Trees with Smaller Harmonic Indices

Hanyuan Denga, S. Balachandran ${ }^{\text {b }}$, Y.B. Venkatakrishnan ${ }^{\text {b }}$, S. Raja Balachandar ${ }^{\text {b }}$
${ }^{a}$ College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
${ }^{b}$ Department of Mathematics, School of Humanities and Sciences, SASTRA University, Thanjavur, India

Abstract

The harmonic index $H(G)$ of a graph G is defined as the sum of the weights $\frac{2}{d_{u}+d_{v}}$ of all edges $u v$ of G, where d_{u} denotes the degree of a vertex u in G. In this paper, we determine (i) the trees of order n and m pendant vertices with the second smallest harmonic index, (ii) the trees of order n and diameter r with the smallest and the second smallest harmonic indices, and (iii) the trees of order n with the second, the third and the fourth smallest harmonic index, respectively.

1. Introduction

In this work, we consider the harmonic index. For a simple graph (or a molecular graph) $G=(V, E)$, the harmonic index $H(G)$ is defined in [7] as $H(G)=\sum_{u v \in E(G)} \frac{2}{d_{u}+d_{v}}$, where d_{u} denotes the degree of a vertex u in G.

For a graph G and $u \in V(G)$, we denote $N_{G}(u)$ the set of all neighbors of u in G and by $n(G)$ the number of vertices of G. We denote respectively by S_{n} and P_{n} the star and the path with n vertices. By $P_{n, m}$, we denote the graph obtained from S_{n+1} and P_{m} by identifying the center of S_{n+1} with a vertex of degree 1 of P_{m}. By $S_{n, m}$, we denote the graph obtained from S_{n+2} and S_{m+1} by identifying a vertex of degree 1 of S_{n+2} with the center of S_{m+1}. We denote by $D(G)$ the diameter of G, which is defined as $D(G)=\max \{d(u, v): u, v \in V(G)\}$ where $d(u, v)$ denotes the distance between the vertices u and v in G. We denote by $\mathcal{T}(n, r)$ the set of all trees T with n vertices and $D(T)=r$.

In [8], the authors considered the relation between the harmonic index and the eigenvalues of graphs. Zhong in [17] presented the minimum and maximum values of harmonic index on simple connected graphs and trees, and characterized the corresponding extremal graphs. Deng et al. in [2] considered the relation relating the harmonic index $H(G)$ and the chromatic number $\chi(G)$ and proved that $\chi(G) \leq 2 H(G)$ by using the effect of removal of a minimum degree vertex on the harmonic index. It strengthens a result relating the Randić index and the chromatic number conjectured by the system AutoGraphiX and proved by Hansen et al. in [9]. Deng et al. [15] gave a best possible lower bound for the harmonic index of a graph (a triangle-free graph, respectively) with minimum degree at least two and characterize the extremal graphs. Deng et al. [3] considered the harmonic index $H(G)$ and the radius $r(G)$ and strengthened some results relating the Randić index and the radius in [1] [13] [16]. Deng et al. [4] obtained the following result on the tree of order n with m pendant vertices and with the smallest harmonic index.

[^0]Theorem 1.1. [4] Let T be a tree of order $n \geq 3$, with $m(1<m<n-1)$ pendant vertices. Then

$$
H(T) \geq \frac{2(m-1)}{m+1}+\frac{2}{m+2}+\frac{2(n-m-2)}{4}+\frac{2}{3}
$$

with equality if and only if T is the comet $T_{n, m}$, where $T_{n, m} \cong P_{m-1, n-m+1}$.
Other related results see $[5,6,11,12,14,18,19]$. In [10], Li and Zhao determined the trees of order n with m pendant vertices and the second smallest Randić index, the trees of order n with diameter r and the first and the second smallest Randić indices, and the trees of order n with, respectively, the second, the third and the fourth smallest Randić index. Here, we determine all trees of order n with m pendant vertices and the second smallest harmonic index, all trees of order n with diameter r and the first and the second smallest harmonic indices, and the trees of order n with, respectively, the second, the third and the fourth smallest harmonic index.

2. Main Results

In this section, we first give some basic lemmas, and then determine (i) the trees of order n with m pendant vertices and the second smallest harmonic index, (ii) the trees of order n with diameter r and the the smallest and the second smallest harmonic indices, and (iii) the trees of order n with, respectively, the second, the third and the fourth smallest harmonic index.

