Filomat 30:11 (2016), 2955–2963 DOI 10.2298/FIL1611955D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Trees with Smaller Harmonic Indices

Hanyuan Deng^a, S. Balachandran^b, Y.B. Venkatakrishnan^b, S. Raja Balachandar^b

^a College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China ^b Department of Mathematics, School of Humanities and Sciences, SASTRA University, Thanjavur, India

Abstract. The harmonic index H(G) of a graph G is defined as the sum of the weights $\frac{2}{d_u+d_v}$ of all edges uv of G, where d_u denotes the degree of a vertex u in G. In this paper, we determine (i) the trees of order n and m pendant vertices with the second smallest harmonic index, (ii) the trees of order n and diameter r with the smallest and the second smallest harmonic indices, and (iii) the trees of order n with the second, the third and the fourth smallest harmonic index, respectively.

1. Introduction

In this work, we consider the harmonic index. For a simple graph (or a molecular graph) G = (V, E), the harmonic index H(G) is defined in [7] as $H(G) = \sum_{uv \in E(G)} \frac{2}{d_u + d_v}$, where d_u denotes the degree of a vertex u in G.

For a graph *G* and $u \in V(G)$, we denote $N_G(u)$ the set of all neighbors of *u* in *G* and by n(G) the number of vertices of *G*. We denote respectively by S_n and P_n the star and the path with *n* vertices. By $P_{n,m}$, we denote the graph obtained from S_{n+1} and P_m by identifying the center of S_{n+1} with a vertex of degree 1 of P_m . By $S_{n,m}$, we denote the graph obtained from S_{n+2} and S_{m+1} by identifying a vertex of degree 1 of S_{n+2} with the center of S_{m+1} . We denote by D(G) the diameter of *G*, which is defined as $D(G) = max \{d(u, v) : u, v \in V(G)\}$ where d(u, v) denotes the distance between the vertices *u* and *v* in *G*. We denote by $\mathcal{T}(n, r)$ the set of all trees *T* with *n* vertices and D(T) = r.

In [8], the authors considered the relation between the harmonic index and the eigenvalues of graphs. Zhong in [17] presented the minimum and maximum values of harmonic index on simple connected graphs and trees, and characterized the corresponding extremal graphs. Deng et al. in [2] considered the relation relating the harmonic index H(G) and the chromatic number $\chi(G)$ and proved that $\chi(G) \leq 2H(G)$ by using the effect of removal of a minimum degree vertex on the harmonic index. It strengthens a result relating the Randić index and the chromatic number conjectured by the system AutoGraphiX and proved by Hansen et al. in [9]. Deng et al. [15] gave a best possible lower bound for the harmonic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterize the extremal graphs. Deng et al. [3] considered the harmonic index H(G) and the radius r(G) and strengthened some results relating the Randić index and the radius in [1] [13] [16]. Deng et al. [4] obtained the following result on the tree of order n with m pendant vertices and with the smallest harmonic index.

Email addresses: hydeng@hunnu.edu.cn (Hanyuan Deng), bala@maths.sastra.edu (S. Balachandran), venkatakrish2@maths.sastra.edu (Y.B. Venkatakrishnan), srbala09@gmail.com (S. Raja Balachandar)

²⁰¹⁰ Mathematics Subject Classification. Primary 05C07; Secondary 05C90

Keywords. Harmonic index, Randić index, tree, pendant vertex, diameter.

Received: 08 July 2014; Accepted: 22 February 2015

Communicated by Francesco Belardo

Theorem 1.1. [4] Let T be a tree of order $n \ge 3$, with m (1 < m < n - 1) pendant vertices. Then

$$H(T) \ge \frac{2(m-1)}{m+1} + \frac{2}{m+2} + \frac{2(n-m-2)}{4} + \frac{2}{3}$$

with equality if and only if T is the comet $T_{n,m}$, where $T_{n,m} \cong P_{m-1,n-m+1}$.

Other related results see [5, 6, 11, 12, 14, 18, 19]. In [10], Li and Zhao determined the trees of order n with m pendant vertices and the second smallest Randić index, the trees of order n with diameter r and the first and the second smallest Randić indices, and the trees of order n with, respectively, the second, the third and the fourth smallest Randić index. Here, we determine all trees of order n with m pendant vertices and the second smallest harmonic index, all trees of order n with diameter r and the first and the first and the trees of order n with diameter r and the second smallest harmonic index, all trees of order n with diameter r and the first and the second smallest harmonic index.

