Filomat 30:11 (2016), 2947–2954 DOI 10.2298/FIL1611947E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Equalities on *q*-Gamma and *q*-Digamma Functions

İnci Ege^a, Emrah Yıldırım^a

^aDepartment of Mathematics, Faculty of Arts and Sciences, Adnan Menderes University 09010, Aydın-Turkey

Abstract. In this paper, we give some equalities on *q*-gamma and *q*-digamma functions for negative integer values of *x* by aid of using the concepts of neutrix and neutrix limit.

1. Introduction and Preliminaries

Q-calculus; the *q*-analogue of the classical calculus; is a quite popular subject today. The deformed calculus has found a lot of applications in mathematics, statistics and physics. These are many *q*-functions of the ordinary special functions such as *q*-beta, *q*-gamma and *q*-zeta functions. In a rude way, the definition of a *q*-analogue \mathcal{M}_q of a mathematical object \mathcal{M} is such that the limit of \mathcal{M}_q as *q* tends to 1 is \mathcal{M} . In this paper we aim to give some equalities on *q*-gamma and *q*-digamma functions by using their *q*-integral representations and the neutrix calculus developed by van der Corput.

Definition 1.1. (*Neutrix*)Let N' be a nonempty set and let N be a commutative, additive group of functions mapping N' into a commutative, additive group N''. The group N is called neutrix if the function which is identically equal to zero is the only constant function occurring N. The function which belongs to N is called "negligible function" in N.

Let N' be a domain lying in a topological space with a limit point b not belonging to N' and N be a commutative additive group of functions defined on N' with the following property:

"
$$f \in \mathcal{N}$$
, $\lim_{\varepsilon \to b} f(\varepsilon) = c$ (constant) for $\varepsilon \in N'$ then $c = 0$ ".

Then this group N is a neutrix.

Definition 1.2. (Neutrix limit) Let f be a real valued function defined on N' and suppose that it is possible to find a constant c such that f(x) - c is negligible in N. Then c is called the neutrix limit of f(x) as x tends to y and denoted by

$$\mathop{\rm N-lim}_{x\to y} f(x) = c$$

(1)

²⁰¹⁰ Mathematics Subject Classification. Primary 33D05; Secondary 05A30, 33B15

Keywords. Gamma function, q-Gamma function, q-Digamma function

Received: 03 July 2014; Accepted: 10 February 2015

Communicated by Dragan S. Djordjević

Email addresses: iege@adu.edu.tr (İnci Ege), emrahyildirim@adu.edu.tr (Emrah Yıldırım)

The reader may find the general definition of the neutrix and neutrix limit in [3].

In this work, we let N be the neutrix having domain the open interval $N' = (0, (1 - q)^{-1})$ and range N'' as the real numbers with the negligible functions being finite linear sums of the functions

$$\epsilon^{\lambda} \ln^{r-1} \epsilon, \ln^r \epsilon, [\epsilon]^{\lambda}, \quad \lambda < 0, r = 1, 2, ..$$

and all being functions $f(\epsilon)$ which converge to zero in the usual sense as ϵ tends to zero. Let q be a positive number 0 < q < 1. For any complex number x, the basic number [x] and the q-factorial [n]! are defined by

$$[x] = \frac{1 - q^x}{1 - q}, \quad [n]! = [n][n - 1] \dots [2][1], \quad n \in \mathbb{N}$$

Let *f* be a function defined on a subject of real or complex plane. The *q*-analogue of the derivative of f(x), called its *q*-derivative is given by

$$D_q f(x) = \frac{f(qx) - f(x)}{(q-1)x}$$
 if $x \neq 0$ and $(D_q f)(0) = f'(0)$

provided f'(0) exists.

The q-Jackson integral is defined for a function f to be

$$\int_0^a f(x)d_q x = (1-q)a\sum_{n=0}^\infty q^n f(aq^n)$$

provided the sum converges absolutely and

$$\int_a^b f(x)d_q x = \int_0^b f(x)d_q x - \int_0^a f(x)d_q x$$

The *q*-integrating by parts is given for suitable functions *f* and *g* by

$$\int_{a}^{b} g(qx)d_{q}f(x) = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f(x)d_{q}g(x).$$
(2)

One of the *q*-analogues of the exponential function e^x is defined as

$$E_q^x = \sum_{i=0}^{\infty} q^{\binom{i}{2}} \frac{x^i}{[i]!} = (-(1-q)x;q)^{\infty}.$$

