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Abstract. In this article, we study the asymptotic stability of solutions for the non-autonomous third order
delay differential equation by constructing Lyapunov functionals.

1. introduction

Asymptotic properties of solutions of delay differential equations of the third order have been subject
of intensive studying in the literature. This problem has received considerable attention in recent years,
see for instance: Andres [3, 4], Burton [6–8], Krasovskii [10] and Yoshizawa [23] which contain the general
results on the subject matter. Other authors include Ademola et al. [1, 2], Oudjedi et al. [12], Tunç [16 – 22],
Zhang and Yu [24] and Zhu [25] on functional or delay differential equations.

Sadek in [13, 14] and recently Omeike [11] established some sufficient conditions for the asymptotic
stability of the solution x = 0 to the following third order non-linear delay differential equation:

x′′′ + a(t)x′′ + b(t)x′ + c(t) f (x(t − r)) = 0. (1)

Tunç in [18] and recently Yuzhen and Cuixia [5] studied the stability of solutions for the non-autonomous
third order differential equation with a deviating argument, r:

x′′′(t) + a(t)x′′(t) + b(t)11(x′(t − r)) + 12(x′(t)) + h(x(t − r)) = 0. (2)

In the present paper, we study the asymptotic behavior of solutions of a certain third order delay differential
equation of the form

[P(x(t))x′(t)]′′ + a(t)[Q(x(t))x′(t)]′ + b(t)[R(x(t))x′(t)] + c(t) f (x(t − r)) = 0, (3)

where a(t), b(t), c(t),P(x),Q(x),R(x) and f (x) are continuous and depend (at most) only on the arguments
displayed explicitly, r is a positive constant, fixed delay ( f (0) = 0).

Equation (1) is a particular case to our preceding non-autonomous differential equation with the devi-
ating argument r if P(x) = Q(x) = R(x) = 1. On the other hand, we can find the same result for the equation
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(3) without delay by putting r = 0, which is generalization of Hara [9] and Swick [15] results.

If P(x) = 1, then (3) takes the form

x′′′ + a(t)Q(x)x′′ + 1(t, x, x′) + c(t) f (x(t − r)) = 0,

where

1(t, x, x′) = a(t)Q′(x)x′2 + b(t)R(x)x′,

which is similar to (2) in the case 11(x′(t − r)) = 0.

The motivation for the present work comes from the paper of Tunç [18], Omeike [11] and Sadek [13, 14]
and the papers mentioned above. Our purpose is to find two similar results for (3). Namely, we will show
sufficient conditions to improve that all solutions of (3) are uniformly bounded and converge to zero as
t → ∞. We shall use Lyapunov’s second (or direct) method as our tool to achieve the desired results. The
results obtained in this investigation improve the existing results on the third-order non-linear differential
equations in the literature.

2. Preliminaries

In order to prove our results, we give the following definitions and lemmas. Consider the equation

x′ = f (t, xt), xt(θ) = x(t + θ) , −r ≤ θ ≤ 0, t ≥ 0, (4)

where f : I × CH → Rn is a continuous mapping, f (t, 0) = 0, CH := {φ ∈ C([−r, 0], Rn) : ‖φ‖ ≤ H}, and for
H1 < H, there exists L(H1) > 0, with | f (t, φ)| < L(H1) when ‖φ‖ < H1.

Definition 2.1. ([8]). An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ), if x(t, 0, φ) is defined on [0,+∞) and
there is a sequence {tn}, tn → ∞, as n → ∞, with ‖xtn (φ) − ψ‖ → 0 as n → ∞ where xtn (φ) = x(tn + θ, 0, φ) f or
−r ≤ θ ≤ 0.

Definition 2.2. ([8]). A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the solution of (2.1), x(t, 0, φ), is defined
on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3. ([6]). If φ ∈ CHis such that the solution xt(φ) of (4) with x0(φ) = φ is defined on [0,∞) and
‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a non-empty, compact, invariant set and

dist(xt(φ),Ω(φ))→ 0 as t→∞.