2. Main Results

In this section, we first give some basic lemmas, and then determine (i) the trees of order n with m pendant vertices and the second smallest harmonic index, (ii) the trees of order n with diameter r and the the smallest and the second smallest harmonic indices, and (iii) the trees of order n with, respectively, the second, the third and the fourth smallest harmonic index.

Lemma 2.1. Let *T* be a tree with a vertex *u* such that $d_T(u) = k$. Suppose that $N_T(u) = \{1, 2, 3, \dots, k\}$ and $v \notin V(T)$. Then

$$H(T + uv) - H(T) = \frac{2}{k+2} - 2\sum_{i \in N_T(u)} \frac{1}{[k+1 + d_T(i)][k+d_T(i)]}$$

Proof. Suppose that $Q = \{ui : i \in N_T(u)\}$ and $\Omega = \sum_{xy \in E(T)-Q} \frac{2}{d_T(x) + d_T(y)}$. Then we have

$$H\left(T\right) = \sum_{xy \in E(T)} \frac{2}{d_{T}\left(x\right) + d_{T}\left(y\right)} = \Omega + \sum_{i \in N_{T}\left(u\right)} \frac{2}{k + d_{T}\left(i\right)}$$

and

$$H(T + uv) = \sum_{xy \in E(T+uv)} \frac{2}{d_{T+uv}(x) + d_{T+uv}(y)}$$

= $\Omega + \sum_{i \in N_T(u)} \frac{2}{k+1+d_T(i)} + \frac{2}{k+2}$
 $H(T + uv) - H(T) = \frac{2}{k+2} + \sum_{i \in N_T(u)} \left[\frac{2}{k+1+d_T(i)} - \frac{2}{k+d_T(i)}\right]$
 $= \frac{2}{k+2} - 2\sum_{i \in N_T(u)} \frac{1}{[k+1+d_T(i)][k+d_T(i)]]}$

Let *u* be a vertex of *T* with $d_T(u) = k$. One can see that there is a vertex $w \in N_T(u)$ such that $d_T(w) \ge 2$ except if *u* is the center of a star. So, we have

$$-2\sum_{i\in N_{T}(u)}\frac{1}{\left[k+1+d_{T}(i)\right]\left[k+d_{T}(i)\right]} \ge \frac{-2\left(k-1\right)}{\left(k+1\right)\left(k+2\right)} - \frac{2}{\left(k+2\right)\left(k+3\right)}$$
(1)

Denote Q_{n_1,n_2} and P_{n_1,n_2,n_3} be the two graphs shown in Figure 1 and Figure 2, where *G* is a connected graph. Specially, $P_{m-1,n-m+1} = P_{m-1,n-m+1,0} = P_{m-1,n-m,1}$.

П

Figure 2: Graph P_{n_1,n_2,n_3}

Lemma 2.2. Let $n_1 \ge n_3 + 2$. Then $H(P_{n_1,n_2,n_3}) < H(P_{n_1-1,n_2,n_3+1})$.

Proof. If $n_2 \ge 3$, then

$$\begin{aligned} H(P_{n_1-1,n_2,n_3+1}) &- H(P_{n_1,n_2,n_3}) \\ &= \frac{2(n_1-1)}{n_1+1} + \frac{2}{n_1+2} + \frac{2}{n_3+4} + \frac{2(n_3+1)}{n_3+3} - \frac{2n_1}{n_1+2} - \frac{2}{n_1+3} - \frac{2}{n_3+3} - \frac{2n_3}{n_3+2} \\ &= \frac{2(n_1-n_3-1)(84+42n_1+6n_1^2+40n_3+13n_1n_3+n_1^2n_3+5n_3^2+n_1n_3^2)}{(n_1+1)(n_1+2)(n_1+3)(n_3+2)(n_3+3)(n_3+4)} \end{aligned}$$

If $n_2 = 2$, then

$$H(P_{n_1-1,n_2,n_3+1}) - H(P_{n_1,n_2,n_3})$$

$$= \frac{2(n_1-1)}{n_1+1} + \frac{2}{n_1+n_3+2} + \frac{2(n_3+1)}{n_3+3} - \frac{2n_1}{n_1+2} - \frac{2}{n_1+n_3+2} - \frac{2n_3}{n_3+2}$$

$$= \frac{4(n_1-n_3-1)(n_1+n_3+4)}{(n_1+1)(n_1+2)(n_3+2)(n_3+3)}$$

Since $n_1 \ge n_3 + 2$, $H(P_{n_1,n_2,n_3}) < H(P_{n_1-1,n_2,n_3+1})$.