Note that the *q*-derivative of E_q^x is E_q^{qx} . More information about *q*-calculus can be found in [1, 2]. The *q*-analogue of gamma function $\Gamma(x)$ is defined in [7, 8] by the *q*-integral representation

$$\Gamma_q(x) = \int_0^{\frac{1}{1-q}} t^{x-1} E_q^{-qt} d_q t$$

and its derivatives are defined by

$$\Gamma_q^{(r)} = \int_0^{\frac{1}{1-q}} t^{x-1} \ln^r t E_q^{-qt} d_q t, \quad r = 0, 1, 2, \dots.$$
(3)

Using the regularization technique, it has been shown in [6] that for $x > -n, n = 1, 2, ..., x \neq 0, -1, -2, ...,$ the *q*-gamma function is defined by the neutrix limit as

$$\Gamma_q(x) = \operatorname{N-lim}_{\epsilon \to 0} \int_{\epsilon}^{1/1-q} t^{x-1} E_q^{-qt} d_q t$$

and in [9] the authors give an equation for the function $\Gamma_q(x)$ for negative integer values of x with using the Heaviside's function H(x); which is equal to zero for x < 0 and to 1 for x > 0. That is

$$\Gamma_{q}(-n) = \int_{0}^{1/1-q} t^{-n-1} \ln t \Big[E_{q}^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} - \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{[n]!} t^{n} H(1-t) \Big] d_{q}t
+ (1-q)^{n+1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{(q,q)_{i}(1-q^{i-n})}.$$
(4)

2. Main Results

In this section, using neutrix calculus, we give some results on *q*-gamma function with its first derivative and then show that *q*-digamma function can be defined at negative integers. At first, we need the following lemmas.

Lemma 2.1. We have

$$\Gamma_q(0) = \frac{q-1}{lnq} \Gamma'_q(1).$$
(5)

Proof. By taking $g(qt) = E_q^{-qt}$, $d_q(f(t)) = t^{-1}$ and using *q*-integration by parts given in (2), then we obtain

$$\begin{split} \Gamma_{q}(0) &= \operatorname{N-lim}_{\epsilon \to 0} \int_{\epsilon}^{1/1-q} t^{-1} E_{q}^{-qt} d_{q} t \\ &= \operatorname{N-lim}_{\epsilon \to 0} \left\{ \frac{q-1}{\ln q} \ln (1-q) E_{q}^{-\frac{1}{1-q}} - \frac{q-1}{\ln q} \ln \epsilon E_{q}^{-q\epsilon} + \frac{q-1}{\ln q} \int_{\epsilon}^{1/1-q} \ln t E_{q}^{-qt} d_{q} t \right\}. \end{split}$$

Since $E_q^t = (1 + (1 - q)t)_q^{\infty}$, the first term on the right side is equal to zero and second one includes $\ln \epsilon$, which is negligible function, so the neutrix limit of the last term collides with ordinary one which is equal to the equation (3) at x = 1, then we get the desired result.

Lemma 2.2. For n = 1, 2, ...,

$$\Gamma_q(-n) = \frac{1}{[-n]} \Gamma_q(-n+1) + \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{[n][n]!}.$$
(6)

Proof. On *q*-integrating by parts to equation (4) we have

$$\begin{split} \Gamma_{q}(-n) &= \frac{1}{[-n]} \bigg\{ \int_{1}^{1/1-q} t^{-n} E_{q}^{-qt} d_{q}t + \int_{0}^{1} t^{-n} \Big[E_{q}^{-t} - \sum_{j=0}^{n} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} \Big] d_{q}t \bigg\} \\ &- \frac{E_{q}^{-1}}{[-n]} + \frac{1}{[-n]} \Big[E_{q}^{-1} - \sum_{j=0}^{n} \frac{(-1)^{j} q^{\frac{j(j-1)}{2}}}{[j]!} \Big] + \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+j]} \\ &= \frac{1}{[-n]} \bigg\{ \int_{1}^{1/1-q} t^{-n} E_{q}^{-qt} d_{q}t + \int_{0}^{1} t^{-n} \Big[E_{q}^{-t} - \sum_{j=0}^{n} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} \Big] d_{q}t \\ &+ \sum_{j=0}^{n-2} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[i]![-n+j+1]} \bigg\} - \frac{(-1)^{n} q^{\frac{n(n-1)}{2}}}{[-n][n]!} \\ &= \frac{1}{[-n]} \Gamma_{q}(-n+1) + \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{[n][n]!} \end{split}$$

as desired.