Lemma 2.1. Let T be a tree with a vertex u such that $d_{T}(u)=k$. Suppose that $N_{T}(u)=\{1,2,3, \cdots, k\}$ and $v \notin V(T)$. Then

$$
H(T+u v)-H(T)=\frac{2}{k+2}-2 \sum_{i \in N_{T}(u)} \frac{1}{\left[k+1+d_{T}(i)\right]\left[k+d_{T}(i)\right]}
$$

Proof. Suppose that $Q=\left\{u i: i \in N_{T}(u)\right\}$ and $\Omega=\sum_{x y \in E(T)-Q} \frac{2}{d_{T}(x)+d_{T}(y)}$. Then we have

$$
H(T)=\sum_{x y \in E(T)} \frac{2}{d_{T}(x)+d_{T}(y)}=\Omega+\sum_{i \in N_{T}(u)} \frac{2}{k+d_{T}(i)}
$$

and

$$
\begin{aligned}
H(T+u v) & =\sum_{x y \in E(T+u v)} \frac{2}{d_{T+u v}(x)+d_{T+u v}(y)} \\
& =\Omega+\sum_{i \in N_{T}(u)} \frac{2}{k+1+d_{T}(i)}+\frac{2}{k+2} \\
H(T+u v)-H(T) & =\frac{2}{k+2}+\sum_{i \in N_{T}(u)}\left[\frac{2}{k+1+d_{T}(i)}-\frac{2}{k+d_{T}(i)}\right] \\
& =\frac{2}{k+2}-2 \sum_{i \in N_{T}(u)} \frac{1}{\left[k+1+d_{T}(i)\right]\left[k+d_{T}(i)\right]}
\end{aligned}
$$

Let u be a vertex of T with $d_{T}(u)=k$. One can see that there is a vertex $w \in N_{T}(u)$ such that $d_{T}(w) \geq 2$ except if u is the center of a star. So, we have

$$
\begin{equation*}
-2 \sum_{i \in N_{T}(u)} \frac{1}{\left[k+1+d_{T}(i)\right]\left[k+d_{T}(i)\right]} \geq \frac{-2(k-1)}{(k+1)(k+2)}-\frac{2}{(k+2)(k+3)} \tag{1}
\end{equation*}
$$

Denote $Q_{n_{1}, n_{2}}$ and $P_{n_{1}, n_{2}, n_{3}}$ be the two graphs shown in Figure 1 and Figure 2, where G is a connected graph. Specially, $P_{m-1, n-m+1}=P_{m-1, n-m+1,0}=P_{m-1, n-m, 1}$.

Figure 1: Graph $Q_{n_{1}, n_{2}}$

Figure 2: Graph $P_{n_{1}, n_{2}, n_{3}}$

Lemma 2.2. Let $n_{1} \geq n_{3}+2$. Then $H\left(P_{n_{1}, n_{2}, n_{3}}\right)<H\left(P_{n_{1}-1, n_{2}, n_{3}+1}\right)$.
Proof. If $n_{2} \geq 3$, then

$$
\begin{aligned}
& H\left(P_{n_{1}-1, n_{2}, n_{3}+1}\right)-H\left(P_{n_{1}, n_{2}, n_{3}}\right) \\
& =\frac{2\left(n_{1}-1\right)}{n_{1}+1}+\frac{2}{n_{1}+2}+\frac{2}{n_{3}+4}+\frac{2\left(n_{3}+1\right)}{n_{3}+3}-\frac{2 n_{1}}{n_{1}+2}-\frac{2}{n_{1}+3}-\frac{2}{n_{3}+3}-\frac{2 n_{3}}{n_{3}+2} \\
& =\frac{2\left(n_{1}-n_{3}-1\right)\left(84+42 n_{1}+6 n_{1}^{2}+40 n_{3}+13 n_{1} n_{3}+n_{1}^{2} n_{3}+5 n_{3}^{2}+n_{1} n_{3}^{2}\right)}{\left(n_{1}+1\right)\left(n_{1}+2\right)\left(n_{1}+3\right)\left(n_{3}+2\right)\left(n_{3}+3\right)\left(n_{3}+4\right)}
\end{aligned}
$$

If $n_{2}=2$, then

$$
\begin{aligned}
& H\left(P_{n_{1}-1, n_{2}, n_{3}+1}\right)-H\left(P_{n_{1}, n_{2}, n_{3}}\right) \\
& =\frac{2\left(n_{1}-1\right)}{n_{1}+1}+\frac{2}{n_{1}+n_{3}+2}+\frac{2\left(n_{3}+1\right)}{n_{3}+3}-\frac{2 n_{1}}{n_{1}+2}-\frac{2}{n_{1}+n_{3}+2}-\frac{2 n_{3}}{n_{3}+2} \\
& =\frac{4\left(n_{1}-n_{3}-1\right)\left(n_{1}+n_{3}+4\right)}{\left(n_{1}+1\right)\left(n_{1}+2\right)\left(n_{3}+2\right)\left(n_{3}+3\right)}
\end{aligned}
$$

