Generalized Inverses of a Linear Combination of Moore-Penrose Hermitian Matrices

Milan Mišićc ${ }^{\text {a }}$, Marina Tošić ${ }^{\text {a }}$, Zoran J. Popović ${ }^{\text {a }}$
${ }^{a}$ High Technical School of Professional Studies, Zvečan, Serbia.

Abstract

In this paper we give a representation of the Moore-Penrose inverse and the group inverse of a linear combination of Moore-Penrose Hermitian matrices, i.e., square matrices satisfying $A^{+}=A$. Also, we consider the invertibility of some linear combination of commuting Moore-Penrose Hermitian matrices.

1. Introduction

Let $\mathbb{C}^{n \times m}$ denote the set of all $n \times m$ complex matrices. The symbols $A^{*}, \mathcal{R}(A), \mathcal{N}(A)$ and $r(A)$ will denote the conjugate transpose, the range (column space), the null space and the rank of a matrix A, respectively. By $\mathbb{C}_{r}^{n \times n}$ we will denote the set of all matrices from $\mathbb{C}^{n \times n}$ with a rank r. The symbol \oplus denotes a direct sum. We say that k and l are congruent modulo m, and we use the notation $k \equiv_{m} l$, if $m \mid(k-l)$. The Moore-Penrose inverse of A , is the unique matrix A^{+}satisfying the equations
(1) $A A^{\dagger} A=A$,
(2) $A^{\dagger} A A^{\dagger}=A^{\dagger}$,
(3) $A A^{\dagger}=\left(A A^{\dagger}\right)^{*}$,
(4) $A^{\dagger} A=\left(A^{\dagger} A\right)^{*}$.

For a square matrix A there exists a unique reflexive generalized inverse of A which commutes with A if and only if A is of index 1 , that is, $r(A)=r\left(A^{2}\right)$ ([2], Theorem 1). This generalized inverse is called the group inverse of A and is denoted by A^{\sharp}.

By I_{n} we will denote the identity matrix of order n. We use the notations $C_{n}^{P}, C_{n}^{O P}$ and $C_{n}^{E P}$ for the subsets of $\mathbb{C}^{n \times n}$ consisting of projectors (idempotent matrices), orthogonal projectors (Hermitian idempotent matrices) and EP (range-Hermitian) matrices, respectively, i.e.,

$$
\begin{aligned}
& C_{n}^{P}=\left\{A \in \mathbb{C}^{n \times n}: A^{2}=A\right\} \\
& C_{n}^{O P}=\left\{A \in \mathbb{C}^{n \times n}: A^{2}=A=A^{*}\right\} \\
& C_{n}^{E P}=\left\{A \in \mathbb{C}^{n \times n}: \mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)\right\}=\left\{A \in \mathbb{C}^{n \times n}: A A^{\dagger}=A^{\dagger} A\right\}
\end{aligned}
$$

P_{S} denotes the orthogonal projector onto subspace S. Also, recall that a matrix $A \in \mathbb{C}^{n \times n}$ is generalized projector if $A^{2}=A^{*}$ and hypergeneralized k-projector for $A^{k}=A^{+}$, where $k \in \mathbb{N}$ and $k>1$. Specially, if $k=2$, we get the class of hypergeneralized projectors $\left(A^{2}=A^{\dagger}\right)$.

[^0]A characterization of nonnegative matrices such that $A=A^{\dagger}$ is derived by Berman [3]. In [4], the author introduced the following concept: Consider a \mathbb{C}^{*}-algebra A. A regular element $a \in A$ will be called Moore-Penrose Hermitian, if $a^{\dagger}=a$. In this paper our interest is the subset of the class of square matrices A with the property $A^{+}=A$, called as Moore-Penrose Hermitian matrices. Its basic properties are that $A^{3}=A$ and A^{2} is a orthogonal projector onto $\mathcal{R}(A)$.

The inspiration for this paper were [9], [10] in which authors considered the nonsingularity, i.e., the Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors, respectively, and [11] which includes the results related to the Moore-Penrose inverse of commuting hypergeneralized k-projectors.