Note that by using the equations (5) and (6) and mathematical induction, *q*-gamma function satisfies the equation

$$\Gamma_q(-n) = \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{[n]!} \left(\varphi_q(n) + \Gamma_q(0) \right)$$
(7)

where (for example, see [10] and references therein)

$$\varphi_q(n) = \sum_{j=1}^n \frac{1}{[j]}$$

for n = 0, -1, -2, ... and this result tends to the equation

$$\Gamma(-n) = (-1)^n \Big(\varphi(n) + \Gamma(0) \Big)$$

where

$$\varphi(n) = \sum_{j=0}^{n} \frac{1}{j}$$

shown in [4] and [11] as $q \rightarrow 1$.

Theorem 2.3. *Let H denotes Heaviside's function. Then for* $n \in \mathbb{N}$ *,*

$$\Gamma_{q}(-n) = \int_{0}^{1/1-q} t^{-n-1} \ln t \Big[E_{q}^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} - \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{[n]!} t^{n} H(1-t) \Big] d_{q}t \\
+ \ln q^{-1} (1-q)^{-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+j]} (1-q)^{n-j} + \frac{\ln q^{-1}}{q-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+j]^{2}} (1-q)^{n-j}.$$
(8)

Proof. By definitions, we have

$$\begin{split} \int_{\epsilon}^{\frac{1}{1-q}} t^{-n-1} \ln t E_q^{-qt} d_q t &= \int_{\epsilon}^{1/1-q} t^{-n-1} \ln t \Big[E_q^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]!} t^j - \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{[n]!} t^n H(1-t) \Big] d_q t \\ &+ \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]!} \int_{\epsilon}^{\frac{1}{1-q}} t^{-n+j-1} \ln t d_q t + \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{[n]!} \int_{\epsilon}^{1} t^{-1} \ln t d_q t. \end{split}$$

Now calculating the last two integrals on the right side of the equation and then taking the neutrix limit of the both sides of the equation we get

$$\begin{split} N_{\epsilon \to 0} & \int_{\epsilon}^{\frac{1}{1-q}} t^{-n-1} \ln t E_q^{-qt} d_q t &= \int_{\epsilon}^{1/1-q} t^{-n-1} \ln t \Big[E_q^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]!} t^j - \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{[n]!} t^n H(1-t) \Big] d_q t \\ &+ \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]!} \left\{ \frac{(1-q)^{n-j} \ln(q^{-1}(1-q)^{-1})}{[-n+j]} + \frac{\ln q^{-1}(1-q)^{n-j}}{(q-1)[-n+j]^2} \right\} \end{split}$$

as desired.

Theorem 2.4. *For* n = 1, 2, ...

$$\Gamma_q'(-n) = \frac{\ln q^{-1}}{(q-1)[-n]} \Gamma_q(-n) + \frac{\ln q^{-1}}{[-n]} \Gamma_q(-n+1) + \frac{1}{[-n]} \Gamma_q'(-n+1).$$
(9)

Proof. On *q*-integrating by parts to equation (8) we have

$$\begin{split} \Gamma_{q}'(-n) &= \frac{\ln q^{-1}}{[-n](q-1)} \int_{0}^{1/1-q} t^{-n-1} \Big[E_{q}^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} - \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{[n]!} t^{n} H(1-t) \Big] d_{q}t \\ &+ \frac{\ln q^{-1}}{[-n]} \int_{0}^{1/1-q} t^{-n} \Big[E_{q}^{-qt} - \sum_{j=0}^{n-2} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} - \frac{(-1)^{n-1} q^{\frac{n(n-1)}{2}}}{[n-1]!} t^{n-1} H(1-t) \Big] d_{q}t \\ &+ \frac{1}{[-n]} \int_{0}^{1/1-q} t^{-n} \ln t \Big[E_{q}^{-qt} - \sum_{j=0}^{n-2} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} - \frac{(-1)^{n-1} q^{\frac{n(n-1)}{2}}}{[n-1]!} t^{n-1} H(1-t) \Big] d_{q}t \\ &+ \ln q^{-1} (1-q)^{-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+j]} (1-q)^{n-j} + \frac{\ln q^{-1}}{q-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+j]^{2}} (1-q)^{n-j} \\ &- \frac{\ln q^{-1}}{[-n]} \sum_{j=0}^{n} \frac{(-1)^{j} q^{\frac{j(j-1)}{2}}}{[j]!} (1-q)^{n-j} - \frac{\ln (1-q)^{-1}}{[-n]} \sum_{j=0}^{n} \frac{(-1)^{j} q^{\frac{j(j-1)}{2}}}{[j]!} (1-q)^{n-j}. \end{split}$$