Lemma 2.3. Let $n_1 \ge n_2 \ge 2$ and G be a tree. If Q_{n_1,n_2} has n vertices and m pendant vertices, then $H(Q_{n_1,n_2}) \ge H(P_{m-2,n-m,2})$

Proof. By induction on *m*. Clearly, $m \ge n_1 + n_2 \ge 4$. When m = 4, $Q_{n_1,n_2} \cong P_{2,n-4,2}$. So, the lemma is true for m = 4 and all $n \ge m + 2$. Suppose that $m \ge 5$ and the lemma holds for every Q_{s_1,s_2} of order *n* with m - 1 pendant vertices, where $s_1 \ge s_2 \ge 2$. Now, let Q_{n_1,n_2} have *n* vertices and *m* pendant vertices, where $n_1 \ge n_2 \ge 2$. We distinguish the following cases:

Case 1. $n_2 = 2$. Let $T' = Q_{n_1,1}$. By Lemma 2.1, we have

$$\begin{split} H\left(Q_{n_{1},n_{2}}\right) &= H\left(T'\right) + \frac{1}{2} - \frac{2}{\left(2+1+1\right)\left(2+1\right)} - \frac{2}{\left(2+1+d_{T'}\left(v_{2}\right)\right)\left(2+d_{T'}\left(v_{2}\right)\right)} \\ H\left(Q_{n_{1},n_{2}}\right) &= H\left(T'\right) + \frac{1}{2} - \frac{1}{6} - \frac{2}{\left(3+d_{T'}\left(v_{2}\right)\right)\left(2+d_{T'}\left(v_{2}\right)\right)} \end{split}$$

and

$$H(P_{m-2,n-m,2}) = H(P_{m-2,n-m+1}) + \frac{1}{2} - \frac{1}{6} - \frac{1}{10}$$

Note that T' has n - 1 vertices and m - 1 pendant vertices. From Theorem 1.1, we have that $H(T') \ge H(P_{m-2,n-m+1})$ and the equality holds if and only if $T' \cong P_{m-2,n-m+1}$. So, we have that $H(Q_{n_1,n_2}) \ge H(P_{m-2,n-m,2})$ and the equality holds if and only if $Q_{n_1,n_2} \cong P_{m-2,n-m,2}$.

Case 2. $n_2 \ge 3$.

Let $T' = Q_{n_1, n_2-1}$. By Lemma 2.1, we have

$$H(Q_{n_1,n_2}) = H(T') + \frac{2}{n_2 + 2} - \frac{2(n_2 - 1)}{(n_2 + 1)(n_2 + 2)} - \frac{2}{(n_2 + 1 + d_{T'}(v_2))(n_2 + d_{T'}(v_2))}$$
(2)

$$H(P_{m-2,n-m,2}) = H(P_{m-3,n-m,2}) + \frac{2}{m} - \frac{2(m-3)}{m(m-1)} - \frac{2}{m(m+1)}$$
(3)

Since $T' = Q_{n_1,n_2-1}$ and T' has m - 1 pendant vertices, by the induction hypothesis, $H(P_{m-3,n-m,2}) \le H(T')$. Note that $n_1 \le m - n_2 \le m - 3$ and Q_{n_1,n_2} is not a star. Thus, we have $H(Q_{n_1,n_2}) > H(P_{m-2,n-m,2})$ from (2) and (3).

Let $v_1v_2v_3\cdots v_k$ be a path P_k and $T_{k,v_i,m}$ be a graph shown in Figure 3, where $k \ge 5$ and $m \ge 1$.