The first and main objective of the present work is to give a form of the Moore-Penrose inverse, i.e., the group inverse of a linear combination $c_{1} A^{m}+c_{2} B^{k}$ under various conditions, where $A, B \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices, $m, k \in \mathbb{N}$ and $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ such that $c_{1}^{2}-c_{2}^{2} \neq 0$. Also, we study the nonsingularity of $c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}$ and, in particular, $c_{1} I_{n}+c_{2} A^{m}+B^{k}$, where $m, k, l \in \mathbb{N}$ and A, B and C are commuting Moore-Penrose Hermitian matrices and we give necessary and sufficient conditions for the simultaneous invertibility of $A-B$ and $A+B$, in the case when A and B are commuting Moore-Penrose Hermitian matrices.

2. Results

Using the fact that the Moore-Penrose Hermitian matrix $A \in \mathbb{C}_{r}^{n \times n}$ is EP-matrix, by Theorem 4.3.1 [5] we can conclude that A can be represented by

$$
A=U\left[\begin{array}{cc}
K & 0 \tag{1}\\
0 & 0
\end{array}\right] U^{*}
$$

where $U \in C^{n \times n}$ is unitary and $K \in \mathbb{C}^{r \times r}$ is such that $K^{2}=I_{r}$.
The following fact will be used very often:
If $X, Y \in \mathbb{C}^{n \times n}$ and $c_{1}, c_{2} \in \mathbb{C}$, then

$$
\begin{equation*}
X^{2}=Y^{2}=I_{n}, X Y=Y X \Rightarrow\left(c_{1} X+c_{2} Y\right)\left(c_{1} X-c_{2} Y\right)=\left(c_{1}^{2}-c_{2}^{2}\right) I_{n} \tag{2}
\end{equation*}
$$

We first present the form of the Moore-Penrose inverse, i.e., the group inverse of $c_{1} A^{m}+c_{2} B^{k}$, where $m, k \in \mathbb{N}$ and A, B are commuting Moore-Penrose Hermitian matrices.

Theorem 2.1. Let $A \in \mathbb{C}_{r}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ be commuting Moore-Penrose Hermitian matrices, $m, k \in \mathbb{N}, c_{1}, c_{2} \in$ $\mathbb{C} \backslash\{0\}$ and $c_{1}^{2}-c_{2}^{2} \neq 0$. Then

$$
\begin{equation*}
\left(c_{1} A^{m}+c_{2} B^{k}\right)^{\dagger}=\left(c_{1} A^{m}+c_{2} A A^{\dagger} B^{k}\right)^{\dagger}+c_{2}^{-1}\left(I_{n}-A A^{\dagger}\right) B^{k} \tag{3}
\end{equation*}
$$

Furthermore, $c_{1} A^{m}+c_{2} B^{k}$ is nonsingular if and only if $\left(I_{n}-A A^{\dagger}\right) B+A A^{\dagger}$ is nonsingular and in this case $\left(c_{1} A^{m}+c_{2} B^{k}\right)^{-1}$ is given by (3).

Proof. Let a Moore-Penrose Hermitian matrix $A \in \mathbb{C}^{n \times n}$ be of the form (1) and $r(A)=r$. We get that the condition $A B=B A$ is equivalent to the fact that B has the form

$$
B=U\left[\begin{array}{cc}
D & 0 \tag{4}\\
0 & G
\end{array}\right] U^{*},
$$

where $D \in C^{r \times r}$ and $G \in C^{(n-r) \times(n-r)}$ are Moore-Penrose Hermitian matrices and $K D=D K$. Now,

$$
c_{1} A^{m}+c_{2} B^{k}=U\left[\begin{array}{cc}
c_{1} K^{m}+c_{2} D^{k} & 0 \\
0 & c_{2} G^{k}
\end{array}\right] U^{*}
$$

where $U \in C^{n \times n}$ is unitary, $K, D \in \mathbb{C}^{r \times r}$ are such that

$$
K^{m}=\left\{\begin{array}{cc}
I_{r}, & m \equiv_{2} 0 \tag{5}\\
K, & m \equiv_{2} 1 .
\end{array}\right.
$$

$D^{\dagger}=D, K D=D K$ and $G \in C^{(n-r) \times(n-r)}$ is a Moore-Penrose Hermitian matrix such that

$$
G^{k}=\left\{\begin{align*}
P_{\mathcal{R}(G),}, & k \equiv_{2} 0 \tag{6}\\
G, & k \equiv_{2} 1 .
\end{align*}\right.
$$