Since $n_{1} \geq n_{3}+2, H\left(P_{n_{1}, n_{2}, n_{3}}\right)<H\left(P_{n_{1}-1, n_{2}, n_{3}+1}\right)$.
Lemma 2.3. Let $n_{1} \geq n_{2} \geq 2$ and G be a tree. If $Q_{n_{1}, n_{2}}$ has n vertices and m pendant vertices, then $H\left(Q_{n_{1}, n_{2}}\right) \geq$ $H\left(P_{m-2, n-m, 2}\right)$

Proof. By induction on m. Clearly, $m \geq n_{1}+n_{2} \geq 4$. When $m=4, Q_{n_{1}, n_{2}} \cong P_{2, n-4,2}$. So, the lemma is true for $m=4$ and all $n \geq m+2$. Suppose that $m \geq 5$ and the lemma holds for every $Q_{s_{1}, s_{2}}$ of order n with $m-1$ pendant vertices, where $s_{1} \geq s_{2} \geq 2$. Now, let $Q_{n_{1}, n_{2}}$ have n vertices and m pendant vertices, where $n_{1} \geq n_{2} \geq 2$. We distinguish the following cases:

Case 1. $n_{2}=2$. Let $T^{\prime}=Q_{n_{1}, 1}$. By Lemma 2.1, we have

$$
\begin{aligned}
& H\left(Q_{n_{1}, n_{2}}\right)=H\left(T^{\prime}\right)+\frac{1}{2}-\frac{2}{(2+1+1)(2+1)}-\frac{2}{\left(2+1+d_{T^{\prime}}\left(v_{2}\right)\right)\left(2+d_{T^{\prime}}\left(v_{2}\right)\right)} \\
& H\left(Q_{n_{1}, n_{2}}\right)=H\left(T^{\prime}\right)+\frac{1}{2}-\frac{1}{6}-\frac{2}{\left(3+d_{T^{\prime}}\left(v_{2}\right)\right)\left(2+d_{T^{\prime}}\left(v_{2}\right)\right)}
\end{aligned}
$$

and

$$
H\left(P_{m-2, n-m, 2}\right)=H\left(P_{m-2, n-m+1}\right)+\frac{1}{2}-\frac{1}{6}-\frac{1}{10}
$$

Note that T^{\prime} has $n-1$ vertices and $m-1$ pendant vertices. From Theorem 1.1, we have that $H\left(T^{\prime}\right) \geq$ $H\left(P_{m-2, n-m+1}\right)$ and the equality holds if and only if $T^{\prime} \cong P_{m-2, n-m+1}$. So, we have that $H\left(Q_{n_{1}, n_{2}}\right) \geq$ $H\left(P_{m-2, n-m, 2}\right)$ and the equality holds if and only if $Q_{n_{1}, n_{2}} \cong P_{m-2, n-m, 2}$.

Case 2. $n_{2} \geq 3$.
Let $T^{\prime}=Q_{n_{1}, n_{2}-1}$. By Lemma 2.1, we have

$$
\begin{align*}
& H\left(Q_{n_{1}, n_{2}}\right)=H\left(T^{\prime}\right)+\frac{2}{n_{2}+2}-\frac{2\left(n_{2}-1\right)}{\left(n_{2}+1\right)\left(n_{2}+2\right)}-\frac{2}{\left(n_{2}+1+d_{T^{\prime}}\left(v_{2}\right)\right)\left(n_{2}+d_{T^{\prime}}\left(v_{2}\right)\right)} \tag{2}\\
& H\left(P_{m-2, n-m, 2}\right)=H\left(P_{m-3, n-m, 2}\right)+\frac{2}{m}-\frac{2(m-3)}{m(m-1)}-\frac{2}{m(m+1)} \tag{3}
\end{align*}
$$

Since $T^{\prime}=Q_{n_{1}, n_{2}-1}$ and T^{\prime} has $m-1$ pendant vertices, by the induction hypothesis, $H\left(P_{m-3, n-m, 2}\right) \leq H\left(T^{\prime}\right)$. Note that $n_{1} \leq m-n_{2} \leq m-3$ and $Q_{n_{1}, n_{2}}$ is not a star. Thus, we have $H\left(Q_{n_{1}, n_{2}}\right)>H\left(P_{m-2, n-m, 2}\right)$ from (2) and (3).

Let $v_{1} v_{2} v_{3} \cdots v_{k}$ be a path P_{k} and $T_{k, v_{i}, m}$ be a graph shown in Figure 3, where $k \geq 5$ and $m \geq 1$.