Figure 3: Graph $T_{k,v_i,m}$

Lemma 2.4. If $r \ge 4$ and $n \ge r + 3$, then $H(P_{n-r-1,r-1,2}) \ge H(T_{r+1,v_3,n-r-1})$.

Proof. By the definition of harmonic index, we have

$$H(P_{n-r-1,r-1,2}) = \frac{2(n-r-1)}{n-r+1} + \frac{r-4}{2} + \frac{2}{n-r+2} + \frac{7}{5}$$

and

$$H(T_{r+1,v_3,n-r-1}) = \frac{2(n-r-1)}{n-r+2} + \frac{4}{n-r+3} + \frac{r-4}{2} + \frac{4}{3}.$$

Let x = n - r. Obviously, *x* is an integer and $x \ge 3$. So, we get that

$$H(P_{n-r-1,r-1,2}) - H(T_{r+1,\nu_3,n-r-1}) = \phi(x),$$
(4)

2958

where

$$\begin{split} \phi\left(x\right) &= \left(\frac{2\left(x-1\right)}{x+1} + \frac{r-4}{2} + \frac{2}{x+2} + \frac{7}{5}\right) - \left(\frac{2\left(x-1\right)}{x+2} + \frac{4}{x+3} + \frac{r-4}{2} + \frac{4}{3}\right) \\ &= \frac{\left(x-3\right)\left(x^2+9x+38\right)}{15(x+1)(x+2)(x+3)} \end{split}$$

And $\phi(x) = 0$ for x = 3 and $\phi(x) > 0$ for $x \ge 4$. So, $H(P_{n-r-1,r-1,2}) \ge H(T_{r+1,v_3,n-r-1})$.

Let $\mathcal{T}(n, r)$ be the set of trees with *n* vertices and diameter *r*.

Lemma 2.5. If $T \in \mathcal{T}(n, 4) - \{P_{n-4,4}\}$, then $H(T) \ge \frac{2(n-5)}{n-2} + \frac{4}{n-1} + \frac{4}{3}$ and the equality holds if and only if $T \cong T_{5,v_3,n-5}$.

Proof. By induction on *n*. When n = 6, $T \cong T(5, v_3, n - 5)$. So, the lemma is true for n = 6.

Suppose that the lemma is true for n - 1, where $n \ge 7$. Clearly, *T* has at most n - 3 pendant vertices if $T \in \mathcal{T}(n, 4) - \{P_{n-4,4}\}$. We have the following cases:

Case 1. There is a path $u_1u_2u_3u_4u_5$ in *T* such that $d(u_2) \ge 3$ and $d(u_4) \ge 3$. By Lemma 2.3 and Lemma 2.4, $H(T) \ge H(P_{n-5,3,2}) \ge H(T_{5,v_3,n-5})$.

Case 2. For each path $u_1u_2u_3u_4u_5$ in *T*, we must have $d(u_2) = 2$ or $d(u_4) = 2$. Recalling that the diameter D(T) = 4, one can see that *T* must be the graph $U_k(n_1, t)$ shown in Figure 4, where $k \ge 0$, $n_1 \ge 1$, $t \ge 2$ and $n_1 + 2t + k = n$.

Figure 4: Graph $U_k(n_1, t)$

By Lemma 2.1, we have that

$$H(T_{5,v_{3},n-5}) = H(T_{5,v_{3},n-6}) + \frac{2}{n-2} - \frac{2(n-6)}{(n-2)(n-3)} - \frac{4}{(n-1)(n-2)}$$
$$= H(T_{5,v_{3},n-6}) + \frac{2}{n-2} [1 - \frac{n-6}{n-3} - \frac{2}{n-1}]$$
$$= H(T_{5,v_{3},n-6}) + \frac{2(n+3)}{(n-1)(n-2)(n-3)}$$
(5)

Subcase 2.1. $k \ge 1$ in $U_k(n_1, t)$.