Since $\left(D^{k}\right)^{2}$ is an orthogonal projector, $K^{2 m}=I_{r}$ and $\left(c_{1} K^{m}\right)^{2}-\left(c_{2} D^{k}\right)^{2}=c_{1}^{2} I_{r}-c_{2}^{2} P_{\mathcal{R}(D)}$, we get that $\left(c_{1} K^{m}\right)^{2}-\left(c_{2} D^{k}\right)^{2}$ is nonsingular for all constants $c_{1}, c_{2} \in \mathbb{C}$ such that $c_{1} \neq 0$ and $c_{1}^{2}-c_{2}^{2} \neq 0$. From the invertibility of $\left(c_{1} K^{m}\right)^{2}-\left(c_{2} D^{k}\right)^{2}$, it follows that $c_{1} K^{m}+c_{2} D^{k}$ is nonsingular.

Let

$$
W=U\left[\begin{array}{cc}
\left(c_{1} K^{m}+c_{2} D^{k}\right)^{-1} & 0 \\
0 & c_{2}^{-1}\left(G^{k}\right)^{+}
\end{array}\right] U^{*}
$$

i.e., the right hand side of (3), where

$$
\left(G^{k}\right)^{\dagger}=\left\{\begin{align*}
P_{\mathcal{R}(G)}, & k \equiv_{2} 0 \tag{7}\\
G, & k \equiv_{2} 1 .
\end{align*}\right.
$$

Obviously, W is the Moore-Penrose inverse of $c_{1} A^{m}+c_{2} B^{k}$.
Also, $c_{1} A^{m}+c_{2} B^{k}$ is nonsingular if and only if G is nonsingular, i.e., $c_{1} A^{m}+c_{2} B^{k}$ is nonsingular if and only if $\left(I_{n}-A A^{\dagger}\right) B+A A^{\dagger}$ is nonsingular and in this case $\left(c_{1} A^{m}+c_{2} B^{k}\right)^{-1}$ is given by (3).

With the additional requirements of Theorem 2.1 it is possible to give a more precise form of MoorePenrose inverse, i.e., the group inverse.

Corollary 2.2. Let $m, k \in \mathbb{N}, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$. If $A, B \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices such that $A B=0$, then

$$
\begin{equation*}
\left(c_{1} A^{m}+c_{2} B^{k}\right)^{\dagger}=c_{1}^{-1} A^{m}+c_{2}^{-1} B^{k} \tag{8}
\end{equation*}
$$

In the next theorem, we present the form of Moore-Penrose inverse, i.e., the group inverse of $c_{1} A^{m}+c_{2} B^{k}$, where A and B are commuting Moore-Penrose Hermitian matrices such that $A B=A^{2}=B A$.

Theorem 2.3. Let $c_{1}, c_{2} \in \mathbb{C}, c_{2} \neq 0, c_{1}^{2}-c_{2}^{2} \neq 0$ and $m, k \in \mathbb{N}$. If $A \in \mathbb{C}_{r}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices such that $A B=A^{2}=B A$, then

$$
\begin{equation*}
\left(c_{1} A^{m}+c_{2} B^{k}\right)^{\dagger}=\frac{1}{c_{1}^{2}-c_{2}^{2}}\left(c_{1} A^{m}-c_{2} A^{k}\right)+c_{2}^{-1}\left(I-A A^{\dagger}\right) B^{k} \tag{9}
\end{equation*}
$$

Proof. Suppose that A has the form (1) and B has the form given by (4). From $A B=A^{2}=B A$ we get that

$$
B=U\left[\begin{array}{cc}
K & 0 \\
0 & G
\end{array}\right] U^{*}
$$

where $G \in \mathbb{C}^{(n-r) \times(n-r)}$ is a Moore-Penrose Hermitian matrix. Now $c_{1} A^{m}+c_{2} B^{k}$ has the form

$$
c_{1} A^{m}+c_{2} B^{k}=U\left[\begin{array}{cc}
c_{1} K^{m}+c_{2} K^{k} & 0 \\
0 & c_{2} G^{k}
\end{array}\right] U^{*}
$$

