorem
usually applied in such a case. The sufficiency of the introduced Karush-Kuhn-Tucker type necessary
optimality conditions are proved under assumptions that the functions constituting the considered non-
differentiable multiobjective programming problem are G-V-invex with respect to the same function η.
Further, the so-called nondifferentiable vector G-Mond-Weir dual problem is defined for the considered
nonsmooth multiobjective programming problem. Under nondifferentiable G-V-invexity hypotheses, sev-
eral duality results are established between the primal vector optimization problem and its G-dual problem
in the sense of Mond-Weir.

1. Introduction

During the last few decades, multiobjective programming (also referred to as vector optimization) has
received much attention. This is a consequence of the fact that multiobjective optimization is known as a
useful mathematical model in order to investigate some real world problems with conflicting objectives,
arising from economics, engineering and human decision making.

Optimality conditions for nonsmooth multiobjective programming problems have been studied exten-
sively in the literature (see, for example, [1], [3], [5], [9], [10], [11], [12], [13], [14], [22], [23], [24], [25], [26], [27],
[28], and others). The theory and applications of multiobjective programming problems have been closely
tied with convex analysis. In [17], Kanniappan established necessary optimality conditions of Fritz-John
and Karush-Kuhn-Tucker type for nondifferentiable convex multiobjective programming problems.

However, not all practical problems, when formulated as multi-objective programming problems, fulfill
the requirements of convexity. Therefore, generalizations of convexity related to the sufficiency of the
necessary optimality conditions and various duality results for nonsmooth nonlinear multiobjective opti-
mization problems have been of much interest in the recent past. Jeyakumar and Mond [16] introduced
a new class of nonconvex differentiable vector-valued functions, namely V-invex functions, in order to
resolve the difficulty of demanding the same function η for objective and constraint functions in prob-
lems dealing with the concept of invexity introduced by Hanson [15] for scalar optimization problems.
They established sufficient optimality criteria and duality results in the multiobjective static case for weak
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minima solutions under V-invexity. Kuk et al. [20] defined the concept of V-ρ-invexity for vector-valued
functions, which is a generalization of the definition of a V-invex function [16], and they proved the gen-
eralized Karush-Kuhn-Tucker sufficient optimality theorem, and weak and strong duality for nonsmooth
multiobjective programs under the V-ρ-invexity assumptions. In [5], Antczak introduced the concept of
nondifferentiable V-r-invexity for the considered nondifferentiable multiobjective programming problem.
Under V-r-invexity hypotheses, he proved optimality conditions and duality results for a new class of non-
convex nondifferentiable vector optimization problems with locally Lipschitz functions. Later, Mishra et
al. [25] introduced generalized V-r-invexity notions for a nonsmooth multiobjective programming problem
and, under generalized V-r-invexity hypotheses, they proved sufficient optimality conditions and duality
results. Kuk and Tanino [21] obtained Karush-Kuhn-Tucker type necessary and sufficient optimality condi-
tions and duality theorems for nonsmooth multiobjective programming problems involving vector-valued
generalized type I functions. Tong and Zheng [29] defined the concept of nondifferentiable generalized
(F, α, ρ, θ)-d-V-univexity and established some alternatives theorems and saddle-point necessary optimality
conditions for nonsmooth multiobjective programming problems with locally Lipschitz functions.

In [4], Antczak introduced the concept of G-invexity for scalar differentiable functions as a generalization
Hanson’s definition of invexity (see [15]). He applied the introduced G-invexity notion to develop opti-
mality conditions of F.John type and Karush-Kuhn-Tucker type for constrained differentiable mathematical
programming problems and in proving new duality results. In a natural way, Antczak [6] and [7] extended
the definition of G-invexity to the case of differentiable vector-valued functions. He [6] applied the vector
G-invexity notion to develop optimality conditions for differentiable multiobjective programming problems
with both inequality and equality constraints and established the so-called G-Karush-Kuhn-Tucker neces-
sary optimality conditions for this kind of vector optimization problems under the Kuhn-Tucker constraint
qualification. Also under vector G-invexity hypotheses, Antczak [7] proved a number of new duality results
between a nonlinear differentiable multiobjective programming problem and defined for it new vector dual
problems.

Fritz John necessary optimality conditions and Karush-Kuhn-Tucker necessary optimality ones for non-
smooth vector optimization problems with inequality constraints are among the most important directions
of investigation in optimization theory. Our aim in this paper is, therefore, to get the necessary optimal-
ity conditions for the considered nondifferentiable multiobjective programming problem with inequality
constraints in which every component of the functions involved is a locally Lipschitz function. In this
paper, therefore, new versions of Fritz John and Karush-Kuhn-Tucker necessary optimality conditions are
established for the considered nonsmooth multiobjective programming problem of such a type. The so-
called G-Fritz John type necessary optimality conditions and the G-Karush-Kuhn-Tucker type necessary
optimality conditions are generalizations of the necessary optimality conditions of such type [6] to the non-
differentiable vectorial case. In many proofs of Fritz John necessary optimality conditions, an alternative
theorem is used (see, for example, [18]). Whereas we don’t use any alternative theorem in proving the
necessary optimality conditions mentioned above. Further, along the lines Jeyakumar and Mond [16] and
Antczak [6], we introduce the concept of nonsmooth G-V-invexity which is defined in terms of a Clarke
generalized gradient of a locally Lipschitz function. By utilizing this concept of nondifferentiable general-
ized invexity, we prove the sufficiency of the G-Karush-Kuhn-Tucker type necessary optimality conditions
established in this paper for the considered nonconvex nonsmooth multiobjective programming problem.
An example of a nonconvex nonsmooth multiojective programming problem illustrates the fact that the
new optimality results are more useful for some class of nonconvex nonsmooth vector optimization prob-
lems than similarly optimality results established in the literature under other nondifferentiable generalized
convexity hypotheses.

