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Abstract. The harmonic index H (G) of a graph G is defined as the sum of the weights 2
du+dv

of all edges
uv of G, where du denotes the degree of a vertex u in G. In this paper, we determine (i) the trees of order
n and m pendant vertices with the second smallest harmonic index, (ii) the trees of order n and diameter r
with the smallest and the second smallest harmonic indices, and (iii) the trees of order n with the second,
the third and the fourth smallest harmonic index, respectively.

1. Introduction

In this work, we consider the harmonic index. For a simple graph (or a molecular graph) G = (V,E), the
harmonic index H (G) is defined in [7] as H (G) =

∑

uv∈E(G)
2

du+dv
, where du denotes the degree of a vertex u in

G.
For a graph G and u ∈ V(G), we denote NG(u) the set of all neighbors of u in G and by n(G) the number of

vertices of G. We denote respectively by Sn and Pn the star and the path with n vertices. By Pn,m, we denote
the graph obtained from Sn+1 and Pm by identifying the center of Sn+1 with a vertex of degree 1 of Pm. By
Sn,m, we denote the graph obtained from Sn+2 and Sm+1 by identifying a vertex of degree 1 of Sn+2 with the
center of Sm+1. We denote by D(G) the diameter of G, which is defined as D(G) = max {d(u, v) : u, v ∈ V(G)}
where d(u, v) denotes the distance between the vertices u and v in G. We denote by T (n, r) the set of all
trees T with n vertices and D(T) = r.

In [8], the authors considered the relation between the harmonic index and the eigenvalues of graphs.
Zhong in [17] presented the minimum and maximum values of harmonic index on simple connected graphs
and trees, and characterized the corresponding extremal graphs. Deng et al. in [2] considered the relation
relating the harmonic index H(G) and the chromatic number χ(G) and proved that χ(G) ≤ 2H(G) by using
the effect of removal of a minimum degree vertex on the harmonic index. It strengthens a result relating the
Randić index and the chromatic number conjectured by the system AutoGraphiX and proved by Hansen et
al. in [9]. Deng et al. [15] gave a best possible lower bound for the harmonic index of a graph (a triangle-free
graph, respectively) with minimum degree at least two and characterize the extremal graphs. Deng et al.
[3] considered the harmonic index H(G) and the radius r(G) and strengthened some results relating the
Randić index and the radius in [1] [13] [16]. Deng et al. [4] obtained the following result on the tree of order
n with m pendant vertices and with the smallest harmonic index.
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Theorem 1.1. [4] Let T be a tree of order n ≥ 3, with m (1 < m < n − 1) pendant vertices. Then

H (T) ≥
2 (m − 1)

m + 1
+

2

m + 2
+

2 (n −m − 2)

4
+

2

3

with equality if and only if T is the comet Tn,m, where Tn,m � Pm−1,n−m+1.

Other related results see [5, 6, 11, 12, 14, 18, 19]. In [10], Li and Zhao determined the trees of order n
with m pendant vertices and the second smallest Randić index, the trees of order n with diameter r and
the first and the second smallest Randić indices, and the trees of order n with, respectively, the second, the
third and the fourth smallest Randić index. Here, we determine all trees of order n with m pendant vertices
and the second smallest harmonic index, all trees of order n with diameter r and the first and the second
smallest harmonic indices, and the trees of order n with, respectively, the second, the third and the fourth
smallest harmonic index.

2. Main Results

In this section, we first give some basic lemmas, and then determine (i) the trees of order n with m
pendant vertices and the second smallest harmonic index, (ii) the trees of order n with diameter r and the
the smallest and the second smallest harmonic indices, and (iii) the trees of order n with, respectively, the
second, the third and the fourth smallest harmonic index.

Lemma 2.1. Let T be a tree with a vertex u such that dT (u) = k. Suppose that NT (u) = {1, 2, 3, · · · , k} and v < V (T).
Then

H(T + uv) −H(T) =
2

k + 2
− 2

∑

i∈NT(u)

1

[k + 1 + dT (i)] [k + dT (i)]

Proof. Suppose that Q = {ui : i ∈ NT (u)} andΩ =
∑

xy∈E(T)−Q
2

dT(x)+dT(y)
. Then we have

H (T) =
∑

xy∈E(T)

2

dT (x) + dT
(

y
) = Ω +

∑

i∈NT(u)

2

k + dT (i)

and

H (T + uv) =
∑

xy∈E(T+uv)