where

$$
c_{1} K^{m}+c_{2} K^{k}= \begin{cases}\left(c_{1}+c_{2}\right) I_{r}, & m \equiv_{2} 0, k \equiv_{2} 0 \tag{10}\\ c_{1} I_{r} r_{+} c_{2} K, & m \equiv_{2} 0, k \equiv_{2} 1 \\ c_{1} K+c_{2} I_{r}, & m \equiv_{2} 1, k \equiv_{2} 0 \\ \left(c_{1}+c_{2}\right) K, & m \equiv_{2} 1, k \equiv_{2} 1\end{cases}
$$

and G^{k} is given by (6). By (2) it follows that $c_{1} K^{m}+c_{2} K^{k}$ is nonsingular for every $m, k \in \mathbb{N}$ and

$$
\left(c_{1} K^{m}+c_{2} K^{k}\right)^{-1}=\left\{\begin{aligned}
\left(c_{1}+c_{2}\right)^{-1} I_{r}, & m \equiv_{2} 0, k \equiv_{2} 0 \\
\frac{1}{c_{1}^{2}-c_{2}^{2}}\left(c_{1} I_{r}-c_{2} K\right), & m \equiv_{2} 0, k \equiv_{2} 1 \\
\frac{1}{c_{1}^{2}-c_{2}^{2}}\left(c_{1} K-c_{2} I_{r}\right), & m \equiv_{2} 1, k \equiv_{2} 0 \\
\left(c_{1}+c_{2}\right)^{-1} K, & m \equiv_{2} 1, k \equiv_{2} 1
\end{aligned}\right.
$$

Obviously $\left(c_{1} A^{m}+c_{2} B^{k}\right)^{\dagger}=U\left[\begin{array}{cc}\left(c_{1} K^{m}+c_{2} K^{k}\right)^{-1} & 0 \\ 0 & c_{2}^{-1}\left(G^{k}\right)^{\dagger}\end{array}\right] U^{*}$, i.e., $\left(c_{1} A^{m}+c_{2} B^{k}\right)^{\dagger}$ is defined by (9).
Corollary 2.4. Let $A \in \mathbb{C}_{r}^{n \times n}$ be a Moore-Penrose Hermitian matrix, $c_{1}, c_{2} \in \mathbb{C}, c_{1}^{2}-c_{2}^{2} \neq 0$ and $m, k \in \mathbb{N}$. Then $\left(c_{1} A^{m}+c_{2} A^{k}\right)^{\dagger}=\frac{1}{c_{1}^{2}-c_{2}^{2}}\left(c_{1} A^{m}-c_{2} A^{k}\right)$.

In the following we study the invertibility of linear combinations of Moore-Penrose Hermitian matrices.
First, we state an auxiliary result.
Lemma 2.5. [7] Let $A, B \in \mathbb{C}^{n \times n}$. Then

$$
\begin{aligned}
& \mathcal{R}\left(A^{*}\right)+\mathcal{R}\left(B^{*}\right)=\mathbb{C}^{n \times 1} \Leftrightarrow \mathcal{N}(A) \cap \mathcal{N}(B)=\{0\} \\
& \mathcal{R}\left(A^{*}\right) \cap \mathcal{R}\left(B^{*}\right)=\{0\} \Leftrightarrow \mathcal{N}(A)+\mathcal{N}(B)=\mathbb{C}^{n \times 1} .
\end{aligned}
$$

The following theorem presents some necessary and sufficient conditions for the simultaneous invertibility of $A-B$ and $A+B$, in the case when A and B are commuting Moore-Penrose Hermitian matrices.

Theorem 2.6. Let $A, B \in \mathbb{C}^{n \times n}$ be Moore-Penrose Hermitian matrices and $A B=B A$. The following conditions are equivalent:
(i) $\mathcal{R}(A) \oplus \mathcal{R}(B)=\mathbb{C}^{n \times 1}$,
(ii) $\mathcal{N}(A) \oplus \mathcal{N}(B)=\mathbb{C}^{n \times 1}$,
(iii) $\mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$ and $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$,
(iv) $A-B, A+B$ are nonsingular.

Proof. The part $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ follows by Lemma 2.1 and the fact that $\mathcal{R}\left(A^{*}\right)=\mathcal{R}(A)$ and $\mathcal{R}\left(B^{*}\right)=\mathcal{R}(B)$.
$(i i i) \Rightarrow(i v)$ We prove that $A-B$ is bijective.
Let $(A-B) x=0$. Then $A x=B x \in \mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$, so $x \in \mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$. Thus $A-B$ is injective, so it is bijective.