Further, for the considered nonsmooth multiobjective programming problem, we also define its vector
dual problem in the sense of Mond-Weir. The so-called vector G-dual problem in the sense of Mond-Weir
is a generalization of a vector dual problem of such a type defined for differentiable vector dual problems
by Antczak [7]. Under G-V-invexity hypotheses, we establish duality results for this kind of nonsmooth
multiobjective programming problems.
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2. Preliminaries

The following convention for equalities and inequalities will be used in the paper.
For any x = (x1, x2, ..., xn)T, y =

(
y1, y2, ..., yn

)T, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ...,n;
(iii) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(iv) x ≥ y if and only if x = y and x , y.

Definition 2.1. [11] A function f : Rn
→ R is locally Lipschitz at a point x ∈ Rn if there exist scalars K > 0 and

ε > 0 such that, the following inequality ∣∣∣ f (
y
)
− f (z)

∣∣∣ 5 K
∥∥∥y − z

∥∥∥
holds for all y, z ∈ x + εB, where B signifies the open unit ball in Rn, so that x + εB is the open ball of radius ε about x.

Let X be a nonempty open subset of Rn.

Definition 2.2. [11] The Clarke generalized directional derivative of a locally Lipschitz function f : X→ R at x ∈ X
in the direction v ∈ Rn, denoted f 0 (x; v), is given by

f 0(x; v) = lim sup
y→x
θ↓0

f
(
y + θv

)
− f (y)

θ
.

Definition 2.3. [11] The Clarke generalized gradient of a locally Lipschitz function f : X → R at x ∈ X, denoted
∂ f (x), is defined as follows:

∂ f (x) =
{
ξ ∈ Rn : f 0(x; d) ≥ 〈ξ, d〉 for all d ∈ Rn

}
.

Lemma 2.4. [11] Let f : X→ R be a locally Lipschitz function on X, u is an arbitrary point of X and λ ∈ R. Then

∂
(
λ f

)
(u) ⊆ λ∂ f (u) .

Proposition 2.5. [11] Let fi : X → R, i = 1, ..., k, be locally Lipschitz functions on a nonempty set X ⊂ Rn, u is an
arbitrary point of X ⊂ Rn. Then

∂

 k∑
i=1

fi

 (u) ⊆
k∑

i=1

∂ fi (u) .

Equality holds in the above relation if all but at most one of the functions fi is strictly differentiable at u.

Corollary 2.6. [11] For any scalars βi, one has

∂

 k∑
i=1

βi fi

 (u) ⊆
k∑

i=1

βi∂ fi (u) ,

and equality holds if all but at most one of the fi is strictly differentiable at u.

Theorem 2.7. [11] Let the function f : Rn
→ R be locally Lipschitz at a point x ∈ Rn and attain its (local) minimum

at x. Then
0 ∈ ∂ f (x) .
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Proposition 2.8. [11] Let the functions fi : Rn
→ R, i ∈ I = {1, ..., k} , be locally Lipschitz at a point x ∈ Rn. Then

the function f : Rn
→ R defined by f (x) := max

i=1,..,k
fi(x) is also locally Lipschitz at x. In addition,

∂ f (x) ⊂ conv
{
∂ fi (x) : i ∈ I (x)

}
,

where I(x) :=
{
i ∈ I : f (x) = fi(x)

}
.

Many generalizations of the definition of a convex function have been introduced in optimization theory
in order to weak the assumption of convexity for establishing optimality and duality results for new classes
of nonconvex optimization problems, including vector optimization problems. One of such a generalization
of convexity in the vectorial case is the G-invexity notion introduced by Antczak for differentiable scalar
and vector optimization problems (see [4], [6], respectively). We now generalize and extend it to the
nondifferentiable vectorial case. Namely, motivated also by Jeyakumar and Mond [16] and Antczak [6], we
introduce the concept of nondifferentiable G-V-invexity. To do this, we give some helpful denotations.

Let X be a nonempty open subset of Rn and u ∈ X. Further, let f =
(

f1, ..., fk
)

: X→ Rk, where each fi is a
locally Lipschitz function on X and I fi (X), i ∈ I = {1, ..., k}, be the range of fi, that is, the image of X under fi.

Definition 2.9. If there exist G f =
(
G f1 , ...,G fk

)
: R → Rk such that any its component G fi : I fi (X) → R,

i = 1, ..., k, is a strictly increasing differentiable real-valued function on its domain I fi (X), a vector-valued function
α f =

(
α f1 , ..., α fk

)
: X×X→ Rk, where α fi : X×X→ R\{0}, i = 1, ..., k, and a vector-valued function η : X×X→ Rn

such that the inequalities

G fi ( fi(x)) − G fi
(

fi(u)
)
= α fi (x,u)G′fi

(
fi(u)

) 〈
ξi, η(x,u)

〉
, i ∈ I (1)

hold for all x ∈ X and each ξi ∈ ∂ fi(u), i = 1, ..., k, then f is said to be a nondifferentiable G-V-invex function at u ∈ X
on X with respect to η, G f and α f .
We say that f is nondifferentiable G-V-invex on X with respect to η, G f and α f if the inequalities (1) are satisfied at
each u.
If the inequalities (1) are strict for all x ∈ X, x , u, then f is said to be a nondifferentiable strictly G-V-invex function
at u ∈ X with respect to η, G f and α f .
Each function fi satisfying (1) is said to be a nondifferentiable G-αi-invex function at u ∈ X on X with respect to η
and G fi .

Remark 2.10. In the case when G fi (a) ≡ a, i ∈ I, for any a ∈ I fi (X), we obtain the definition of a nondifferentiable
vector-valued invex function (see [19], [22]).

Remark 2.11. In the case when α fi (x,u) = 1, i ∈ I, for all x,u ∈ X, we obtain the definition of a nondifferentiable
vector-valued G-invex function.