Figure 3: Graph $T_{k, v_{i}, m}$

Lemma 2.4. If $r \geq 4$ and $n \geq r+3$, then $H\left(P_{n-r-1, r-1,2}\right) \geq H\left(T_{r+1, v_{3}, n-r-1}\right)$.
Proof. By the definition of harmonic index, we have

$$
H\left(P_{n-r-1, r-1,2}\right)=\frac{2(n-r-1)}{n-r+1}+\frac{r-4}{2}+\frac{2}{n-r+2}+\frac{7}{5}
$$

and

$$
H\left(T_{r+1, v_{3}, n-r-1}\right)=\frac{2(n-r-1)}{n-r+2}+\frac{4}{n-r+3}+\frac{r-4}{2}+\frac{4}{3} .
$$

Let $x=n-r$. Obviously, x is an integer and $x \geq 3$. So, we get that

$$
\begin{equation*}
H\left(P_{n-r-1, r-1,2}\right)-H\left(T_{r+1, v_{3}, n-r-1}\right)=\phi(x), \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \phi(x)=\left(\frac{2(x-1)}{x+1}+\frac{r-4}{2}+\frac{2}{x+2}+\frac{7}{5}\right)-\left(\frac{2(x-1)}{x+2}+\frac{4}{x+3}+\frac{r-4}{2}+\frac{4}{3}\right) \\
& =\frac{(x-3)\left(x^{2}+9 x+38\right)}{15(x+1)(x+2)(x+3)}
\end{aligned}
$$

And $\phi(x)=0$ for $x=3$ and $\phi(x)>0$ for $x \geq 4$. So, $H\left(P_{n-r-1, r-1,2}\right) \geq H\left(T_{r+1, v_{3}, n-r-1}\right)$.
Let $\mathcal{T}(n, r)$ be the set of trees with n vertices and diameter r.

Lemma 2.5. If $T \in \mathcal{T}(n, 4)-\left\{P_{n-4,4}\right\}$, then $H(T) \geq \frac{2(n-5)}{n-2}+\frac{4}{n-1}+\frac{4}{3}$ and the equality holds if and only if $T \cong T_{5, v_{3}, n-5}$.

Proof. By induction on n. When $n=6, T \cong T\left(5, v_{3}, n-5\right)$. So, the lemma is true for $n=6$.
Suppose that the lemma is true for $n-1$, where $n \geq 7$. Clearly, T has at most $n-3$ pendant vertices if $T \in \mathcal{T}(n, 4)-\left\{P_{n-4,4}\right\}$. We have the following cases:

Case 1. There is a path $u_{1} u_{2} u_{3} u_{4} u_{5}$ in T such that $d\left(u_{2}\right) \geq 3$ and $d\left(u_{4}\right) \geq 3$. By Lemma 2.3 and Lemma 2.4, $H(T) \geq H\left(P_{n-5,3,2}\right) \geq H\left(T_{5, v_{3}, n-5}\right)$.

Case 2. For each path $u_{1} u_{2} u_{3} u_{4} u_{5}$ in T, we must have $d\left(u_{2}\right)=2$ or $d\left(u_{4}\right)=2$. Recalling that the diameter $D(T)=4$, one can see that T must be the graph $U_{k}\left(n_{1}, t\right)$ shown in Figure 4 , where $k \geq 0, n_{1} \geq 1, t \geq 2$ and $n_{1}+2 t+k=n$.

Figure 4: Graph $U_{k}\left(n_{1}, t\right)$

By Lemma 2.1, we have that

$$
\begin{align*}
H\left(T_{5, v_{3}, n-5}\right)=H\left(T_{5, v_{3}, n-6}\right) & +\frac{2}{n-2}-\frac{2(n-6)}{(n-2)(n-3)}-\frac{4}{(n-1)(n-2)} \\
= & H\left(T_{5, v_{3}, n-6}\right)+\frac{2}{n-2}\left[1-\frac{n-6}{n-3}-\frac{2}{n-1}\right] \\
& =H\left(T_{5, v_{3}, n-6}\right)+\frac{2(n+3)}{(n-1)(n-2)(n-3)} \tag{5}
\end{align*}
$$

Subcase 2.1. $k \geq 1$ in $U_{k}\left(n_{1}, t\right)$.

By Lemma 2.1, we have

$$
\begin{array}{r}
H\left(U_{k}\left(n_{1}, t\right)\right)=\frac{2}{k+t+1}-\frac{2(k-1)}{(k+t)(k+t+1)}+\frac{2}{n_{1}+1+t+k} \\
-\frac{2}{n_{1}+t+k}-\frac{2(t-1)}{(k+t+1)(k+t+2)} \\
\geq H\left(U_{k-1}\left(n_{1}, t\right)\right)+\frac{2}{k+t+1}-\frac{2(k-1)}{(k+t)(k+t+1)} \\
-\frac{2 t}{(k+t+1)(k+t+2)} \\
=H\left(U_{k-1}\left(n_{1}, t\right)\right)+\frac{2}{k+t+1}\left[1-\frac{k-1}{k+t}-\frac{t}{k+t+2}\right] \\
=H\left(U_{k-1}\left(n_{1}, t\right)\right)+\frac{2(k+3 t+2)}{(k+t)(k+t+1)(k+t+2)}
\end{array}
$$