The proof for the invertibility of $A+B$ is similar, so we omit it.
$(i v) \Rightarrow(i)$ Since $A B=B A$, we have

$$
A^{2}-B^{2}=(A-B)(A+B)
$$

From (iv) it follows that $A^{2}-B^{2}$ is nonsingular. Then from Theorem 1.2 [7] we get that $\mathcal{R}\left(A^{2}\right) \oplus \mathcal{R}\left(B^{2}\right)=\mathbb{C}^{n \times 1}$ which is equivalent to (i).

In subsequent consideration, the first part of Theorem 2.1 in [8] plays a crucial role.
Theorem 2.7. [8] Let $A, B \in C_{n}^{E P}$ and let $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$. If $A B=0$, then the following conditions are equivalent:
(i) $\mathcal{R}(A) \oplus \mathcal{R}(B)=\mathbb{C}^{n \times 1}$,
(ii) $\mathcal{N}(A) \oplus \mathcal{N}(B)=\mathbb{C}^{n \times 1}$,
(iii) $\mathcal{R}(A) \cap \mathcal{R}(B)=\{0\}$ and $\mathcal{N}(A) \cap \mathcal{N}(B)=\{0\}$,
(iv) $c_{1} A+c_{2} B$ is nonsingular.

It is obvious that any Moore-Penrose Hermitian matrix is a EP-matrix and if A is a Moore-Penrose Hermitian matrix, then $A^{k}, k \in N$ is also a Moore-Penrose Hermitian matrix. Thus, applies the following corollary:

Corollary 2.8. Let $A, B \in \mathbb{C}^{n \times n}$ be commuting Moore-Penrose Hermitian matrices and let $k, l \in N, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$. If $A B=0$, then the following conditions are equivalent:
(i) $c_{1} A^{k}+c_{2} B^{l}$ is nonsingular,
(ii) $A+B$ is nonsingular.

Also, we need the following lemma:
Lemma 2.9. Let $P_{1} \in \mathbb{C}_{r}^{n \times n}$ and $P_{2} \in \mathbb{C}^{n \times n}$ be orthogonal projectors, $c_{1}, c_{2}, c_{3} \in \mathbb{C}, c_{1} \neq 0, c_{1}-c_{2} \neq 0$ and $c_{1}-c_{3} \neq 0$. If $P_{1} P_{2}=0=P_{2} P_{1}$, then $c_{1} I_{n}-c_{2} P_{1}-c_{3} P_{2}$ is nonsingular.

Proof. Since $P_{1} \in C_{n}^{O P}$ and $r\left(P_{1}\right)=r$, then we get that P_{1} has the form

$$
P_{1}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*},
$$

where $U \in C^{n \times n}$ is unitary (by Lemma 1 [1]). The condition $P_{1} P_{2}=0=P_{2} P_{1}$ is equivalent to the fact that P_{2} has the form

$$
P_{2}=U\left[\begin{array}{ll}
0 & 0 \\
0 & G
\end{array}\right] U^{*},
$$

where $G \in C^{(n-r) \times(n-r)}$ is an orthogonal projector. Now,

$$
c_{1} I_{n}-c_{2} P_{1}-c_{3} P_{2}=U\left[\begin{array}{cc}
\left(c_{1}-c_{2}\right) I_{r} & 0 \\
0 & c_{1} I_{n-r}-c_{3} G
\end{array}\right] U^{*} .
$$

Since $c_{1} I_{n-r}-c_{3} G$ is the sum of the identity matrix and an orthogonal projector, then $c_{1} I_{n-r}-c_{3} G$ is nonsingular for every constants $c_{1}, c_{3} \in \mathbb{C}$ such that $c_{1} \neq 0$ and $c_{1}-c_{3} \neq 0$. Hence, $c_{1} I_{n}-c_{2} P_{1}-c_{3} P_{2}$ is nonsingular for every constants $c_{1}, c_{2}, c_{3} \in \mathbb{C}$ such that $c_{1} \neq 0, c_{1}-c_{2} \neq 0$ and $c_{1}-c_{3} \neq 0$.