Remark 2.12. In the case when α fi (x,u) = 1, i ∈ I, for all x,u ∈ X, and, moreover, f is a differentiable function,
then we obtain the definition of a differentiable vector-valued G-invex function (see [6], [7]).

3. Optimality

In the paper, consider the following nonsmooth multiobjective programming problem

V-minimize f (x) =
(

f1(x), ..., fk(x)
)

subject to 1 j(x) 5 0, j ∈ J,

x ∈ X,

(MOP)

where fi : X → R, i ∈ I = {1, ..., k} and 1 j : X → R, j ∈ J = {1, ...m}, are locally Lipschitz functions defined on
a nonempty open set X ⊂ Rn.
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For the purpose of simplifying our presentation, we will next introduce some notations which will be
used frequently throughout this paper. Let

D :=
{
x ∈ X : 1 j(x) 5 0, j ∈ J

}
be the set of all feasible solutions in the considered vector optimization problem (MOP).

Further, we denote the set of active inequality constraints at point x ∈ D by

J (x) =
{
j ∈ J : 1 j (x) = 0

}
.

For such multicriterion optimization problems as the considered vector optimization one, the optimal
solution is defined in terms of a (weak) Pareto solution ((weakly) efficient solution) in the following sense:

Definition 3.1. A feasible point x is said to be a weak Pareto solution (weakly efficient solution, weak minimum) for
(MOP) if and only if there exists no x ∈ D such that

f (x) < f (x).

Definition 3.2. A feasible point x is said to be a Pareto solution (efficient solution) for (MOP) if and only if there
exists no x ∈ D such that

f (x) ≤ f (x).

In [4], Antczak established new necessary optimality conditions for a feasible solution to be optimal in
differentiable scalar optimization problems. He named them the G-F.John necessary optimality conditions
and G-Karush-Kuhn-Tucker necessary optimality conditions. Later, Antczak [6] established the G-Karush-
Kuhn-Tucker necessary conditions also for differentiable multiobjective programming problems. In [8],
Antczak corrected the G-Karush-Kuhn-Tucker necessary conditions proved in [4] to assure that the Lagrange
multiplier associated to the objective function is not equal to 0. Now, we extend the necessary optimality
conditions mentioned above to the nonsmooth vectorial case. Namely, we prove the G-Fritz John type
necessary optimality conditions and the G-Karush-Kuhn-Tucker type necessary optimality conditions for
the considered nondifferentiable multiobjective programming problem in which each component of the
involved functions is locally Lipschitz.

Theorem 3.3. (G-Fritz John Type Necessary Optimality Conditions). Let x be a weak Pareto solution in the
considered nondifferentiable multiobjective programming problem (MOP). Further, assume that there exist strictly
increasing differentiable real-valued functions G fi , i ∈ I, defined on I fi (D) and strictly increasing differentiable real-
valued functions G1 j , j ∈ J, defined on I1 j (D) with G1 j (0) = 0, j ∈ J. Then there exist λ ∈ Rk and µ ∈ Rm such that
the following conditions

0 ∈
k∑

i=1

λiG′fi
(

fi (x)
)
∂ fi (x) +

m∑
j=1

µ jG
′

1 j

(
1 j (x)

)
∂1 j (x) (2)

µ j

(
G1 j

(
1 j (x)

)
− G1 j

(
1 j (x)

))
5 0, j ∈ J, ∀ x ∈ D, (3)(

λ, µ
)
≥ 0 (4)

hold.

Proof. Let x be a weak Pareto solution in the considered multiobjective programming problem (MOP). We
define a function H as follows:

H (x) = max
{
G fi

(
fi (x)

)
− G fi

(
fi (x)

)
,G1 j

(
1 j (x)

)
: i = 1, ..., k, j = 1, ...,m

}
. (5)

Now, we prove that the following inequality

H (x) = 0 (6)
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holds for all x ∈ X. Suppose, contrary to the result, that there exists x̃ ∈ X such that

H
(
x̃
)
< 0. (7)

Hence, by (7), it follows that G1 j

(
1 j

(
x̃
))
< 0, j ∈ J. By assumption, G1 j (0) = 0, j ∈ J. Thus, two relations

above yield
G1 j

(
1 j

(
x̃
))
< G1 j (0) , j ∈ J. (8)

Since each G1 j , j ∈ J, is a strictly increasing function on its domain, therefore, inequalities (8) imply

1 j
(
x̃
)
< 0, j ∈ J. (9)

This means that x̃ is feasible in the considered multiobjective programming problem. Again using (7), we
have that the inequalities

G fi
(

fi
(
x̃
))
< G fi

(
fi (x)

)
, i = 1, ..., k (10)

hold. By assumption, each G fi , i = 1, ..., k, is a strictly increasing function on its domain. Thus, (10) implies
that the following inequalities

fi
(
x̃
)
< fi (x) , i = 1, ..., k (11)

hold. Since we have shown above that x̃ ∈ D, inequalities (11) mean that x is not a weak Pareto solution in
problem (MOP), which is a contradiction. Hence, the relation (6) is satisfied.

By assumption, x is a weak Pareto solution in the considered multiobjective programming problem
(MOP). Therefore, it is feasible in problem (MOP). This means that 1 j (x) 5 0, j ∈ J. Since G1 j (0) = 0, j ∈ J,
and each G1 j , j ∈ J, is a strictly increasing function on its domain, the inequalities

G1 j

(
1 j (x)

)
5 G1 j (0) = 0, j ∈ J

hold. Using the inequalities above together with (5), we get

H (x) = 0. (12)

Taking into account (6) and (12), we conclude that x is a global minimizer of H. Hence, by Theorem 2.7, it
follows that

0 ∈ ∂H (x) . (13)

Then, using Chain Rule [11] together with Corollary 2.6, we have

∂
(
G fi

(
fi (x)

)
− G fi

(
fi (x)

))
= ∂

(
G fi

(
fi (x)

))
= G′fi

(
fi (x)

)
∂ fi (x) , i = 1, ..., k, (14)

∂
(
G1 j

(
1 j (x)

))
= G′1 j

(
1 j (x)

)
∂1 j (x) , j ∈ J. (15)

We denote by JH (x) the index set of inequality constraints indices j for which H (x) = G1 j

(
1 j (x)

)
. Thus, by

Proposition 2.8, the relations (13), (14) and (15) imply

0 ∈ conv
{
G′fi

(
fi (x)

)
∂ fi (x) , G′1 j

(
1 j (x)

)
∂1 j (x) : i = 1, ..., k, j ∈ JH (x)

}
.