The first three terms on the right side of the equation are the integral parts of the definitions of $\Gamma_q(-n)$, $\Gamma_q(-n + 1)$ and $\Gamma'_q(-n + 1)$ respectively, because of that, adding and extracting the missing series of these definitions one can see that sums of the remaining series are equal to zero and this completes the proof. \Box

Theorem 2.5. For all real values of *x*,

$$\Gamma'_{q}(x) = \underset{\epsilon \to 0}{\text{N-lim}} \Gamma'_{q}(x+\epsilon).$$
⁽¹⁰⁾

Proof. Since $\Gamma'_q(x)$ is a continuous function for $x \neq 0, -1, -2, ...$ its neutrix limit becomes normal limit as ϵ tends to zero and the result follows for $x \neq 0, -1, -2, ...$ Now we will consider $\Gamma'_q(x)$ at the point x = -n, n = 1, 2, ... For $0 < \epsilon < 1$, we have from equation (8) that

$$\begin{split} \Gamma_{q}'(-n+\epsilon) &= \int_{0}^{1/1-q} t^{-n+\epsilon-1} \ln t \Big[E_{q}^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} \Big] d_{q} t \\ &+ \ln q^{-1} (1-q)^{-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+\epsilon+j]} (1-q)^{n-\epsilon-j} + \frac{\ln q^{-1}}{q-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+\epsilon+j]^{2}} (1-q)^{n-\epsilon-j} \\ &= \int_{0}^{1/1-q} t^{-n+\epsilon-1} \ln t \Big[E_{q}^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]!} t^{j} - \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{[n]!} t^{n} H(1-t) \Big] d_{q} t \\ &+ \ln q^{-1} (1-q)^{-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+\epsilon+j]!} (1-q)^{n-\epsilon-j} + \frac{\ln q^{-1}}{q-1} \sum_{j=0}^{n-1} \frac{(-1)^{j} q^{\frac{j(j+1)}{2}}}{[j]![-n+\epsilon+j]^{2}} (1-q)^{n-\epsilon-j} \\ &+ \frac{(-1)^{n} q^{\frac{n(n+1)}{2}}}{[n]!} \int_{\epsilon}^{1} t^{\epsilon-1} \ln t d_{q} t. \end{split}$$

Note that the neutrix limit is unique and its precisely the same as the ordinary one, if it exists. Then taking neutrix limit of both sides, we obtain

$$\begin{split} N_{\epsilon \to 0} & \Gamma_q'(-n+\epsilon) &= \int_0^{1/1-q} t^{-n-1} \ln t \Big[E_q^{-qt} - \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]!} t^j - \frac{(-1)^n q^{\frac{n(n+1)}{2}}}{[n]!} t^n H(1-t) \Big] d_q t \\ &+ \ln q^{-1} (1-q)^{-1} \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]! [-n+j]} (1-q)^{n-j} + \frac{\ln q^{-1}}{q-1} \sum_{j=0}^{n-1} \frac{(-1)^j q^{\frac{j(j+1)}{2}}}{[j]! [-n+j]^2} (1-q)^{n-j} \\ &= \Gamma_q(-n). \end{split}$$

The case of $x = -n - \epsilon$ for $0 < \epsilon < 1$ can be proved similarly.

For any x > 0, we have

$$\Gamma_a(x+1) = [x]\Gamma_a(x). \tag{11}$$

It has been shown in [9] that equation (11) can be given for all real numbers by the neutrix limit such that

$$\Gamma_q(x+1) = \underset{\epsilon \to 0}{\text{N-lim}} [x+\epsilon] \Gamma_q(x+\epsilon).$$
(12)

Differentiating equation (11), we get

$$\Gamma'_{q}(x+1) = \frac{-q^{x} \ln q}{1-q} \Gamma_{q}(x) + [x]\Gamma'_{q}(x)$$
(13)

for $x \neq 0, -1, -2, \cdots$.