The following theorem presents necessary and sufficient conditions for the invertibility of $c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}$.
Theorem 2.10. Let $c_{1}, c_{2}, c_{3} \in \mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0, c_{1}^{2}-c_{3}^{2} \neq 0$ and $m, k, l \in \mathbb{N}$. If $A, B, C \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices such that $B C=0$, then $c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}$ is nonsingular if and only if $\left(I_{n}-A A^{+}\right)(B+C)+A A^{+}$is nonsingular.

Proof. Let $A, B, C \in \mathbb{C}^{n \times n}$ be commuting Moore-Penrose Hermitian matrices. Let $A \in \mathbb{C}^{n \times n}$ be of the form (1) and $r(A)=r$. The condition $A B=B A$ implies that B has the form (4).

The condition $A C=C A$ implies that C has the form

$$
C=U\left[\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right] U^{*}
$$

where $M \in C^{r \times r}$ and $N \in C^{(n-r) \times(n-r)}$ are Moore-Penrose Hermitian matrices and $K M=M K$. From $B C=0=$ $C B$ it follows that $D M=0=M D$ and $G N=0=N G$. Now,

$$
c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}=U\left[\begin{array}{cc}
c_{1} K^{m}+c_{2} D^{k}+c_{3} M^{l} & 0 \\
0 & c_{2} G^{k}+c_{3} N^{l}
\end{array}\right] U^{*}
$$

where K^{m} is given by (5), $D^{k}, M^{l} G^{k}$ and N^{l} are given by (6).
Notice that $\left(c_{1} K^{m}\right)^{2}-\left(c_{2} D^{k}+c_{3} M^{l}\right)^{2}=c_{1}^{2} K^{2}-c_{2}^{2} D^{2}-c_{3}^{2} M^{2}=c_{1}^{2} I_{r}-c_{2}^{2} D^{2}-c_{3}^{2} M^{2}$. Since D^{2} and M^{2} are orthogonal projectors, then $c_{1}^{2} I_{r}-c_{2}^{2} D^{2}-c_{3}^{2} M^{2}$, i.e. $\left(c_{1} K^{m}\right)^{2}-\left(c_{2} D^{k}+c_{3} M^{l}\right)^{2}$ is nonsingular for every constants $c_{1}, c_{2}, c_{3} \in \mathbb{C}$ such that $c_{1} \neq 0, c_{1}^{2}-c_{2}^{2} \neq 0$ and $c_{1}^{2}-c_{3}^{2} \neq 0$ (by Lemma 2.9). From the invertibility of $\left(c_{1} K^{m}\right)^{2}-\left(c_{2} D^{k}+c_{3} M^{l}\right)^{2}$, it follows that $c_{1} K^{m}+c_{2} D^{k}+c_{3} M^{l}$ is nonsingular.

Also,

$$
\left(I_{n}-A A^{\dagger}\right)(B+C)+A A^{+}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & G+N
\end{array}\right] U^{*}
$$

Remark that the invertibility of $c_{2} G^{k}+c_{3} N^{l}$ is equivalent to the invertibility of $G+N$ for every constants $c_{2}, c_{3} \in \mathbb{C} \backslash\{0\}$ (by Corollary 2.8). Hence, $c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}$ is nonsingular if and only if $\left(I_{n}-A A^{\dagger}\right)(B+C)+A A^{+}$ is nonsingular.

As corollaries we get:
Corollary 2.11. Let $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0, c_{1}^{2}-c_{3}^{2} \neq 0$ and $m, k, l \in \mathbb{N}$. If $A, B, C \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices such that $B C=0$, then the invertibility of $c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}$ is independent of the choice of the constants $c_{1}, c_{2}, c_{3}, m, k, l$.

Corollary 2.12. Let $A, B, C \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices such that $B C=0, c_{1}, c_{2}, c_{3} \in$ $\mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0, c_{1}^{2}-c_{3}^{2} \neq 0$ and $m, k, l \in \mathbb{N}$. If A is nonsingular, then $c_{1} A^{m}+c_{2} B^{k}+c_{3} C^{l}$ is nonsingular.