Hence, by the definition of a convex hull, there exist λi = 0, i = 1, ..., k, µ j = 0, j ∈ JH (x) with
∑k

i=1 λi +∑
j∈JH(x) µ j = 1 such that

0 ∈
k∑

i=1

λiG′fi
(

fi (x)
)
∂ fi (x) +

∑
j∈JH(x)

µ jG
′

1 j

(
1 j (x)

)
∂1 j (x) .

If we set µ j = 0 for j < JH (x), then we get (2).
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The proof of the condition (3.8) is trivial. Indeed, if 1 j (x) < 0 for some j < JH (x), then, using the
assumption that G1 j is a strictly increasing function on its domain together with G1 j (0) = 0, we have
G1 j

(
1 j (x)

)
< G1 j (0) = 0. Thus, if we set µ j = 0, then µ j

(
G1 j

(
1 j (x)

)
− G1 j

(
1 j (x)

))
5 0 for all x ∈ D. If

j ∈ JH (x), then G1 j

(
1 j (x)

)
= G1 j (0) = 0. Hence, it is not difficult to note that (3.8) holds for all x ∈ D and

µ j = 0, j ∈ JH (x). Thus, the proof of this theorem is completed.

Remark 3.4. Note that, in order to prove the G-Fritz John type necessary optimality conditions, we don’t use any
alternative theorem. Further, the G-Fritz John type necessary optimality conditions established in this paper differ
from those ones proved in [18] and its proof is simpler than in [18].

It is well-known (see, for example, [13], [19]) that, under a suitable constraint qualification, if x ∈ D is a
(weak) Pareto solution in the considered multiobjective programming problem (MOP), then the necessary
optimality conditions, known as Karush-Kuhn-Tucker conditions, are satisfied.

Now, for the considered nonsmooth multiobjective programming problem (MOP), we prove the so-
called G-Karush-Kuhn-Tucker type necessary optimality conditions. They are generalization of the G-
Karush-Kuhn-Tucker type necessary optimality conditions introduced by Antczak in [6] for the differen-
tiable vector optimization problems. In order to prove them, we need the following constraint qualification.

Definition 3.5. The multiobjective programming problem (MOP) is said to satisfy the G-V-constraint qualification
(G-V-CQ) at x ∈ D if 1 j, j ∈ J(x), are G1 j -α1 j -invex at x on D with respect to the same function η : D × D → Rn

with
∑

j∈J(x)

[
G′1 j

(
1 j(x)

)]2
, 0 and, moreover, there exists x̃ ∈ D such that G1 j

(
1 j

(
x̃
))
< G1 j

(
1 j (x)

)
, j ∈ J(x).

Theorem 3.6. (G-Karush-Kuhn-Tucker Type Necessary Optimality Conditions). Let x be a weak Pareto solution
in the considered nondifferentiable multiobjective programming problem (MOP). Further, assume that there exist
strictly increasing differentiable real-valued functions G fi , i ∈ I, defined on I fi (D) and strictly increasing differentiable
real-valued functions G1 j , j ∈ J, defined on I1 j (D) with G1 j (0) = 0, j ∈ J. If the G-V-constraint qualification
(G-V-CQ) is satisfied at x for problem (MOP), then there exist λ ∈ Rk and µ ∈ Rm such that the following conditions

0 ∈
k∑

i=1

λiG′fi
(

fi (x)
)
∂ fi (x) +

m∑
j=1

µ jG
′

1 j

(
1 j (x)

)
∂1 j (x) (16)

µ j

(
G1 j

(
1 j (x)

)
− G1 j

(
1 j (x)

))
5 0, j ∈ J, ∀ x ∈ D, (17)

λ ≥ 0, µ = 0 (18)

hold.

Proof. Since x is a weak Pareto solution in the considered multiobjective programming problem (MOP), the
G-Fritz John Type necessary optimality conditions (2)-(4) are satisfied. In order to prove the G-Karush-Kuhn-
Tucker necessary optimality conditions (16)-(18), therefore, it is sufficient to prove that λ , 0. Suppose,
contrary to the result, that λ = 0. Then, by the G-Fritz John Type necessary optimality condition (2), it
follows that

0 ∈
m∑

j=1

µ jG
′

1 j

(
1 j (x)

)
∂1 j (x) . (19)

Since the G-V-constraint qualification (G-V-CQ) is satisfied at x ∈ D, the constraint functions 1 j, j ∈ J(x),
are G1 j -α1 j -invex at x on D with respect to the same function η : D ×D→ Rn. Hence, by Definition 2.9, the
inequalities

G1 j

(
1 j (x)

)
− G1 j

(
1 j (x)

)
= α1 j (x, x) G′1 j

(
1 j(x)

) 〈
ζ j, η(x, x)

〉
, j ∈ J(x) (20)
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hold for all x ∈ D and each ζ j ∈ ∂1 j(x), j ∈ J(x). Therefore, they are also satisfied for x = x̃ ∈ D. Multiplying
each inequality (20) by the corresponding Lagrange multiplier µ j, we get

µ j

[
G1 j

(
1 j

(
x̃
))
− G1 j

(
1 j (x)

)]
= α1 j

(
x̃, x

)
µ jG

′

1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
, j ∈ J(x).