2

dT+uv (x) + dT+uv
(

y
)

= Ω +
∑

i∈NT(u)

2

k + 1 + dT (i)
+

2

k + 2

H (T + uv) −H (T) =
2

k + 2
+

∑

i∈NT(u)

[

2

k + 1 + dT (i)
−

2

k + dT (i)

]

=
2

k + 2
− 2

∑

i∈NT(u)

1

[k + 1 + dT (i)] [k + dT (i)]

�

Let u be a vertex of T with dT(u) = k. One can see that there is a vertex w ∈ NT (u) such that dT (w) ≥ 2
except if u is the center of a star. So, we have

−2
∑

i∈NT(u)

1

[k + 1 + dT (i)] [k + dT (i)]
≥
−2 (k − 1)

(k + 1) (k + 2)
−

2

(k + 2) (k + 3)
(1)

Denote Qn1,n2
and Pn1,n2,n3

be the two graphs shown in Figure 1 and Figure 2, where G is a connected
graph. Specially, Pm−1,n−m+1 = Pm−1,n−m+1,0 = Pm−1,n−m,1.
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Figure 1: Graph Qn1,n2
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Figure 2: Graph Pn1,n2 ,n3

Lemma 2.2. Let n1 ≥ n3 + 2. Then H(Pn1,n2,n3
) < H(Pn1−1,n2,n3+1).

Proof. If n2 ≥ 3, then

H(Pn1−1,n2,n3+1) −H(Pn1,n2,n3
)

=
2(n1 − 1)

n1 + 1
+

2

n1 + 2
+

2

n3 + 4
+

2(n3 + 1)

n3 + 3
−

2n1

n1 + 2
−

2

n1 + 3
−

2

n3 + 3
−

2n3

n3 + 2

=
2(n1 − n3 − 1)(84+ 42n1 + 6n2

1
+ 40n3 + 13n1n3 + n2

1
n3 + 5n2

3
+ n1n2

3
)

(n1 + 1)(n1 + 2)(n1 + 3)(n3 + 2)(n3 + 3)(n3 + 4)

If n2 = 2, then

H(Pn1−1,n2,n3+1) −H(Pn1,n2,n3
)

=
2(n1 − 1)

n1 + 1
+

2

n1 + n3 + 2
+

2(n3 + 1)

n3 + 3
−

2n1

n1 + 2
−

2

n1 + n3 + 2
−

2n3

n3 + 2

=
4(n1 − n3 − 1)(n1 + n3 + 4)

(n1 + 1)(n1 + 2)(n3 + 2)(n3 + 3)

Since n1 ≥ n3 + 2, H(Pn1,n2,n3
) < H(Pn1−1,n2,n3+1).

Lemma 2.3. Let n1 ≥ n2 ≥ 2 and G be a tree. If Qn1,n2
has n vertices and m pendant vertices, then H(Qn1,n2

) ≥
H

(

Pm−2,n−m,2
)

Proof. By induction on m. Clearly, m ≥ n1 + n2 ≥ 4. When m = 4, Qn1,n2
� P2,n−4,2. So, the lemma is true

for m = 4 and all n ≥ m + 2. Suppose that m ≥ 5 and the lemma holds for every Qs1,s2
of order n with

m − 1 pendant vertices, where s1 ≥ s2 ≥ 2. Now, let Qn1,n2
have n vertices and m pendant vertices, where

n1 ≥ n2 ≥ 2. We distinguish the following cases:
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Case 1. n2 = 2. Let T
′

= Qn1,1. By Lemma 2.1, we have

H
(

Qn1,n2

)

= H
(

T
′
)

+
1

2
−

2

(2 + 1 + 1) (2 + 1)
−

2

(2 + 1 + dT′ (v2)) (2 + dT′ (v2))

H
(

Qn1,n2

)

= H
(

T
′
)

+
1

2
−

1

6
−

2

(3 + dT′ (v2)) (2 + dT′ (v2))

and

H
(

Pm−2,n−m,2
)

= H
(

Pm−2,n−m+1
)

+
1

2
−

1

6
−

1

10

Note that T
′

has n − 1 vertices and m − 1 pendant vertices. From Theorem 1.1, we have that H
(

T
′
)

≥

H
(

Pm−2,n−m+1
)

and the equality holds if and only if T
′

� Pm−2,n−m+1. So, we have that H
(

Qn1,n2

)

≥

H
(

Pm−2,n−m,2
)

and the equality holds if and only if Qn1,n2
� Pm−2,n−m,2.