Corollary 2.13. Let $A, B \in \mathbb{C}^{n \times n}$ be commuting Moore-Penrose Hermitian matrices and let $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0$ and $m, k \in N$. Then $c_{1} A^{m}+c_{2} B^{k}$ is nonsingular if and only if $\left(I_{n}-A A^{+}\right) B+A A^{+}$is nonsingular.

Notice that Corollary 2.13 is the part of Theorem 2.1.
Corollary 2.14. Let $A, B \in \mathbb{C}^{n \times n}$ be commuting $c_{1}^{2}-c_{2}^{2} \neq 0, c_{1}^{2}-c_{3}^{2} \neq 0$ and let $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0$ and $m, k \in N$. If A is nonsingular, then $c_{1} A^{m}+c_{2} B^{k}$ is nonsingular.

By Theorem 2.10 we conclude that $c_{1} I_{n}+c_{2} A^{m}+c_{3} B^{k}$ is nonsingular, in the case when A, B are commuting Moore-Penrose Hermitian matrices such that $A B=0$ and $c_{1}, c_{2}, c_{3} \in \mathbb{C} \backslash\{0\}$ such that $c_{1}^{2}-c_{2}^{2} \neq 0, c_{1}^{2}-c_{3}^{2} \neq 0$. In the following theorem, we give the form $\left(c_{1} I_{n}+c_{2} A^{m}+c_{3} B^{k}\right)^{-1}$.

Theorem 2.15. Let $c_{1}, c_{2}, c_{3} \in \mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0, c_{1}^{2}-c_{3}^{2} \neq 0$ and $m, k \in \mathbb{N}$. If $A, B \in \mathbb{C}^{n \times n}$ are commuting Moore-Penrose Hermitian matrices such that $A B=0$, then $c_{1} I_{n}+c_{2} A^{m}+c_{3} B^{k}$ is nonsingular and

$$
\begin{equation*}
\left(c_{1} I_{n}+c_{2} A^{m}+c_{3} B^{k}\right)^{-1}=\frac{1}{c_{1}^{2}-c_{2}^{2}}\left[c_{1} A^{2 m}-c_{2} A^{m}\right]+\left(I-A A^{\dagger}\right)\left[c_{1} I_{n}+c_{3} B^{k}\right]^{-1} \tag{11}
\end{equation*}
$$

Proof. Let $A, B \in \mathbb{C}^{n \times n}$ be commuting generalized projectors such that $A B=0$. If A is given by (1) and $r(A)=r$, then B has the form

$$
B=U\left[\begin{array}{cc}
0 & 0 \tag{12}\\
0 & G
\end{array}\right] U^{*}
$$

where $G \in C^{(n-r) \times(n-r)}$ is a Moore-Penrose Hermitian matrix. Then

$$
c_{1} I_{n}+c_{2} A^{m}+c_{3} B^{k}=U\left[\begin{array}{cc}
c_{1} I_{r}+c_{2} K^{m} & 0 \\
0 & c_{1} I_{n-r}+c_{3} G^{k}
\end{array}\right] U^{*}
$$

where K^{m} and G^{k} are given by (5) and (6), respectively. Obviously, $c_{1} I_{n}+c_{2} A^{m}+c_{3} B^{k}$ is nonsingular if and only if $c_{1} I_{r}+c_{2} K^{m}$ and $c_{1} I_{n-r}+c_{3} G^{k}$ are nonsingular. By (2) it follows that $c_{1} I_{r}+c_{2} K^{m}$ is nonsingular for every $m \in N$ and

$$
\left(c_{1} I_{r}+c_{2} K^{m}\right)^{-1}=\left\{\begin{align*}
\left(c_{1}+c_{2}\right)^{-1} I_{r}, & m \equiv_{2} 0 \tag{13}\\
\frac{1}{c_{1}^{2}-c_{2}^{2}}\left(c_{1} I_{r}-c_{2} K\right), & m \equiv_{2} 1
\end{align*}\right.
$$

By Theorem 2.1 we conclude that $c_{1} I_{n-r}+c_{3} G^{k}$ is nonsingular. Now,

$$
\left(c_{1} I_{n}+c_{2} A^{m}\right)^{-1}=U\left[\begin{array}{cc}
\left(c_{1} I_{r}+c_{2} K^{m}\right)^{-1} & 0 \tag{14}\\
0 & \left(c_{1} I_{n-r}+c_{3} G^{k}\right)^{-1}
\end{array}\right] U^{*}
$$

where $\left(c_{1} I_{r}+c_{2} K^{m}\right)^{-1}$ is given by (13). Obviously, the form (14) is equivalent to the form (11).
As a corollary, we get the form $\left(c_{1} I_{n}+c_{2} A^{m}\right)^{-1}$ in the case when A is a Moore-Penrose Hermitian matrix and $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}, c_{1}^{2}-c_{2}^{2} \neq 0$.