Since $k \geq 0, n_{1} \geq 1, t \geq 2$ and $n_{1}+2 t+k=n$, we have $k+3 t+2 \geq k+t+6$ and

$$
\frac{2(k+3 t+2)}{(k+t)(k+t+1)(k+t+2)} \geq \frac{2(k+t+6)}{(k+t)(k+t+1)(k+t+2)}=\frac{2(x+6)}{x(x+1)(x+2)}
$$

where $x=k+t$ and $2 \leq x=n-t-n_{1} \leq n-3$. Note that $f(x)=\frac{2(x+6)}{x(x+1)(x+2)}$ is a decreasing function for $2 \leq x \leq n-3, f(x) \geq f(n-3)=\frac{2(n+3)}{(n-1)(n-2)(n-3)}$. So,

$$
\begin{equation*}
H\left(U_{k}\left(n_{1}, t\right)\right) \geq H\left(U_{k-1}\left(n_{1}, t\right)\right)+\frac{2(n+3)}{(n-1)(n-2)(n-3)} \tag{6}
\end{equation*}
$$

the equality holds if and only if $n_{1}=1$ and $t=2$. By the induction hypothesis, $H\left(U_{k-1}\left(n_{1}, t\right)\right) \geq H\left(T_{5, v_{3}, n-6}\right)$ with the equality if and only if $U_{k-1}\left(n_{1}, t\right) \cong T_{5, v_{3}, n-6}$. From (5) and (6), we have $H\left(U_{k}\left(n_{1}, t\right)\right) \geq H\left(T_{5, v_{3}, n-5}\right)$ and the equality if and only if $U_{k}\left(n_{1}, t\right) \cong T_{5, v_{3}, n-5}$.

Subcase 2.2. $k=0$ and $t \geq 3$ in $U_{k}\left(n_{1}, t\right)$.
By Lemma 2.1, we have that

$$
H\left(U_{0}\left(n_{1}, t\right)\right)=H\left(U_{1}\left(n_{1}, t-1\right)\right)+\frac{2}{3}-\frac{2}{(t+1)(t+2)}
$$

and

$$
\begin{aligned}
& H\left(U_{1}\left(n_{1}+1, t-1\right)\right)=H\left(U_{1}\left(n_{1}, t-1\right)\right)+\frac{2}{n_{1}+3} \\
& -\frac{2 n_{1}}{\left(n_{1}+2\right)\left(n_{1}+3\right)}-\frac{2}{\left(n_{1}+t+1\right)\left(n_{1}+t+2\right)}
\end{aligned}
$$

Clearly, $n_{1}+3>3$. So $H\left(U_{0}\left(n_{1}, t\right)\right)>H\left(U_{1}\left(n_{1}+1, t-1\right)\right)$. From the subcase 2.1, we have $H\left(U_{0}\left(n_{1}, t\right)\right)>$ $H\left(U_{1}\left(n_{1}+1, t-1\right)\right) \geq H\left(T_{5, v_{3}, n-5}\right)$.

Subcase 2.3. $k=0$ and $t=2$ in $U_{k}\left(n_{1}, t\right)$. Then $U_{0}\left(n_{1}, 2\right) \cong P_{n-4,4}$, which contradicts to the condition $T \in \mathcal{T}(n, 4)-\left\{P_{n-4,4}\right\}$.

By calculation, we have

$$
H\left(T_{5, v_{3}, n-5}\right)=\frac{2(n-5)}{n-2}+\frac{4}{n-1}+\frac{4}{3} .
$$

This completes the proof.

2.1. Trees with m pendant vertices and the second smallest harmonic indices

Let T be a tree of order $n \geq 3$ with m pendant vertices. Obviously, $m \leq n-1$ and the equality holds if and only if $T=S_{n}$. When $m=n-2$, one can see that $T \in\left\{S_{n_{1}, n_{2}}: n_{1}+n_{2}=n-2, n_{1} \geq n_{2}\right\}$. By Lemma 2.2, we have $H\left(S_{n-3,1}\right)<H\left(S_{n-4,2}\right)<H\left(S_{n-t, t-2}\right)$ for $5 \leq t \leq \frac{n}{2}+1$. So, $S_{n-4,2}$ has the second smallest harmonic index among all trees of order n with $n-2$ pendant vertices.