Lemma 2.4. ([6]). Let V(t, φ) : I × CH → R be a continuous functional satisfying a local Lipschitz condition.
V(t, 0) = 0, and such that:
(i) W1(|φ(0)|) ≤ V(t, φ) ≤W2(‖φ‖) where W1(r), W2(r) are wedges.
(ii) V′(4)(t, φ) ≤ 0, for φ ∈ CH.
Then the zero solution of (4) is uniformly stable.
If Z = {φ ∈ CH : V′(4)(t, φ) = 0}, then the zero solution of (4) is asymptotically stable, provided that the largest
invariant set in Z is Q = {0}.

3. Statement of Results

We shall state here some assumptions which will be used on the functions that appeared in equation
(3). Assume that there are positive constants a0, b0, c0, d,A,B,C, p0, p1, q0, q1, r0, r1, δ0, and δ1 such that:
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A0) P(x),Q(x),R(x) and f (x) are continuously differentiable functions on R,

a(t), b(t) and c(t) are continuously differentiable functions on [0,+∞[.

A1) 0 < a0 ≤ a(t) ≤ A; 0 < b0 ≤ b(t) ≤ B; 0 < c0 ≤ c(t) ≤ C.

A2) 0 < p0 ≤ P(x) ≤ p1; 0 < q0 ≤ Q(x) ≤ q1; 0 < r0 ≤ R(x) ≤ r1.

A3) f (0) = 0,
f (x)
x
≥ δ0 > 0 (x , 0), and | f ′(x)| ≤ δ1 for all x.

A4)
∫ +∞

−∞

(|P′(u)| + |Q′(u)| + |R′(u)|)du < ∞.

For the sake of convenience, we introduce the following functions:

θ1(t) =
P′(x(t))
P2(x(t))

x′(t),

θ2(t) =
Q′(x(t))P(x(t)) −Q(x(t))P′(x(t))

P2(x(t))
x′(t),

and

θ3(t) =
R′(x(t))P(x(t)) − R(x(t))P′(x(t))

P2(x(t))
x′(t).

The following theorems present uniform asymptotic criterion for (3):

Theorem 3.1. Further to the basic assumptions (A0)-(A4) being satisfied, suppose that the following conditions hold:

i) c(t) ≤ b(t), −L ≤ b′(t) ≤ c′(t) ≤ 0 for t ∈ [0,∞).

ii)
p1δ1

r0
< d < a0q0.

iii) 1
2 da′(t)Q(x) − b0(dr0 − p1δ1) ≤ −ε < 0.

Then the zero solution of (3) is uniformly asymptotically stable provided that

r < min
2(a0q0 − d)

p1Cδ1
,

2p3
0ε

Cδ1p2
1(d + dp2

0 + p0)

 .
Theorem 3.2. In addition to the basic assumptions (A0)-(A4), suppose that the following conditions hold:

j)
p1C
b0r0

δ1 < d < a0q0.

jj) da′(t)Q(x) + b′(t)P(x)R(x) − P2(x)
δ1

d
c′(t) < db0r0 − p1Cδ1.

jjj)
∫
∞

0
|c′(s)| ds ≤ N1 < ∞ and c′(t)→ 0 as t→∞.

Then the zero solution of (3) is uniformly asymptotically stable, provided that

r < min
2(a0q0 − d)

p1Cδ1
,

p3
0(db0r0 − p1Cδ1)

p2
1Cδ1(d + dp2

0 + p0)

 .
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Proof. [Proof of Theorem 3.1] Equation (3) can be transformed to the following system:

x′ =
1

P(x)
y

y′ = z (5)

z′ = −a(t)θ2(t)y −
a(t)Q(x)

P(x)
z −

b(t)R(x)
P(x)

y − c(t) f (x) + c(t)
∫ t

t−r

y(s)
P(x(s))

f ′(x(s))ds.