Case 2. n2 ≥ 3.
Let T

′

= Qn1,n2−1. By Lemma 2.1, we have

H
(

Qn1,n2

)

= H
(

T
′
)

+
2

n2 + 2
−

2 (n2 − 1)

(n2 + 1) (n2 + 2)
−

2

(n2 + 1 + dT′ (v2)) (n2 + dT′ (v2))
(2)

H
(

Pm−2,n−m,2
)

= H
(

Pm−3,n−m,2
)

+
2

m
−

2 (m − 3)

m (m − 1)
−

2

m (m + 1)
(3)

Since T
′

= Qn1,n2−1 and T
′

has m − 1 pendant vertices, by the induction hypothesis, H
(

Pm−3,n−m,2
)

≤ H
(

T
′
)

.

Note that n1 ≤ m − n2 ≤ m − 3 and Qn1,n2
is not a star. Thus, we have H(Qn1,n2

) > H
(

Pm−2,n−m,2
)

from (2) and
(3). �

Let v1v2v3 · · · vk be a path Pk and Tk,vi,m be a graph shown in Figure 3, where k ≥ 5 and m ≥ 1.

b b b b b

b bb

b b b b b b

1 2 m

v1 v2 vi vk−1

vk

Figure 3: Graph Tk,vi ,m

Lemma 2.4. If r ≥ 4 and n ≥ r + 3, then H
(

Pn−r−1,r−1,2
)

≥ H
(

Tr+1,v3,n−r−1
)

.

Proof. By the definition of harmonic index, we have

H
(

Pn−r−1,r−1,2
)

=
2 (n − r − 1)

n − r + 1
+

r − 4

2
+

2

n − r + 2
+

7

5

and

H
(

Tr+1,v3,n−r−1
)

=
2 (n − r − 1)

n − r + 2
+

4

n − r + 3
+

r − 4

2
+

4

3
.

Let x = n − r. Obviously, x is an integer and x ≥ 3. So, we get that

H
(

Pn−r−1,r−1,2
)

−H
(

Tr+1,v3,n−r−1
)

= φ (x) , (4)
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where

φ (x) =

(

2 (x − 1)

x + 1
+

r − 4

2
+

2

x + 2
+

7

5

)

−

(

2 (x − 1)

x + 2
+

4

x + 3
+

r − 4

2
+

4

3

)

=
(x − 3)(x2 + 9x + 38)

15(x+ 1)(x + 2)(x + 3)

And φ (x) = 0 for x = 3 and φ (x) > 0 for x ≥ 4. So, H
(

Pn−r−1,r−1,2
)

≥ H
(

Tr+1,v3,n−r−1
)

. �

Let T (n, r) be the set of trees with n vertices and diameter r.

Lemma 2.5. If T ∈ T (n, 4)−{Pn−4,4}, then H (T) ≥ 2(n−5)
n−2 +

4
n−1 +

4
3 and the equality holds if and only if T � T5,v3,n−5.

Proof. By induction on n. When n = 6, T � T(5, v3, n − 5). So, the lemma is true for n = 6.

Suppose that the lemma is true for n − 1, where n ≥ 7. Clearly, T has at most n − 3 pendant vertices if
T ∈ T (n, 4) − {Pn−4,4}. We have the following cases:

Case 1. There is a path u1u2u3u4u5 in T such that d (u2) ≥ 3 and d (u4) ≥ 3. By Lemma 2.3 and Lemma
2.4, H (T) ≥ H

(

Pn−5,3,2
)

≥ H
(

T5,v3,n−5
)

.

Case 2. For each path u1u2u3u4u5 in T, we must have d (u2) = 2 or d (u4) = 2. Recalling that the diameter
D (T) = 4, one can see that T must be the graph Uk (n1, t) shown in Figure 4, where k ≥ 0, n1 ≥ 1, t ≥ 2 and
n1 + 2t + k = n.

b b b

b

bb b

b bb b b

b b b

b b b

b b b
1 2 n1

v1 v2 vt

v0

1 2 k

Figure 4: Graph Uk(n1, t)

By Lemma 2.1, we have that

H
(

T5,v3,n−5
)

= H
(

T5,v3,n−6
)

+
2

n − 2
−

2 (n − 6)

(n − 2) (n − 3)
−

4

(n − 1) (n − 2)

= H
(

T5,v3,n−6
)

+
2

n − 2
[1 −

n − 6

n − 3
−

2

n − 1
]