Corollary 2.16. Let $A \in \mathbb{C}_{r}^{n \times n}$ be a commuting Moore-Penrose Hermitian matrix, $c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ such that $c_{1}^{2}-c_{2}^{2} \neq 0$ and $m \in \mathbb{N}$. Then $c_{1} I_{n}+c_{2} A^{m}$ is nonsingular and

$$
\left(c_{1} I_{n}+c_{2} A^{m}\right)^{-1}=\frac{1}{c_{1}^{2}-c_{2}^{2}}\left[c_{1} A^{2 m}-c_{2} A^{m}\right]+c_{1}^{-1}\left(I-A A^{\dagger}\right)
$$

Remark: If we consider a finite commuting family $A_{i} \in \mathbb{C}^{n \times n}, i=\overline{1, m}$, where all of the members are commuting Moore-Penrose Hermitian matrices, then $\prod_{i=1}^{m} A_{i}^{k_{i}}$ is also a Moore-Penrose Hermitian matrix. Then $c_{1} I_{n}+c_{2} \prod_{i=1}^{m} A_{i}^{k_{i}}$ is nonsingular, where $m, k_{1}, \ldots, k_{m} \in \mathbb{N}, c_{1}, c_{2} \in \mathbb{C} \backslash\{0\}$ and $c_{1}^{2}-c_{2}^{2} \neq 0$.

References

[1] J.K. Baksalary, O.M. Baksalary, X. Liu, G. Trenkler, Further results on generalized and hypergeneralized projectors, Linear Algebra and its Applications 429 (2008) 1038-1050.
[2] A. Ben-Israel and T. N. E. Greville. Generalized Inverses: Theory and Applications, (2nd edition), Springer-Verlag, New York, 2003.
[3] A. Berman, Nonnegative Matrices which are Equal to Their Generalized Inverse, Linear Algebra and its Applications 9 (1974) 261-265.
[4] E. Boasso, On the Moore-Penrose Inverse in \mathbb{C}^{*}-algebras, Extracta mathematicae 21 (2006) 2, 93-106.
[5] S. Campbell and C. Meyer. Generalized inverses of Linear Transformations. Pitman Publishing Limited, 1979; Dover Publications, 1991; SIAM, Philadelphia, 2008.
[6] C.H.Hung, T.L.Markham, The Moore-Penrose inverse of a sum of matrices, Journal of the Australian Mathematical Society 23 (1980) 249-260.
[7] J.J. Koliha, V. Rakočević, I. Straškraba, The difference and sum of projectors, Linear Algebra and its Applications 388 (2004) 279-288.
[8] M. Tošić, D.S. Cvetković-Ilić The invertibility of two matrices and partial orderings, Applied Mathematics and Computation 218 (2012) 4651-4657.
[9] M. Tošić, D.S. Cvetković-Ilić The invertibility of the difference and sum of two generalized and hypergeneralized projectors, Linear and Multilinear Algebra 61 (2013) 482-493.
[10] M. Tošić, D.S. Cvetković-Ilić and C. Deng, The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors, The Electronic Journal of Linear Algebra 22 (2011) 1129-1137.
[11] M. Tošić, Characterizations and the Moore-Penrose inverse of hypergeneralized k-projectors, Bulletin of the Korean Mathematical Society 51 (2014), 2, 501-510.

[^0]: 2010 Mathematics Subject Classification. 15A09
 Keywords. Moore-Penrose inverse, group inverse, Moore-Penrose Hermitian matrix, invertibility.
 Received: 18 February 2016; Accepted: 30 March 2016
 Communicated by Dragana Cvetković Ilić
 Email addresses: m.misic@vts-zvecan.edu.rs (Milan Mišić), marinatosic@ymail.com (Marina Tošić), z.popovic@vts-zvecan.edu.rs (Zoran J. Popović)