Hence, using the G-Fritz John type necessary optimality condition (3.8) together with the G-V-constraint
qualification, we have

µ j

[
G1 j

(
1 j

(
x̃
))
− G1 j

(
1 j (x)

)]
< 0, j ∈ J(x).

Combining above inequalities, we get

µ jα1 j

(
x̃, x

)
G′1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
< 0, j ∈ J(x).

Since α1 j

(
x̃, x

)
> 0, j ∈ J(x), the following inequalities

µ jG
′

1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
< 0, j ∈ J(x) (21)

hold. Taking into account µ j = 0, j < J(x), and then adding both sides of inequalities (21), we obtain that
the following inequality

m∑
j=1

µ jG
′

1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
< 0

holds for each ζ j ∈ ∂1 j(x), j ∈ J, contradicting (19). This means that λ ≥ 0 and the proof of this theorem is
completed.

Now, we prove the sufficient optimality conditions for the considered nonsmooth vector optimization
problem under hypotheses that the functions constituting it are nondifferentiable G-V-invex at a feasible
point satisfying the G-Karush-Kuhn-Tucker type necessary optimality conditions (16)-(18).

Theorem 3.7. Let x ∈ D, G fi , i ∈ I, be a strictly increasing differentiable real-valued function defined on I fi (D) and
G1 j , j ∈ J, be a strictly increasing differentiable real-valued function defined on I1 j (D) such that the G-Karush-Kuhn-
Tucker necessary optimality conditions (16)-(18) be satisfied at x with G fi , i ∈ I, and G1 j , j ∈ J. Further, assume that
f is a G f -V-invex function at x on D and 1 is a G1-V-invex function at x on D with respect to the same vector-valued
function η : D ×D→ Rn. Then x is a weak Pareto solution in problem (MOP).

Proof. Assume that x is such a feasible solution in problem (MOP) at which the G-Karush-Kuhn-Tucker
necessary optimality conditions (16)-(18) are satisfied with Lagrange multipliers λ ∈ Rk, µ ∈ Rm and with
respect to G f =

(
G f1 , ...,G fk

)
and G1 =

(
G11 , ...,G1m

)
, where G fi , i ∈ I, is a strictly increasing differentiable real-

valued function defined on I fi (D) and G1 j , j ∈ J, is a strictly increasing differentiable real-valued function
defined on I1 j (D). Suppose, contrary to the result, that x is not a weak Pareto solution in the considered
nondifferentiable multiobjective programming problem (MOP). Then, by Definition 3.1, there exists x̃ ∈ D
such that

f
(
x̃
)
< f (x) . (22)

By assumption, f is a G f -V-invex function at x on D with respect to η. Thus, G fi , i ∈ I, is a strictly increasing
differentiable real-valued function defined on I fi (D). Hence, (22) implies

G fi
(

fi
(
x̃
))
< G fi

(
fi (x)

)
, i ∈ I. (23)

By Definition 2.9, the following inequalities

G fi ( fi(x)) − G fi
(

fi(x)
)
= α fi (x, x) G′fi

(
fi(x)

) 〈
ξi, η(x, x)

〉
, i ∈ I
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hold for all x ∈ D and each ξi ∈ ∂ fi(x), i ∈ I. Therefore, they are also satisfied for x = x̃ ∈ D. Thus,

G fi ( fi(x̃)) − G fi
(

fi(x)
)
= α fi

(
x̃, x

)
G′fi

(
fi(x)

) 〈
ξi, η(x̃, x)

〉
, i ∈ I. (24)

Combining (23) and (24), we have

α fi
(
x̃, x

)
G′fi

(
fi(x)

) 〈
ξi, η(x̃, x)

〉
< 0, i ∈ I.

Since α fi
(
x̃, x

)
> 0, i ∈ I, the above inequalities yield

G′fi
(

fi(x)
) 〈
ξi, η(x̃, x)

〉
< 0, i ∈ I. (25)

Multiplying (25) by the corresponding Lagrange multiplier λi and then adding both sides of the obtained
inequalities, we get that the following inequality

k∑
i=1

λiG′fi
(

fi(x)
) 〈
ξi, η(x̃, x)

〉
< 0, i ∈ I (26)

holds for each ξi ∈ ∂ fi(x), i ∈ I. By assumption, 1 is a G1-V-invex function at x on D with respect to η. By
Definition 2.9, it follows that

G1 j (1 j(x̃)) − G1 j

(
1 j(x)

)
= α1 j

(
x̃, x

)
G′1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
, j ∈ J. (27)

Multiplying (27) by the corresponding Lagrange multiplier µ j and then using the G-Karush-Kuhn-Tucker
necessary optimality condition (17), we obtain that the inequalities

α1 j

(
x̃, x

)
µ jG

′

1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
5 0, j ∈ J

hold for each ζ j ∈ ∂1 j(x), j ∈ J. Since α1 j

(
x̃, x

)
> 0, j ∈ J, the inequalities above yield

µ jG
′

1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
5 0, j ∈ J.

Then, adding both sides of the inequalities above, we get that the inequality

m∑
j=1

µ jG
′

1 j

(
1 j(x)

) 〈
ζ j, η(x̃, x)

〉
5 0 (28)

holds for each ζ j ∈ ∂1 j(x), j ∈ J. Adding both sides of inequalities (26) and (28), we obtain the inequality〈 k∑
i=1

λiG′fi
(

fi(x)
)
ξi +

m∑
j=1

µ jG
′

1 j

(
1 j(x)

)
ζ j, η(x̃, x)

〉
< 0,

which contradicts the G-Karush-Kuhn-Tucker necessary optimality condition (16). Hence, x is a weak
Pareto solution for (MOP) and this means that the proof of this theorem is completed.

In order to prove that a feasible point x satisfying the G-Karush-Kuhn-Tucker necessary optimality
conditions (16)-(18) is Pareto optimal for (MOP), some slightly stronger hypotheses imposed on the functions
constituting it are needed.