For $m<n-2$, we have
Theorem 2.6. Let T be a tree of order $n \geq 3$ with m pendant vertices. If $3 \leq m \leq n-3$ and $T \nRightarrow P_{m-1, n-m+1}$, then

$$
H(T) \geq \frac{2(m-2)}{m+1}+\frac{n-m-3}{2}+\frac{4}{m+2}+\frac{4}{3}
$$

and the equality holds if and only if $T \in\left\{T_{n-m+2, v_{i}, m-2}: 3 \leq i \leq n-m\right\}$.
Proof. Let T be a tree of order $n \geq 3$ with m pendant vertices, $3 \leq m \leq n-3$. By calculation, it is not difficult to obtain that for $3 \leq i \leq n-m$,

$$
H\left(T_{n-m+2, v_{3}, m-2}\right)=H\left(T_{n-m+2, v_{i}, m-2}\right)=\frac{2(n-m-3)}{4}+\frac{2(m-2)}{m+1}+\frac{4}{m+2}+\frac{4}{3}
$$

So, we only need to prove that $H(T) \geq H\left(T_{n-m+2, v_{3}, m-2}\right)$ by induction on n. One can see that the diameter $D(T)=4$ if $n=m+3$. By Lemma 2.5, the theorem holds for $n=m+3$.

Suppose that $n \geq m+4$ and the theorem is true for all trees of order $n-1$ with m pendant vertices. Now, let T be a tree of order n with m pendant vertices, we consider the following cases:

Case 1. T is a tree of form $Q_{n_{1}, n_{2}}$ with $n_{1} \geq n_{2} \geq 2$. Then, from Lemma 2.3 and Lemma 2.4, it follows that $H(T) \geq H\left(P_{m-2, n-m, 2}\right)>H\left(T_{n-m+2, v_{3}, m-2}\right)$.

Case 2. There is a path $u_{1} u_{2} u_{3}$ in T such that $d\left(u_{1}\right)=1, d\left(u_{2}\right)=2$ and $d\left(u_{3}\right) \geq 2$.
Let $T^{\prime}=T-u_{1}$. By Lemma 2.1, we have that

$$
\begin{equation*}
H(T)=H\left(T^{\prime}\right)+\frac{2}{3}-\frac{2}{\left(1+d\left(u_{3}\right)\right)\left(2+d\left(u_{3}\right)\right)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(T_{n-m+2, v_{3}, m-2}\right)=H\left(T_{n-m+1, v_{3}, m-2}\right)+\frac{1}{2} \tag{8}
\end{equation*}
$$

Clearly, T^{\prime} has $n-1$ vertices and m pendant vertices. Since $T \nRightarrow P_{m-1, n-m+1}$, we have $T \cong T_{n-m+2, v_{3}, m-2}$ if $T^{\prime} \cong P_{m-1, n-m}$. For $T^{\prime} \not \approx P_{m-1, n-m}$, by the induction hypothesis, we have $H\left(T^{\prime}\right)>H\left(T_{n-m+1, v_{3}, m-2}\right)$. From (7) and (8), $H(T) \geq H\left(T_{n-m+2, v_{3}, m-2}\right)$ and the equality holds if and only if $T^{\prime} \in\left\{T_{n-m+1, v_{i}, m-2}: 3 \leq i \leq n-m-1\right\}$ and $d\left(u_{3}\right)=2$, i.e., the equality holds if and only if $T \in\left\{T_{n-m+2, v_{i}, m-2}: 3 \leq i \leq n-m\right\}$.

2.2. Trees with the diameter r and the first two smallest harmonic indices

In the following, using Theorem 1.1 and Theorem 2.6, we find the smallest value of the harmonic index of trees in $\mathcal{T}(n, r)$ and determine the corresponding trees, where $\mathcal{T}(n, r)$ is the set of trees with n vertices and diameter r.

Let $T \in \mathcal{T}(n, r)$ and $r \geq 3$. Then, there is a path $u_{1} u_{2} \cdots u_{r+1}$ in T such that $d\left(u_{1}\right)=d\left(u_{r+1}\right)=1$ and $d\left(u_{i}\right) \geq 2$ for all $2 \leq i \leq r$. So, T has at most $n-r+1$ pendant vertices. By Theorem 1.1, it is not difficult to see that $H(T) \geq H\left(P_{m-1, n-m+1}\right)$ if T has m pendant vertices. By Lemma 2.2, for $m \geq 3$ we have $H\left(P_{m-2, n-m+1,1}\right)>H\left(P_{m-1, n-m+1,0}\right)$, that is,

$$
\begin{equation*}
H\left(P_{m-2, n-m+2}\right)>H\left(P_{m-1, n-m+1}\right) \tag{9}
\end{equation*}
$$

Thus, we have $H(T) \geq H\left(P_{n-r, r}\right)$ and the equality if and only if $T \cong P_{n-r, r}$, i.e., $P_{n-r, r}$ is the tree with the smallest harmonic index in $\mathcal{T}(n, r)$.

For $r=3, P_{n-3,3}=S_{n-3,1}$ is the tree with the smallest harmonic index in $\mathcal{T}(n, 3)$, and by Lemma 2.2, we have that $S_{n-4,2}$ is the tree with the second smallest harmonic index in $\mathcal{T}(n, 3)$.