= H
(

T5,v3,n−6
)

+
2(n + 3)

(n − 1)(n − 2)(n − 3)
(5)

Subcase 2.1. k ≥ 1 in Uk (n1, t).
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By Lemma 2.1, we have

H (Uk (n1, t)) =
2

k + t + 1
−

2(k − 1)

(k + t)(k + t + 1)
+

2

n1 + 1 + t + k

−
2

n1 + t + k
−

2(t − 1)

(k + t + 1)(k + t + 2)

≥ H (Uk−1 (n1, t)) +
2

k + t + 1
−

2 (k − 1)

(k + t) (k + t + 1)

−
2t

(k + t + 1) (k + t + 2)

= H (Uk−1 (n1, t)) +
2

k + t + 1
[1 −

k − 1

k + t
−

t

k + t + 2
]

= H (Uk−1 (n1, t)) +
2(k + 3t + 2)

(k + t)(k + t + 1)(k + t + 2)

Since k ≥ 0, n1 ≥ 1, t ≥ 2 and n1 + 2t + k = n, we have k + 3t + 2 ≥ k + t + 6 and

2(k + 3t + 2)

(k + t)(k + t + 1)(k + t + 2)
≥

2(k + t + 6)

(k + t)(k + t + 1)(k + t + 2)
=

2(x + 6)

x(x + 1)(x + 2)

where x = k + t and 2 ≤ x = n − t − n1 ≤ n − 3. Note that f (x) =
2(x+6)

x(x+1)(x+2) is a decreasing function for

2 ≤ x ≤ n − 3, f (x) ≥ f (n − 3) =
2(n+3)

(n−1)(n−2)(n−3) . So,

H (Uk (n1, t)) ≥ H (Uk−1 (n1, t)) +
2(n + 3)

(n − 1)(n − 2)(n − 3)
(6)

the equality holds if and only if n1 = 1 and t = 2. By the induction hypothesis, H(Uk−1 (n1, t)) ≥ H(T5,v3,n−6)
with the equality if and only if Uk−1 (n1, t) � T5,v3,n−6. From (5) and (6), we have H (Uk (n1, t)) ≥ H

(

T5,v3,n−5
)

and the equality if and only if Uk (n1, t) � T5,v3,n−5.
Subcase 2.2. k = 0 and t ≥ 3 in Uk (n1, t).
By Lemma 2.1, we have that

H (U0 (n1, t)) = H (U1 (n1, t − 1)) +
2

3
−

2

(t + 1) (t + 2)

and

H (U1 (n1 + 1, t − 1)) = H (U1 (n1, t − 1)) +
2

n1 + 3

−
2n1

(n1 + 2) (n1 + 3)
−

2

(n1 + t + 1) (n1 + t + 2)

Clearly, n1 + 3 > 3. So H (U0 (n1, t)) > H (U1 (n1 + 1, t − 1)). From the subcase 2.1, we have H (U0 (n1, t)) >
H (U1 (n1 + 1, t − 1)) ≥ H

(

T5,v3,n−5
)

.

Subcase 2.3. k = 0 and t = 2 in Uk (n1, t). Then U0 (n1, 2) � Pn−4,4, which contradicts to the condition
T ∈ T (n, 4) − {Pn−4,4}.

By calculation, we have

H
(

T5,v3,n−5
)

=
2 (n − 5)

n − 2
+

4

n − 1
+

4

3
.

This completes the proof. �
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2.1. Trees with m pendant vertices and the second smallest harmonic indices

Let T be a tree of order n ≥ 3 with m pendant vertices. Obviously, m ≤ n − 1 and the equality holds if
and only if T = Sn. When m = n − 2, one can see that T ∈

{

Sn1,n2
: n1 + n2 = n − 2, n1 ≥ n2

}

. By Lemma 2.2,
we have H

(

Sn−3,1
)

< H
(

Sn−4,2
)

< H
(

Sn−t,t−2
)

for 5 ≤ t ≤ n
2 + 1. So, Sn−4,2 has the second smallest harmonic

index among all trees of order n with n − 2 pendant vertices.
For m < n − 2, we have

Theorem 2.6. Let T be a tree of order n ≥ 3 with m pendant vertices. If 3 ≤ m ≤ n − 3 and T � Pm−1,n−m+1, then

H (T) ≥
2 (m − 2)

m + 1
+

n −m − 3

2
+

4

m + 2
+

4

3

and the equality holds if and only if T ∈
{

Tn−m+2,vi,m−2 : 3 ≤ i ≤ n −m
}

.