Theorem 3.8. Let x ∈ D, η : D×D→ Rn be a vector-valued function, G fi , i ∈ I, be a strictly increasing differentiable
real-valued function defined on I fi (D) and G1 j , j ∈ J, be a strictly increasing differentiable real-valued function defined
on I1 j (D) such that the G-Karush-Kuhn-Tucker necessary optimality conditions (16)-(18) be satisfied at x with
functions G fi , i ∈ I, and G1 j , j ∈ J. Further, assume that f is a strictly G f -V-invex function at x on D with respect to
η and 1 is a G1-V-invex at x on D with respect to η. Then x is a Pareto solution in problem (MOP).
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Now, we give an example of a nonconvex nondifferentiable multiobjective programming problem and
we prove Pareto optimality of a feasible point by using the optimality conditions established in the paper.
Based on this example, we show that the sufficient optimality conditions under G-V-invexity are helpful
in proving Pareto optimality a feasible point satisfying the G-Karush-Kuhn-Tucker necessary optimality
conditions. We also show that neither the sufficient optimality conditions under invexity nor under G-
invexity are not applicable for the nondifferentiable multiobjective programming problem considered in
this example.

Example 3.9. Consider the following nonconvex nondifferentiable multiobjective programming problem

f (x) =
(
ln

(
|x|

x2+x+1 + 1
)
, arctan (e−x

|x|)
)
→ min

1 (x) = 1 − ex 5 0.
(MOP1)

Note that D = {x ∈ R : x = 0}. Let G f (t) = et and G1 (t) = tan (t). It is not difficult to note that a feasible solution
x = 0 satisfies the G-Karush-Kuhn-Tucker necessary optimality conditions (16)-(18) with G f and G1 defined above.
In order to prove that x = 0 is a Pareto solution in the considered nondifferentiable multiobjective programming
problem (MOP1), we use the sufficient optimality conditions established in the paper. Hence, we have to prove that
the functions constituting problem (MOP1) are G-V-invex at x = 0 on D with respect to the functions G f and G1
defined above and with respect to the same function η : D × D → R. Let η be defined as follows η (x, x) = |x| −

∣∣∣x∣∣∣
and, moreover, α f1 (x, x) = 1

x2+x+1 , α f2 (x, x) = e−x and α1 (x, x) = 1. Then, by Definition 2.9, it can be shown that
the objective function f is strictly G f -V-invex at x = 0 on D with respect to the functions η, G f and α f =

(
α f1 , α f2

)
and the constraint function 1 is G1-V-invex at x = 0 on D with respect to the functions η, G1 and α1. Thus, all
hypotheses of Theorem 3.8 are fulfilled and, therefore, we conclude that x = 0 is a Pareto solution in the considered
nondifferentiable multiobjective programming problem (MOP1). Note, moreover, that we are not in a position to use
the sufficient optimality conditions under invexity (see, for example, [19], [22]). It follows from the fact that there
doesn’t exist any function η defined by η : D × D → R with respect to which the functions constituting problem
(MOP1) are invex at x = 0 on D. Further, also the sufficient optimality conditions under nondifferentiable G-invexity
(see Remark 2.11) are not applicable in the considered case since the functions constituting problem (MOP1) are not
G-invex with respect to η, G f and G1 defined above.

4. Nondifferentiable G-Mond-Weir Duality

In this section, for the considered nondifferentiable multiobjective programming problem (MOP), we
define a vector G-dual problem in the sense of Mond-Weir as follows

V-maximize f (x) =
(

f1(y), ..., fk(y)
)

s.t. 0 ∈
∑k

i=1 λiG′fi
(

fi
(
y
))
∂ fi

(
y
)

+
∑m

j=1 µ jG′1 j

(
1 j

(
y
))
∂1 j

(
y
)
,

µ j

[
G1 j

(
1 j (x)

)
− G1 j

(
1 j

(
y
))]
5 0, j ∈ J, ∀ x ∈ D,

λ ≥ 0, ξ = 0,

(G-DVP)

where fi : X → R, i ∈ I = {1, ..., k} and 1 j : X → R, j ∈ J = {1, ...m}, are locally Lipschitz functions,
G f and G1 are fixed and they verified that G f =

(
G f1 , ...,G fk

)
: R → Rk is a differentiable vector-valued

function such that each its component G fi : I fi (X) → R is a strictly increasing function on its domain,
and G1 =

(
G11 , ...,G1m

)
: R → Rm is a differentiable vector-valued function such that each its component

G1 j : I1 j (X)→ R is a strictly increasing function on its domain.
Let

Ω =
{(

y, λ, µ
)

: 0 ∈
∑k

i=1 λiG′fi
(

fi
(
y
))
∂ fi

(
y
)

+
∑m

j=1 µ jG′1 j

(
1 j

(
y
))
∂1 j

(
y
)

,

µ j

[
G1 j

(
1 j (x)

)
− G1 j1 j

(
y
))]
5 0, j ∈ J, ∀ x ∈ D, λ ≥ 0, µ = 0

}
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be the set of all feasible solutions in (G-DVP). Let us denote by prXΩ, the projection of Ω on X and by Y the
set D ∪ prXΩ.

Note that this vector optimization problem as dual one is formulated in terms of maximization instead
of minimization. It implies that we have to reconsider the definition of a (weakly) efficient solution for
optimization problems of this type. But it is enough to say that y ∈ prXΩ is a (weakly) efficient solution of
a maximum type in (DVP) if there exists no y ∈ prXΩ such that f (y) − f (y)(<) ≤ 0 is verified. That is, just
the reverse definition for a minimization process.

Theorem 4.1 (Weak duality). Let x and (y, λ, µ) be any feasible solutions in problems (MOP) and (G-DVP),
respectively. Assume that f is a G f -V-invex function at y on Y with respect to η and 1 is a G1-V-invex function at y
on Y with respect to η. Then, f (x) ≮ f

(
y
)
.