For $r \geq 4$, if $T \in \mathcal{T}(n, r)$ and $T \not \equiv P_{n-r, r}$, let m be the number of pendant vertices in T, then by Theorem 2.6 and (9), $H(T) \geq H\left(T_{r+1, v_{3}, n-r-1}\right)$ for $m=n-r+1$, and $H(T) \geq H\left(P_{m-1, n-m+1}\right) \geq H\left(P_{n-r-1, r+1}\right)$ for $m \leq n-r$. By calculation, we have

$$
\begin{equation*}
H\left(T_{r+1, v_{3}, n-r-1}\right)=\frac{2(n-r-1)}{n-r+2}+\frac{4}{n-r+3}+\frac{r-4}{2}+\frac{4}{3} . \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
H\left(P_{n-r-1, r+1}\right)=\frac{2(n-r-1)}{n-r+1}+\frac{2}{n-r+2}+\frac{r-2}{2}+\frac{2}{3} . \tag{11}
\end{equation*}
$$

Let $x=n-r$ and $\psi(x)=H\left(P_{n-r-1, r+1}\right)-H\left(T_{r+1, v_{3}, n-r-1}\right)$. From (10) and (11), we have

$$
\begin{aligned}
& \psi(x)=\frac{2(x-1)}{x+1}+\frac{2}{x+2}+\frac{r-2}{2}+\frac{2}{3}-\frac{2(x-1)}{x+2}-\frac{4}{x+3}-\frac{r-4}{2}-\frac{4}{3} \\
& =\frac{2(x-1)}{x+1}-\frac{2(x-1)}{x+2}+\frac{2}{x+2}-\frac{4}{x+3}+\frac{1}{3} \\
& =\frac{(x-1)\left(x^{2}+7 x+18\right)}{3(x+1)(x+2)(x+3)}>0
\end{aligned}
$$

for $x \geq 2$. So, $T_{r+1, v_{3}, n-r-1}$ is the tree with the second smallest harmonic index in $\mathcal{T}(n, r)$ for $r \geq 4$.
Theorem 2.7. (i) For $T \in \mathcal{T}(n, r)$ and $r \geq 3$, we have

$$
H(T) \geq \frac{2(n-r)}{n-r+2}+\frac{2}{n-r+3}+\frac{r-3}{2}+\frac{2}{3}
$$

and the equality holds if and only if $T \cong P_{n-r, r}$.
(ii) For $r \geq 4$ and $T \in \mathcal{T}(n, r)-\left\{P_{n-r, r}\right\}$, we have

$$
H(T) \geq \frac{2(n-r-1)}{n-r+2}+\frac{4}{n-r+3}+\frac{r-4}{2}+\frac{4}{3}
$$

and the equality holds if and only if $T \in\left\{T_{r+1, v_{i}, n-r-1}: 3 \leq i \leq r-1\right\}$.

2.3. Trees with small harmonic indices

In the following, we determine the unique tree of order n with, respectively, the second, the third and the fourth smallest harmonic index.

Let T be a tree of order n. For $n=2,3$, we have $T \cong S_{n}$, and we can easily check that
(a) for $n=4, H\left(P_{4}\right)>H\left(S_{4}\right)$;
(b) for $n=5, H\left(P_{5}\right)>H\left(S_{2,1}\right)>H\left(S_{5}\right)$;
(c) for $n=6,7, H(T)>H\left(P_{n-4,4}\right)>H\left(S_{n-4,2}\right)>H\left(S_{n-3,1}\right)>H\left(S_{n}\right)$ if $T \notin\left\{P_{n-4,4}, S_{n-4,2}, S_{n-3,1}, S_{n}\right\}$.

Now, we consider the case $n \geq 8$. By Lemma 2.2, we have

$$
\begin{equation*}
H\left(S_{n_{1}, n_{2}}\right)>H\left(S_{n_{1}+1, n_{2}-1}\right) \text { for } n_{1} \geq n_{2} \geq 2 \tag{12}
\end{equation*}
$$

By (9) and Theorem 2.7, we have

$$
\begin{equation*}
H(T)>H\left(P_{n-4,4}\right) \quad \text { if } T \in \mathcal{T}(n, r)-\left\{P_{n-4,4}\right\} \quad \text { and } \quad r \geq 4 \tag{13}
\end{equation*}
$$

By calculation, we obtain the following:
(i) $H\left(S_{n-3,1}\right)=\frac{2(n-3)}{n-1}+\frac{2}{n}+\frac{2}{3}$
(ii) $H\left(S_{n-4,2}\right)=\frac{2(n-4)}{n-2}+\frac{2}{n}+1$
(iii) $H\left(S_{n-5,3}\right)=\frac{2(n-5)}{n-3}+\frac{2}{n}+\frac{6}{5}$
(iv) $H\left(P_{n-4,4}\right)=\frac{2(n-4)}{n-2}+\frac{2}{n-1}+\frac{7}{6}$.