Proof. Let T be a tree of order n ≥ 3 with m pendant vertices, 3 ≤ m ≤ n− 3. By calculation, it is not difficult
to obtain that for 3 ≤ i ≤ n −m,

H
(

Tn−m+2,v3,m−2
)

= H
(

Tn−m+2,vi,m−2
)

=
2 (n −m − 3)

4
+

2 (m − 2)

m + 1
+

4

m + 2
+

4

3
.

So, we only need to prove that H (T) ≥ H
(

Tn−m+2,v3,m−2
)

by induction on n. One can see that the diameter
D (T) = 4 if n = m + 3. By Lemma 2.5, the theorem holds for n = m + 3.

Suppose that n ≥ m+ 4 and the theorem is true for all trees of order n− 1 with m pendant vertices. Now,
let T be a tree of order n with m pendant vertices, we consider the following cases:

Case 1. T is a tree of form Qn1,n2
with n1 ≥ n2 ≥ 2. Then, from Lemma 2.3 and Lemma 2.4, it follows that

H (T) ≥ H
(

Pm−2,n−m,2
)

> H
(

Tn−m+2,v3,m−2
)

.
Case 2. There is a path u1u2u3 in T such that d (u1) = 1, d (u2) = 2 and d (u3) ≥ 2.
Let T

′

= T − u1. By Lemma 2.1, we have that

H (T) = H
(

T
′
)

+
2

3
−

2

(1 + d(u3))(2 + d(u3))
(7)

and

H
(

Tn−m+2,v3,m−2
)

= H
(

Tn−m+1,v3,m−2
)

+
1

2
(8)

Clearly, T
′

has n − 1 vertices and m pendant vertices. Since T � Pm−1,n−m+1, we have T � Tn−m+2,v3,m−2 if

T
′

� Pm−1,n−m. For T
′

� Pm−1,n−m, by the induction hypothesis, we have H
(

T
′
)

> H
(

Tn−m+1,v3,m−2
)

. From (7)

and (8), H (T) ≥ H
(

Tn−m+2,v3,m−2
)

and the equality holds if and only if T′ ∈
{

Tn−m+1,vi ,m−2 : 3 ≤ i ≤ n −m − 1
}

and d(u3) = 2, i.e., the equality holds if and only if T ∈
{

Tn−m+2,vi,m−2 : 3 ≤ i ≤ n −m
}

. �

2.2. Trees with the diameter r and the first two smallest harmonic indices

In the following, using Theorem 1.1 and Theorem 2.6, we find the smallest value of the harmonic index
of trees in T (n, r) and determine the corresponding trees, where T (n, r) is the set of trees with n vertices
and diameter r.

Let T ∈ T (n, r) and r ≥ 3. Then, there is a path u1u2 · · ·ur+1 in T such that d (u1) = d (ur+1) = 1 and
d (ui) ≥ 2 for all 2 ≤ i ≤ r. So, T has at most n − r + 1 pendant vertices. By Theorem 1.1, it is not
difficult to see that H (T) ≥ H

(

Pm−1,n−m+1
)

if T has m pendant vertices. By Lemma 2.2, for m ≥ 3 we have
H

(

Pm−2,n−m+1,1
)

> H
(

Pm−1,n−m+1,0
)

, that is,

H
(

Pm−2,n−m+2
)

> H
(

Pm−1,n−m+1
)

. (9)

Thus, we have H (T) ≥ H
(

Pn−r,r
)

and the equality if and only if T � Pn−r,r, i.e., Pn−r,r is the tree with the
smallest harmonic index in T (n, r).
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For r = 3, Pn−3,3 = Sn−3,1 is the tree with the smallest harmonic index in T (n, 3), and by Lemma 2.2, we
have that Sn−4,2 is the tree with the second smallest harmonic index in T (n, 3).