Proof. Let x and (y, λ, µ) be any feasible solutions in problems (MOP) and (G-DVP), respectively. Suppose,
contrary to the result, that

f (x) < f
(
y
)

.

By assumption, f is a G f -V-invex function at y on Y with respect to η and 1 is a G1-V-invex function at y
on Y with respect to η. Since G f =

(
G f1 , ...,G fk

)
: R → Rk such that any its component G fi : I fi (X) → R is a

strictly increasing function on its domain, the inequality above implies

G fi ( f (x)) < G fi ( f (y)), i = 1, ..., k. (29)

Since (y, λ, µ) ∈ Ω, multiplying each above inequality by the corresponding Lagrange multiplier λi, i =
1, ..., k, we obtain

λiG fi ( f (x)) 5 λiG fi ( f (y)), i = 1, ..., k, (30)

λi0 G fi0 ( f (x)) < λi0 G fi0 ( f (y)) for at least one i0 ∈ {1, ..., k} . (31)

Thus, (30) and (31) yield
k∑

i=1

λiG fi
(

fi(x)
)
<

k∑
i=1

λiG fi
(

fi(y)
)
. (32)

By Definition 2.9, it follows that the following inequalities

G fi
(

fi(z)
)
− G fi

(
fi(y)

)
= α fi

(
z, y

)
G′fi

(
fi(y)

) 〈
ξi, η(z, y)

〉
, i ∈ I, (33)

G1 j

(
1 j (z)

)
− G1 j

(
1 j

(
y
))
= α1 j

(
z, y

)
G′1 j

(
1 j(y)

) 〈
ζ j, η(z, y)

〉
, j ∈ J (34)

hold for each ξi ∈ ∂ fi(y), i ∈ I, each ζ j ∈ ∂1 j(y), j ∈ J, and for all z ∈ Y. Therefore, they are also satisfied for
z = x ∈ D. Multiplying each inequality (33) and (34) by the associated Lagrange multiplier λi, i ∈ I, and µ j,
j ∈ J, respectively, we obtain, respectively,

λiG fi
(

fi(x)
)
− λiG fi

(
fi(y)

)
= α fi

(
x, y

)
λiG′fi

(
fi(y)

) 〈
ξi, η(x, y)

〉
, i ∈ I, (35)

µ jG1 j

(
1 j (x)

)
− µ jG1 j

(
1 j

(
y
))
= α1 j

(
x, y

)
µ jG′1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
, j ∈ J. (36)

Combining (30), (31) and (35), we have

α fi
(
x, y

)
λiG′fi

(
fi(y)

) 〈
ξi, η(x, y)

〉
5 0, i ∈ I,

α fi0

(
x, y

)
λi0 G′fi0

(
fi0 (y)

) 〈
ξi0 , η(x, y)

〉
< 0 for at least one i0 ∈ {1, ..., k} .

Since α fi
(
x, y

)
> 0, i ∈ I, the above inequalities yield, respectively,

λiG′fi
(

fi(y)
) 〈
ξi, η(x, y)

〉
5 0, i ∈ I, (37)
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λi0 G′fi0
(

fi0 (y)
) 〈
ξi0 , η(x, y)

〉
< 0 for at least one i0 ∈ {1, ..., k} . (38)

Thus, (37) and (38) imply that the inequality

k∑
i=1

λiG′fi
(

fi(y)
) 〈
ξi, η(x, y)

〉
< 0 (39)

holds for each ξi ∈ ∂ fi(y), i ∈ I. Combining (36) and the second constraint of problem (G-DVP), we have
that the inequalities

α1 j

(
x, y

)
G′1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
5 0, j ∈ J

hold for each ζ j ∈ ∂1 j(y), j ∈ J. Since α1 j

(
x, y

)
> 0, j ∈ J, the inequalities above yield

G′1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
5 0, j ∈ J. (40)

Hence, (40) implies that the following inequality

m∑
j=1

µ jG
′

1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
5 0 (41)

holds for each ζ j ∈ ∂1 j(y), j ∈ J. By (39) and (41), it follows that the following inequality〈 k∑
i=1

λiG′fi
(

fi(y)
)
ξi +

m∑
j=1

µ jG′1 j

(
1 j(y)

)
ζ j, η(x, y)

〉
< 0

holds, which is a contradiction to the first constraint of (G-DVP). Hence, the proof of this theorem is
completed.

In order to prove a stronger result, some stronger hypotheses of G-V-invexity should be assumed.

Theorem 4.2. (Weak duality). Let x and (y, λ, µ) be any feasible solutions in problems (MOP) and (G-DVP),
respectively. Assume that f is a strictly G f -invex function at y on Y with respect to η and 1 is a G1-invex function
at y on Y with respect to η. Then, f (x) � f

(
y
)
.

Theorem 4.3 (Strong duality). (Strong duality). Let x ∈ D be a weakly efficient (efficient) solution for problem
(MOP) and the G-V-constraint qualification (G-V-CQ) be satisfied at x. Then there exist λ ∈ Rk and µ ∈ Rm such
that (x, λ, µ) is feasible in (G-DVP). Further, if all hypotheses of weak duality Theorem 4.1 (Theorem 4.2) are fulfilled,
then x is a weakly efficient (efficient) solution of a maximum type for problem (G-DVP).

Proof. By assumption, all hypotheses of Theorem 3.6 are fulfilled at x. Hence, by Theorem 3.6, there exist
λ ∈ Rk and µ ∈ Rm such that the following conditions are satisfied∑k

i=1 λiG′fi
(

fi (x)
)
∂ fi (x) +

∑m
j=1 µ jG

′
1 j

(
1 j (x)

)
∂1 j (x) = 0,

µ j

[
G1 j

(
1 j (x)

)
− G1 j

(
1 j (x)

)]
5 0, j ∈ J, ∀ x ∈ D,

λ ≥ 0, µ = 0.