2959

By Lemma 2.1, we have

$$H(U_{k}(n_{1},t)) = \frac{2}{k+t+1} - \frac{2(k-1)}{(k+t)(k+t+1)} + \frac{2}{n_{1}+1+t+k} - \frac{2}{n_{1}+1+t+k} - \frac{2}{n_{1}+t+k} - \frac{2(t-1)}{(k+t+1)(k+t+2)}$$

$$\geq H(U_{k-1}(n_{1},t)) + \frac{2}{k+t+1} - \frac{2(k-1)}{(k+t)(k+t+1)} - \frac{2t}{(k+t+1)(k+t+2)}$$

$$= H(U_{k-1}(n_{1},t)) + \frac{2}{k+t+1} [1 - \frac{k-1}{k+t} - \frac{t}{k+t+2}]$$

$$= H(U_{k-1}(n_{1},t)) + \frac{2(k+3t+2)}{(k+t)(k+t+1)(k+t+2)}$$

Since $k \ge 0$, $n_1 \ge 1$, $t \ge 2$ and $n_1 + 2t + k = n$, we have $k + 3t + 2 \ge k + t + 6$ and

$$\frac{2(k+3t+2)}{(k+t)(k+t+1)(k+t+2)} \ge \frac{2(k+t+6)}{(k+t)(k+t+1)(k+t+2)} = \frac{2(x+6)}{x(x+1)(x+2)}$$

where x = k + t and $2 \le x = n - t - n_1 \le n - 3$. Note that $f(x) = \frac{2(x+6)}{x(x+1)(x+2)}$ is a decreasing function for $2 \le x \le n - 3$, $f(x) \ge f(n-3) = \frac{2(n+3)}{(n-1)(n-2)(n-3)}$. So,

$$H(U_k(n_1,t)) \ge H(U_{k-1}(n_1,t)) + \frac{2(n+3)}{(n-1)(n-2)(n-3)}$$
(6)

the equality holds if and only if $n_1 = 1$ and t = 2. By the induction hypothesis, $H(U_{k-1}(n_1, t)) \ge H(T_{5,v_3,n-6})$ with the equality if and only if $U_{k-1}(n_1, t) \cong T_{5,v_3,n-6}$. From (5) and (6), we have $H(U_k(n_1, t)) \ge H(T_{5,v_3,n-5})$ and the equality if and only if $U_k(n_1, t) \cong T_{5,v_3,n-5}$.

Subcase 2.2. k = 0 and $t \ge 3$ in $U_k(n_1, t)$.

By Lemma 2.1, we have that

$$H(U_0(n_1,t)) = H(U_1(n_1,t-1)) + \frac{2}{3} - \frac{2}{(t+1)(t+2)}$$

and

$$H(U_1(n_1+1,t-1)) = H(U_1(n_1,t-1)) + \frac{2}{n_1+3} - \frac{2n_1}{(n_1+2)(n_1+3)} - \frac{2}{(n_1+t+1)(n_1+t+2)}$$

Clearly, $n_1 + 3 > 3$. So $H(U_0(n_1, t)) > H(U_1(n_1 + 1, t - 1))$. From the subcase 2.1, we have $H(U_0(n_1, t)) > H(U_1(n_1 + 1, t - 1)) \ge H(T_{5,v_3,n-5})$.

Subcase 2.3. k = 0 and t = 2 in $U_k(n_1, t)$. Then $U_0(n_1, 2) \cong P_{n-4,4}$, which contradicts to the condition $T \in \mathcal{T}(n, 4) - \{P_{n-4,4}\}$.

By calculation, we have

$$H(T_{5,v_{3},n-5}) = \frac{2(n-5)}{n-2} + \frac{4}{n-1} + \frac{4}{3}$$

This completes the proof.

2.1. Trees with m pendant vertices and the second smallest harmonic indices

Let *T* be a tree of order $n \ge 3$ with *m* pendant vertices. Obviously, $m \le n - 1$ and the equality holds if and only if $T = S_n$. When m = n - 2, one can see that $T \in \{S_{n_1,n_2} : n_1 + n_2 = n - 2, n_1 \ge n_2\}$. By Lemma 2.2, we have $H(S_{n-3,1}) < H(S_{n-4,2}) < H(S_{n-t,t-2})$ for $5 \le t \le \frac{n}{2} + 1$. So, $S_{n-4,2}$ has the second smallest harmonic index among all trees of order *n* with n - 2 pendant vertices.