Now we give that, equation (13) can be extended for all real values of *x*.

Theorem 2.6. *For all x we have*

$$\Gamma'_q(x+1) = \operatorname{N-lim}_{\epsilon \to 0} \frac{q^{x+\epsilon} \ln q}{q-1} \Gamma_q(x+\epsilon) + [x+\epsilon] \Gamma'_q(x+\epsilon).$$

Proof. The result can easily be obtained because of the continuity of $\Gamma'_q(x)$ for $x \neq 0, -1, -2, ...$ Equation (8) also satisfies for all real values of x. By rewriting this equation for n = 1, 2, ... and $0 < \epsilon < 1$ as

$$\Gamma'_q(-n+\epsilon+1) = [-n]\Gamma'_q(-n+\epsilon) - \frac{\ln q^{-1}}{q-1}\Gamma_q(-n+\epsilon) - \ln q^{-1}\Gamma_q(-n+\epsilon+1)$$

then we get from taking the neutrix limit of both sides that

$$\operatorname{N-lim}_{\epsilon \to 0} \Gamma'_q(-n+\epsilon+1) = \operatorname{N-lim}_{\epsilon \to 0} [-n+\epsilon] \Gamma'_q(-n+\epsilon) - \frac{\ln q^{-1}}{q-1} \Gamma_q(-n+\epsilon) - \ln q^{-1} \Gamma_q(-n+\epsilon+1).$$

Hence with the previous theorem and equation (2) we have

$$= \operatorname{N}_{\epsilon \to 0}^{-\lim[-n+\epsilon]} \Gamma'_{q}(-n+\epsilon) + \frac{\ln q}{q-1} \operatorname{N}_{\epsilon \to 0}^{-\lim} \Gamma_{q}(-n+\epsilon) + \ln q \operatorname{N}_{\epsilon \to 0}^{-\lim[-n+\epsilon]} \Gamma_{q}(-n+\epsilon)$$

$$= \operatorname{N}_{\epsilon \to 0}^{-\lim[-n+\epsilon]} [-n+\epsilon] \Gamma'_{q}(-n+\epsilon) + \frac{\ln q}{q-1} \operatorname{N}_{\epsilon \to 0}^{-\lim} [1+(q-1)[-n+\epsilon]] \Gamma_{q}(-n+\epsilon)$$

$$= \operatorname{N}_{\epsilon \to 0}^{-\lim[-n+\epsilon]} [-n+\epsilon] \Gamma'_{q}(-n+\epsilon) + \frac{\ln q}{q-1} \operatorname{N}_{\epsilon \to 0}^{-\lim} [1+q^{-n+\epsilon}-1] \Gamma_{q}(-n+\epsilon)$$

$$= \operatorname{N}_{\epsilon \to 0}^{-\lim[-n+\epsilon]} \frac{-q^{-n+\epsilon} \ln q}{1-q} \Gamma_{q}(-n+\epsilon) + [-n+\epsilon] \Gamma'_{q}(-n+\epsilon)$$

2952

as desired.

The $\psi_q(x)$ function is defined by

$$\psi_q(x) = \left(\ln\Gamma_q(x)\right)' = \frac{\Gamma'_q(x)}{\Gamma_q(x)}$$

for $n \neq 0, -1, -2, ...$ By the previous results, it gives the idea that we define the *q*-digamma function $\psi_q(-n)$ by

$$\psi_q(-n) = \operatorname{N-lim}_{\epsilon \to 0} \frac{\Gamma'_q(-n+\epsilon)}{\Gamma_q(-n+\epsilon)}$$

for n = 0, -1, -2, ..., provided the neutrix limit exists. Now we will show the existence of the function $\psi_q(-n)$ for n = 0, 1, 2, ...