Thus, (x, λ, µ) is a feasible solution in the vector G-Mond-Weir dual problem (G-DVP). From the weak
duality theorem (Theorem 4.1 or Theorem 4.3, respectively),

(
f (x) < f (y)

)
f (x) ≤ f (y) is not verified, where

y ∈ prXΩ. This means that (x, λ, µ) is a weakly efficient (efficient) solution of a maximum type in dual
problem (G-DVP).
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The following result follows directly from weak duality.

Theorem 4.4 (Converse duality). Let (x, λ, µ) be a feasible solution in G-dual problem in the sense of Mond-Weir
(G-DVP) such that x ∈ D. If f is a strictly G f -V-invex (G f -V-invex) function at x on Y with respect to η and 1 is a
G1-V-invex function at x on Y with respect to η, then x is a (weakly efficient) efficient solution in problem (MOP).

Proof. Proof follows directly from weak duality (Theorem 4.1 or Theorem 4.2, respectively).

Theorem 4.5. (Strict converse duality). Let x and (y, λ, µ) be feasible solutions in (MOP) and (G-DVP), respectively,
such that

f (x) = f (y). (42)

Further, assume that f is a strictly G f -V-invex function at x on Y with respect to η and 1 is a G1-V-invex function
at x on Y with respect to η. Then x = y and, therefore, x is a Pareto solution in (MOP) whereas (y, λ, µ) is efficient of
a maximum type in (G-DVP).

Proof. By assumption, x and (y, λ, µ) are feasible solutions in (MOP) and (G-DVP), respectively. Let us
suppose x , y as, if not, the result would be proved. By assumption, f is a strictly G f -V-invex function at
x on Y with respect to η and 1 is a G1-V-invex function at x on Y with respect to η. Then, by Definition 2.9,
the inequalities

G fi
(

fi(x)
)
− G fi

(
fi(y)

)
> α fi

(
x, y

)
G′fi

(
fi(y)

) 〈
ξi, η(x, y)

〉
, i ∈ I, (43)

G1 j

(
1 j (x)

)
− G1 j

(
1 j

(
y
))
= α1 j

(
x, y

)
G′1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
, j ∈ J (44)

hold. Multiplying (43) and (44) by the corresponding Lagrange multiplier and using (42) together with the
second constraint of (G-DVP), we get

λiα fi
(
x, y

)
G′fi

(
fi(y)

) 〈
ξi, η(x, y)

〉
5 0, i ∈ I, (45)

λiα fi
(
x, y

)
G′fi

(
fi(y)

) 〈
ξi, η(x, y)

〉
< 0, for at least one i ∈ I, (46)

µiα1 j

(
x, y

)
G′1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
5 0, j ∈ J. (47)

Since α fi
(
x, y

)
> 0, i ∈ I, and α1 j

(
x, y

)
> 0, j ∈ J, the above inequalities imply, respectively,

λiG′fi
(

fi(y)
) 〈
ξi, η(x, y)

〉
5 0, i ∈ I, (48)

λiG′fi
(

fi(y)
) 〈
ξi, η(x, y)

〉
< 0, for at least one i ∈ I, (49)

µiG
′

1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
5 0, j ∈ J. (50)

Adding both sides of inequalities (48)-(50) respectively, we get that the following inequalities

k∑
i=1

λiG′fi
(

fi(y)
) 〈
ξi, η(x, y)

〉
< 0, (51)

m∑
j=1

µ jG
′

1 j

(
1 j(y)

) 〈
ζ j, η(x, y)

〉
5 0. (52)

hold for each ξi ∈ ∂ fi(y), i ∈ I and ζ j ∈ ∂1 j(y), j ∈ J, respectively. Hence, by (51) and (52), it follows that that
the following inequality 〈 k∑

i=1

λiG′fi
(

fi
(
y
))
ξi +

m∑
j=1

µ jG
′

1 j

(
1 j

(
y
))
ζ j, η(x, y)

〉
< 0

holds for each ξi ∈ ∂ fi(y), i ∈ I and ζ j ∈ ∂1 j(y), j ∈ J, contradicting the feasibility of (y, λ, µ) in (G-DVP). This
means that x = y. Efficiency of x in (MOP) and efficiency of (y, λ, µ) in (DVP) follow directly from weak
duality (Theorem 4.2). Thus, the proof of this theorem is completed.
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5. Conclusion

In the paper, new Fritz John type and new Karush-Kuhn-Tucker type necessary optimality conditions
have been established for a class of nondifferentiable multiobjective programming problems involving
functions with locally Lipschitz components. Further, a new concept of nondifferentiable generalized
invexity notion was introduced. The so-called G-V-invexity is a generalization both the nondifferentiable
V-invexity notion defined by Jeyakumar and Mond [16] and the concept of differentiable vectorial G-invexity
defined by Antczak [6]. Using the introduced concept of nondifferentiable G-V-invexity, the sufficiency
of the G-Karush-Kuhn-Tucker type necessary optimality conditions has been established for a class of
nonsmooth vector optimization problems in which the functions involved are G-V-invex with respect to
the same function η and with respect to, not necessarily, the same function G. This result has been illustrated
by an example of a nondifferentiable multiobjective programming problem with G-V-invex functions (with
respect to the same η). It has been noted that, for such a class of nondifferentiable vector optimization
problems, this result can be proved neither under nondifferentiable invexity hypotheses nor the concept
of nondifferentiable G-invexity. Furthermore, for the considered nonsmooth multiobjective programming
problem, its nondifferentiable vector G-dual problem in the sense of Mond-Weir has been defined and
several duality results have been established between these nonsmooth vector optimization problems also
under nondifferentiable G-V-invexity hypotheses. In this regard, we prove optimality conditions and
duality results for a new class of nonconvex nonsmooth multiobjective programming problems for which
some of the generalized convexity notions previously defined in optimization theory may avoid.
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