For m < n - 2, we have

Theorem 2.6. Let T be a tree of order $n \ge 3$ with m pendant vertices. If $3 \le m \le n - 3$ and $T \not\cong P_{m-1,n-m+1}$, then

$$H(T) \ge \frac{2(m-2)}{m+1} + \frac{n-m-3}{2} + \frac{4}{m+2} + \frac{4}{3}$$

and the equality holds if and only if $T \in \{T_{n-m+2,v_i,m-2} : 3 \le i \le n-m\}$.

Proof. Let *T* be a tree of order $n \ge 3$ with *m* pendant vertices, $3 \le m \le n-3$. By calculation, it is not difficult to obtain that for $3 \le i \le n-m$,

$$H(T_{n-m+2,v_3,m-2}) = H(T_{n-m+2,v_i,m-2}) = \frac{2(n-m-3)}{4} + \frac{2(m-2)}{m+1} + \frac{4}{m+2} + \frac{4}{3}$$

So, we only need to prove that $H(T) \ge H(T_{n-m+2,v_3,m-2})$ by induction on *n*. One can see that the diameter D(T) = 4 if n = m + 3. By Lemma 2.5, the theorem holds for n = m + 3.

Suppose that $n \ge m + 4$ and the theorem is true for all trees of order n - 1 with m pendant vertices. Now, let T be a tree of order n with m pendant vertices, we consider the following cases:

Case 1. *T* is a tree of form Q_{n_1,n_2} with $n_1 \ge n_2 \ge 2$. Then, from Lemma 2.3 and Lemma 2.4, it follows that $H(T) \ge H(P_{m-2,n-m,2}) > H(T_{n-m+2,v_3,m-2})$.

Case 2. There is a path $u_1u_2u_3$ in *T* such that $d(u_1) = 1$, $d(u_2) = 2$ and $d(u_3) \ge 2$. Let $T' = T - u_1$. By Lemma 2.1, we have that

$$H(T) = H(T') + \frac{2}{3} - \frac{2}{(1+d(u_3))(2+d(u_3))}$$
(7)

and

$$H(T_{n-m+2,v_3,m-2}) = H(T_{n-m+1,v_3,m-2}) + \frac{1}{2}$$
(8)

Clearly, T' has n - 1 vertices and m pendant vertices. Since $T \not\cong P_{m-1,n-m+1}$, we have $T \cong T_{n-m+2,v_3,m-2}$ if $T' \cong P_{m-1,n-m}$. For $T' \not\cong P_{m-1,n-m}$, by the induction hypothesis, we have $H(T') > H(T_{n-m+1,v_3,m-2})$. From (7) and (8), $H(T) \ge H(T_{n-m+2,v_3,m-2})$ and the equality holds if and only if $T' \in \{T_{n-m+1,v_i,m-2} : 3 \le i \le n-m-1\}$ and $d(u_3) = 2$, i.e., the equality holds if and only if $T \in \{T_{n-m+2,v_i,m-2} : 3 \le i \le n-m\}$.

2.2. Trees with the diameter r and the first two smallest harmonic indices

In the following, using Theorem 1.1 and Theorem 2.6, we find the smallest value of the harmonic index of trees in $\mathcal{T}(n, r)$ and determine the corresponding trees, where $\mathcal{T}(n, r)$ is the set of trees with *n* vertices and diameter *r*.

Let $T \in \mathcal{T}(n, r)$ and $r \ge 3$. Then, there is a path $u_1u_2\cdots u_{r+1}$ in T such that $d(u_1) = d(u_{r+1}) = 1$ and $d(u_i) \ge 2$ for all $2 \le i \le r$. So, T has at most n - r + 1 pendant vertices. By Theorem 1.1, it is not difficult to see that $H(T) \ge H(P_{m-1,n-m+1})$ if T has m pendant vertices. By Lemma 2.2, for $m \ge 3$ we have $H(P_{m-2,n-m+1,1}) > H(P_{m-1,n-m+1,0})$, that is,

$$H(P_{m-2,n-m+2}) > H(P_{m-1,n-m+1}).$$
(9)

Thus, we have $H(T) \ge H(P_{n-r,r})$ and the equality if and only if $T \cong P_{n-r,r}$, i.e., $P_{n-r,r}$ is the tree with the smallest harmonic index in $\mathcal{T}(n, r)$.