For r ≥ 4, if T ∈ T (n, r) and T � Pn−r,r, let m be the number of pendant vertices in T, then by Theorem 2.6
and (9), H(T) ≥ H(Tr+1,v3,n−r−1) for m = n − r + 1, and H(T) ≥ H(Pm−1,n−m+1) ≥ H(Pn−r−1,r+1) for m ≤ n − r. By
calculation, we have

H
(

Tr+1,v3,n−r−1
)

=
2 (n − r − 1)

n − r + 2
+

4

n − r + 3
+

r − 4

2
+

4

3
. (10)

and

H
(

Pn−r−1,r+1
)

=
2 (n − r − 1)

n − r + 1
+

2

n − r + 2
+

r − 2

2
+

2

3
. (11)

Let x = n − r and ψ(x) = H(Pn−r−1,r+1) −H(Tr+1,v3,n−r−1). From (10) and (11), we have

ψ (x) =
2 (x − 1)

x + 1
+

2

x + 2
+

r − 2

2
+

2

3
−

2 (x − 1)

x + 2
−

4

x + 3
−

r − 4

2
−

4

3

=
2 (x − 1)

x + 1
−

2 (x − 1)

x + 2
+

2

x + 2
−

4

x + 3
+

1

3

=
(x − 1)(x2 + 7x + 18)

3(x + 1)(x + 2)(x+ 3)
> 0

for x ≥ 2. So, Tr+1,v3,n−r−1 is the tree with the second smallest harmonic index in T (n, r) for r ≥ 4.

Theorem 2.7. (i) For T ∈ T (n, r) and r ≥ 3, we have

H (T) ≥
2 (n − r)

n − r + 2
+

2

n − r + 3
+

r − 3

2
+

2

3

and the equality holds if and only if T � Pn−r,r.
(ii) For r ≥ 4 and T ∈ T (n, r) −

{

Pn−r,r
}

, we have

H (T) ≥
2 (n − r − 1)

n − r + 2
+

4

n − r + 3
+

r − 4

2
+

4

3

and the equality holds if and only if T ∈
{

Tr+1,vi,n−r−1 : 3 ≤ i ≤ r − 1
}

.

2.3. Trees with small harmonic indices

In the following, we determine the unique tree of order n with, respectively, the second, the third and
the fourth smallest harmonic index.

Let T be a tree of order n. For n = 2, 3, we have T � Sn, and we can easily check that
(a) for n = 4, H (P4) > H (S4);
(b) for n = 5, H (P5) > H

(

S2,1
)

> H (S5);
(c) for n = 6, 7, H (T) > H

(

Pn−4,4
)

> H
(

Sn−4,2
)

> H
(

Sn−3,1
)

> H (Sn) if T <
{

Pn−4,4, Sn−4,2, Sn−3,1, Sn
}

.
Now, we consider the case n ≥ 8. By Lemma 2.2, we have

H
(

Sn1 ,n2

)

> H
(

Sn1+1,n2−1
)

for n1 ≥ n2 ≥ 2 (12)

By (9) and Theorem 2.7, we have

H (T) > H
(

Pn−4,4
)

if T ∈ T (n, r) − {Pn−4,4} and r ≥ 4 (13)

By calculation, we obtain the following:

(i) H
(

Sn−3,1
)

=
2(n−3)

n−1 +
2
n +

2
3

(ii) H
(

Sn−4,2
)

=
2(n−4)

n−2 +
2
n + 1
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(iii) H
(

Sn−5,3
)

=
2(n−5)

n−3 +
2
n +

6
5

(iv) H
(

Pn−4,4
)

=
2(n−4)

n−2 +
2

n−1 +
7
6 .

From (i) to (iv), H
(

Sn−5,3
)

> H
(

Sn−4,2
)

> H
(

Sn−3,1
)

and H
(

Pn−4,4
)

> H
(

Sn−4,2
)

> H
(

Sn−3,1
)

for n ≥ 8.
On the other hand, we have

H(Sn−5,3) −H(Pn−4,4) =
n4 − 6n3 − 169n2 + 414n − 360

30n(n − 1)(n − 2)(n − 3)
.

By calculation, one obtains that H(Sn−5,3) < H(Pn−4,4) for n = 8, 9, · · · , 15 and H(Sn−5,3) > H(Pn−4,4) for n ≥ 16.
From above, we can get the following theorem.

Theorem 2.8. Let T be a tree of order n ≥ 6 and T <
{

Sn−4,2, Sn−3,1, Sn
}

. Then
(i) H (T) ≥ H

(

Sn−5,3
)

> H
(

Sn−4,2
)

> H
(

Sn−3,1
)

> H (Sn) for n = 8, 9, · · · , 15 and the equality holds if and only
if T � Sn−5,3.

(ii) H (T) ≥ H
(

Pn−4,4
)

> H
(

Sn−4,2
)

> H
(

Sn−3,1
)

> H (Sn) for n = 6, 7 or n ≥ 16 and the equality holds if and
only if T � Pn−4,4.
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