From (i) to (iv), $H\left(S_{n-5,3}\right)>H\left(S_{n-4,2}\right)>H\left(S_{n-3,1}\right)$ and $H\left(P_{n-4,4}\right)>H\left(S_{n-4,2}\right)>H\left(S_{n-3,1}\right)$ for $n \geq 8$.
On the other hand, we have

$$
H\left(S_{n-5,3}\right)-H\left(P_{n-4,4}\right)=\frac{n^{4}-6 n^{3}-169 n^{2}+414 n-360}{30 n(n-1)(n-2)(n-3)} .
$$

By calculation, one obtains that $H\left(S_{n-5,3}\right)<H\left(P_{n-4,4}\right)$ for $n=8,9, \cdots, 15$ and $H\left(S_{n-5,3}\right)>H\left(P_{n-4,4}\right)$ for $n \geq 16$. From above, we can get the following theorem.

Theorem 2.8. Let T be a tree of order $n \geq 6$ and $T \notin\left\{S_{n-4,2}, S_{n-3,1}, S_{n}\right\}$. Then
(i) $H(T) \geq H\left(S_{n-5,3}\right)>H\left(S_{n-4,2}\right)>H\left(S_{n-3,1}\right)>H\left(S_{n}\right)$ for $n=8,9, \cdots, 15$ and the equality holds if and only if $T \cong S_{n-5,3}$.
(ii) $H(T) \geq H\left(P_{n-4,4}\right)>H\left(S_{n-4,2}\right)>H\left(S_{n-3,1}\right)>H\left(S_{n}\right)$ for $n=6,7$ or $n \geq 16$ and the equality holds if and only if $T \cong P_{n-4,4}$.

Acknowledgement: The authors thank the anonymous referee for some valuable corrections and comments which improved the presentation of the work.

References

[1] G. Caporossi, P. Hansen, Variable neighborhood search for extremal graphs 1: The Autographix system, Discrete Math. 212 (2000) 29-44.
[2] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161(2013) 2740-2744.
[3] H. Deng, Z. Tang, J. Zhang, On the harmonic index and the radius of a graph, Filomat 29 (6) (2015) 1369-1375.
[4] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, Harmonic indices of trees, chemical trees with a given number of pendant vertices, submitted.
[5] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, On harmonic indices of trees, unicyclic graphs and bicyclic graphs, accpted by Ars Combinatoria.
[6] H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, Sharp bounds of the harmonic index of a graph with given girth, submitted.
[7] S. Fajtlowicz, On conjectures of Graffiti-II, Cong. Numer. 60 (1987) 187-197.
[8] O. Favaron, M. Mahio, J.F. Saclé, Some eigenvalue properties in graphs (Conjectures of Graffiti-II), Discrete Math. 111 (1993) 197-220.
[9] P. Hansen, D. Vukicević, Variable neighborhood search for extremal graphs. 23. On the Randić index and the chromatic number, Discrete Math. 309 (2009) 4228-4234.
[10] X. Li, H. Zhao, Trees with small Randić connectivity indices, MATCH Commun. Math. Comput. Chem. 51 (2004) 167-178.
[11] J. Li, W. C. Shiu, The harmonic index of a graph, Rocky Mountain J. Math. 44(5) (2014) 1607-1620.
[12] J. Lv, J. Li, On the harmonic index and the matching number of a tree, Ars Combin. CXVI (2014) 407-416.
[13] B. Liu, I. Gutman, On a conjecture in Randić indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 143-154.
[14] Z. Tang, H. Deng, On the harmonic index and the girth of a graph, Utilitas Math. 91 (2013) 65-69.
[15] R. Wu, Z. Tang, H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two, Filomat 27 (2013) 51-55.
[16] Z. You, B. Liu, On a conjecture of the Randić index, Discrete Appl. Math. 157 (2009) 1766-1772.
[17] L. Zhong, The harmonic index for graphs, Appl. Math. Lett. 25 (2012) 561-566.
[18] L. Zhong, The harmonic index on unicyclic graphs, Ars Combinatoria, C IV (2012) 261-269.
[19] L. Zhong, K. Xu, The harmonic index for bicyclic graphs, Utilitas Math. 90 (2013) 23-32.

[^0]: 2010 Mathematics Subject Classification. Primary 05C07; Secondary 05C90
 Keywords. Harmonic index, Randić index, tree, pendant vertex, diameter.
 Received: 08 July 2014; Accepted: 22 February 2015
 Communicated by Francesco Belardo
 Email addresses: hydeng@hunnu.edu.cn (Hanyuan Deng), bala@maths.sastra.edu (S. Balachandran),