For r = 3, $P_{n-3,3} = S_{n-3,1}$ is the tree with the smallest harmonic index in $\mathcal{T}(n,3)$, and by Lemma 2.2, we have that $S_{n-4,2}$ is the tree with the second smallest harmonic index in $\mathcal{T}(n,3)$.

For $r \ge 4$, if $T \in \mathcal{T}(n, r)$ and $T \not\cong P_{n-r,r}$, let *m* be the number of pendant vertices in *T*, then by Theorem 2.6 and (9), $H(T) \ge H(T_{r+1,v_3,n-r-1})$ for m = n - r + 1, and $H(T) \ge H(P_{m-1,n-m+1}) \ge H(P_{n-r-1,r+1})$ for $m \le n - r$. By calculation, we have

$$H(T_{r+1,v_3,n-r-1}) = \frac{2(n-r-1)}{n-r+2} + \frac{4}{n-r+3} + \frac{r-4}{2} + \frac{4}{3}.$$
(10)

and

$$H(P_{n-r-1,r+1}) = \frac{2(n-r-1)}{n-r+1} + \frac{2}{n-r+2} + \frac{r-2}{2} + \frac{2}{3}.$$
(11)

Let x = n - r and $\psi(x) = H(P_{n-r-1,r+1}) - H(T_{r+1,v_3,n-r-1})$. From (10) and (11), we have

$$\begin{split} \psi\left(x\right) &= \frac{2\left(x-1\right)}{x+1} + \frac{2}{x+2} + \frac{r-2}{2} + \frac{2}{3} - \frac{2\left(x-1\right)}{x+2} - \frac{4}{x+3} - \frac{r-4}{2} - \frac{4}{3} \\ &= \frac{2\left(x-1\right)}{x+1} - \frac{2\left(x-1\right)}{x+2} + \frac{2}{x+2} - \frac{4}{x+3} + \frac{1}{3} \\ &= \frac{\left(x-1\right)\left(x^2+7x+18\right)}{3\left(x+1\right)\left(x+2\right)\left(x+3\right)} > 0 \end{split}$$

for $x \ge 2$. So, $T_{r+1,v_3,n-r-1}$ is the tree with the second smallest harmonic index in $\mathcal{T}(n, r)$ for $r \ge 4$.

Theorem 2.7. (*i*) For $T \in \mathcal{T}(n, r)$ and $r \ge 3$, we have

$$H(T) \ge \frac{2(n-r)}{n-r+2} + \frac{2}{n-r+3} + \frac{r-3}{2} + \frac{2}{3}$$

and the equality holds if and only if $T \cong P_{n-r,r}$. (*ii*) For $r \ge 4$ and $T \in \mathcal{T}(n, r) - \{P_{n-r,r}\}$, we have

$$H(T) \ge \frac{2(n-r-1)}{n-r+2} + \frac{4}{n-r+3} + \frac{r-4}{2} + \frac{4}{3}$$

and the equality holds if and only if $T \in \{T_{r+1,v_i,n-r-1} : 3 \le i \le r-1\}$.

2.3. Trees with small harmonic indices

In the following, we determine the unique tree of order *n* with, respectively, the second, the third and the fourth smallest harmonic index.

Let *T* be a tree of order *n*. For n = 2, 3, we have $T \cong S_n$, and we can easily check that

- (a) for n = 4, $H(P_4) > H(S_4)$;
- (b) for n = 5, $H(P_5) > H(S_{2,1}) > H(S_5)$;
- (c) for $n = 6, 7, H(T) > H(P_{n-4,4}) > H(S_{n-4,2}) > H(S_{n-3,1}) > H(S_n)$ if $T \notin \{P_{n-4,4}, S_{n-4,2}, S_{n-3,1}, S_n\}$. Now, we consider the case $n \ge 8$. By Lemma 2.2, we have

$$H(S_{n_1,n_2}) > H(S_{n_1+1,n_2-1}) \text{ for } n_1 \ge n_2 \ge 2$$
 (12)

By (9) and Theorem 2.7, we have

$$H(T) > H(P_{n-4,4}) \quad \text{if } T \in \mathcal{T}(n,r) - \{P_{n-4,4}\} \quad \text{and} \quad r \ge 4$$
 (13)

By calculation, we obtain the following:

(i)
$$H(S_{n-3,1}) = \frac{2(n-3)}{n-1} + \frac{2}{n} + \frac{2}{3}$$

(ii) $H(S_{n-4,2}) = \frac{2(n-4)}{n-2} + \frac{2}{n} + 1$

(iii) $H(S_{n-5,3}) = \frac{2(n-5)}{n-3} + \frac{2}{n} + \frac{6}{5}$ (iv) $H(P_{n-4,4}) = \frac{2(n-4)}{n-2} + \frac{2}{n-1} + \frac{7}{6}$. From (i) to (iv), $H(S_{n-5,3}) > H(S_{n-4,2}) > H(S_{n-3,1})$ and $H(P_{n-4,4}) > H(S_{n-4,2}) > H(S_{n-3,1})$ for $n \ge 8$. On the other hand, we have

$$H(S_{n-5,3}) - H(P_{n-4,4}) = \frac{n^4 - 6n^3 - 169n^2 + 414n - 360}{30n(n-1)(n-2)(n-3)}$$

By calculation, one obtains that $H(S_{n-5,3}) < H(P_{n-4,4})$ for $n = 8, 9, \dots, 15$ and $H(S_{n-5,3}) > H(P_{n-4,4})$ for $n \ge 16$. From above, we can get the following theorem.

Theorem 2.8. Let T be a tree of order $n \ge 6$ and $T \notin \{S_{n-4,2}, S_{n-3,1}, S_n\}$. Then

(*i*) $H(T) \ge H(S_{n-5,3}) > H(S_{n-4,2}) > H(S_{n-3,1}) > H(S_n)$ for $n = 8, 9, \dots, 15$ and the equality holds if and only if $T \cong S_{n-5,3}$.

(*ii*) $H(T) \ge H(P_{n-4,4}) > H(S_{n-4,2}) > H(S_{n-3,1}) > H(S_n)$ for n = 6,7 or $n \ge 16$ and the equality holds if and only if $T \cong P_{n-4,4}$.

Acknowledgement: The authors thank the anonymous referee for some valuable corrections and comments which improved the presentation of the work.

References

- G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 1: The Autographix system, Discrete Math. 212 (2000) 29-44.
- [2] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161(2013) 2740-2744.
- [3] H. Deng, Z. Tang, J. Zhang, On the harmonic index and the radius of a graph, Filomat 29 (6) (2015) 1369–1375.
- [4] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, Harmonic indices of trees, chemical trees with a given number of pendant vertices, submitted.
- [5] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, On harmonic indices of trees, unicyclic graphs and bicyclic graphs, accpted by Ars Combinatoria.
- [6] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, Sharp bounds of the harmonic index of a graph with given girth, submitted.
- [7] S. Fajtlowicz, On conjectures of Graffiti-II, Cong. Numer. 60 (1987) 187-197.
- [8] O. Favaron, M. Mahio, J.F. Saclé, Some eigenvalue properties in graphs (Conjectures of Graffiti-II), Discrete Math. 111 (1993) 197-220.
- [9] P. Hansen, D. Vukicević, Variable neighborhood search for extremal graphs. 23. On the Randić index and the chromatic number, Discrete Math. 309 (2009) 4228-4234.
- [10] X. Li, H. Zhao, Trees with small Randić connectivity indices, MATCH Commun. Math. Comput. Chem. 51 (2004) 167-178.
- [11] J. Li, W. C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44(5) (2014) 1607–1620.
- [12] J. Lv, J. Li, On the harmonic index and the matching number of a tree, Ars Combin. CXVI (2014) 407–416.
- [13] B. Liu, I. Gutman, On a conjecture in Randić indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 143-154.
- [14] Z. Tang, H. Deng, On the harmonic index and the girth of a graph, Utilitas Math. 91 (2013) 65–69.
- [15] R. Wu, Z. Tang, H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013) 51-55.
- [16] Z. You, B. Liu, On a conjecture of the Randić index, Discrete Appl. Math. 157 (2009) 1766-1772.
- [17] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.
- [18] L. Zhong, The harmonic index on unicyclic graphs, Ars Combinatoria, C IV (2012) 261-269.
- [19] L. Zhong, K. Xu, The harmonic index for bicyclic graphs, Utilitas Math. 90 (2013) 23-32.