Theorem 2.7. For n = 0, 1, 2, ...

$$\psi_q(-n) = \psi_q(1) + \frac{\ln q}{q-1}\varphi_q(n).$$

Proof. If we take $0 < |\epsilon| < 1$ and use equation (11) and (13), we get

$$\begin{split} \frac{\Gamma_q'(\epsilon)}{\Gamma_q(\epsilon)} &= \frac{\Gamma_q'(\epsilon+1) + \frac{q^\epsilon \ln q}{1-q} \Gamma_q(\epsilon)}{[\epsilon] \Gamma_q(\epsilon)} \\ &= \frac{\Gamma_q'(\epsilon+1)}{\Gamma_q(\epsilon+1)} + \frac{q^\epsilon \ln q}{(1-q)[\epsilon]}. \end{split}$$

Now taking neutrix limit of both sides, it follows that

$$\begin{split} & \underset{\varepsilon \to 0}{\text{N-lim}} \frac{\Gamma'_q(\epsilon)}{\Gamma_q(\epsilon)} &= & \underset{\varepsilon \to 0}{\text{N-lim}} \frac{\Gamma'_q(\epsilon+1)}{\Gamma_q(\epsilon+1)} + \frac{q^{\epsilon} \ln q}{(1-q)[\epsilon]} \\ &= & \frac{\Gamma'_q(1)}{\Gamma_q(1)} = \psi_q(1). \end{split}$$

providing that $\psi_q(0)$ exists and $\psi_q(0) = \psi_q(1)$. For the case of n = 1, 2, ..., assuming the existence of $\psi_q(-n+1)$, we have

$$\frac{\Gamma_q'(-n+\epsilon)}{\Gamma_q(-n+\epsilon)} = \frac{\Gamma_q'(-n+\epsilon+1) + \frac{q^{-n+\epsilon}\ln q}{1-q}\Gamma_q(-n+\epsilon)}{[-n+\epsilon]\Gamma_q(-n+\epsilon)} = \frac{\Gamma_q'(-n+\epsilon+1)}{\Gamma_q(-n+\epsilon+1)} + \frac{q^{-n+\epsilon}\ln q}{(1-q)[-n+\epsilon]}$$

Then we get

$$\begin{split} \mathrm{N-}&\lim_{\epsilon \to 0} \frac{\Gamma'_q(-n+\epsilon)}{\Gamma_q(-n+\epsilon)} &= \mathrm{N-}&\lim_{\epsilon \to 0} \frac{\Gamma'_q(-n+\epsilon+1)}{\Gamma_q(-n+\epsilon+1)} + \frac{q^{-n+\epsilon}\ln q}{(q-1)[-n+\epsilon]} \\ \psi_q(-n) &= \psi_q(-n+1) + \frac{\ln q}{(1-q)[n]}. \end{split}$$

By induction, it follows that

$$\psi_q(-n) = \psi_q(1) + \frac{\ln q}{q-1}\varphi_q(n)$$

for n = 1, 2, ... Hence the proof is completed.

Note that all results that we obtain in this paper, tends to the results in [4] and [5] as $q \rightarrow 1$.

Acknowledgment

We would like to thank the referee for careful review and helpful comments, which improve the presentation of the paper.

References

- [1] V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
- [2] G. Gasper, M. Rahman, Basic Hypergeomtric Series, Encyclopedia of Mathematics and its application, Vol. 35, Cambridge Univ. Press, Cambridge, UK, (1990).
- [3] J. G. Corput, Introduction to the neutrix calculus, J. d'Analyse Math., 7 (1959), 291-398.
- [4] B. Fisher, Y. Kuribayashi, Neutrices and the gamma function, The Journal of Faculty of Education Tottori University, 36 (1987), 1-22.
- [5] B. Fisher, Y. Kuribayashi, Some results on the gamma function, The Journal of Faculty of Education Tottori University 37:2 (1988).
- [6] A. Salem, The neutrix limit of the *q*-Gamma function and its derivatives, Applied Mathemaics Letters, 25, (2012), 363-368.
 [7] Tom H. Koornwinder, *q*-Special functions: a tutorial, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics, M. Gerstenhaber and J. Stasheff (Eds.), Contemp. Math., 134 (1992), Amer. Math. Soc.
- [8] A. De Sole, V. Kac, On integral representations of *q*-gamma and *q*-beta functions. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 16.9, (2005), 11-29.
- [9] İ. Ege, E. Yıldırım, Some generalized equalities for the q-gamma function, Filomat, 26.6 (2012), 1227-1232.
- [10] T. Mansour, Identities on harmonic and q-harmonic number sums, Afrika Mathematica 23 (2012), 135-143.
- [11] B. Fisher, A. Kılıçman, Some results on the gamma function for negative integers, Appl. Math. Inform. Sci. 6(2), (2012), 173-176.