Define the Lyapunov functional U = U(t, xt, yt, zt) as follows:

U(t, xt, yt, zt) = (exp(−
γ(t)
µ

))V(t, xt, yt, zt) = (exp(−
γ(t)
µ

))V, (6)

where

γ(t) =

∫ t

0
(|θ1(s)| + |θ2(s)| + |θ3(s)|)ds, (7)

and

V = dc(t)F(x) + c(t) f (x)y +
b(t)R(x)

2P(x)
y2 +

1
2

z2 +
d

P(x)
yz +

da(t)Q(x)
2P2(x)

y2 + λ

0∫
−r

t∫
t+s

y2(ξ)dξds, (8)

such that F(x) =
∫ x

0 f (u)du. µ and λ are positive constants which will be determined later. Define

V1 = dc(t)F(x) + c(t) f (x)y +
b(t)R(x)

2P(x)
y2,

in view of the hypotheses of Theorem 3.1, and after some rearrangements we have

V1 = dc(t)F(x) +
b(t)R(x)

2P(x)

{
y +

c(t) f (x)P(x)
b(t)R(x)

}2

−
c2(t)P(x) f 2(x)

2b(t)R(x)

≥ dc(t)
∫ x

0

[
1 −

c(t)P(x) f ′(u)
db(t)R(x)

]
f (u)du

≥ dc(t)
∫ x

0

[
1 −

p1δ1

dr0

]
f (u)du

≥ δ2F(x),

where

δ2 = dc0

(
1 −

p1δ1

dr0

)
> dc0

(
1 −

d
d

)
= 0.

Thus from (A3) we obtain

V1 ≥
δ2δ0

2
x2.

We note that

V2 =
1
2

z2 +
d

P(x)
yz +

da(t)Q(x)
2P2(x)

y2,
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is obviously positive definite, this follows from the conditions a(t) ≥ a0, Q(x) ≥ q0 and (ii). Hence,

V2 ≥
1
2

(
z +

d
P(x)

y
)2

+
d(a0q0 − d)

2P2(x)
y2 > 0.

We can therefore, find a constant δ = δ(δ0, δ2, a0, q0, p1, d) > 0, such that

V ≥ δ(x2 + y2 + z2), (9)

since the integral is non-negative.

After a change of variables in the integral of (7) and by (A2) and (A4), we get

γ(t) ≤ (1 + r1 + q1)
∫ α2(t)

α1(t)

|P′(u)|
P2(u)

du +

∫ α2(t)

α1(t)

|R′(u)| + |Q′(u)|
P(u)

du

≤
(1 + r1 + q1)

p2
0

∫ +∞

−∞

|P′(u)| du +
1
p0

∫ +∞

−∞

(|R′(u)| + |Q′(u)|)du

≤ N < ∞,

where α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}. Now, we can deduce that there exists a continuous
function W1(|Φ(0)|) with

W1(|Φ(0)|) ≥ 0 and W1(|Φ(0)|) ≤ U(t,Φ).

By (A1), (A2) and (A3), it is not difficult to show that

V ≤ δ3(x2 + y2 + z2) + δ4

∫ 0

−r

∫ t

t+s
(x2(ξ) + y2(ξ) + z2(ξ))dξds, (10)

where δ3 =
1
2

max{Cδ1(1 + d),Cδ1 +
Br1

p0
+

d
p0

+
dAq1

p2
0

, 1 +
d
p0
}, and δ4 = max{1, λ}.

Then there exist a continuous function W2(‖φ‖) which satisfies the inequality U(t, φ) ≤W2(‖φ‖).

Now, we show that the derivative of V(t, xt, yt, zt) with respect to t along the solution path of system (5)
is negative definite

d
dt

V = dc′(t)F(x) + c′(t)y f (x) +
b′(t)R(x)

2P(x)
y2
− λ

∫ t

t−r
y2(ξ)dξ

− dθ1(t)(yz +
a(t)Q(x)

2P(x)
y2) − a(t)θ2(t)(yz +

d
2P(x)

y2) +
b(t)
2
θ3(t)y2

+ c(t)(z +
d

P(x)
y)

∫ t

t−r

y(s)
P(x(s))

f ′(x(s))ds +
1

P(x)
(d − a(t)Q(x))z2

+

[
da′(t)Q(x) + 2c(t)P(x) f ′(x) − 2db(t)R(x)

2P2(x)

]
y2 + λry2.

From hypotheses of Theorem 3.1, we obtain

d
dt

V ≤W1 + W2 + W3 − λ

∫ t

t−r
y2(ξ)dξ −

1
p1

(a0q0 − d)z2
− (

ε

p2
1

− λr)y2, (11)

where

W1 = dc′(t)F(x) + c′(t)y f (x) +
b′(t)R(x)

2P(x)
y2,
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W2 = d |θ1(t)| (
∣∣∣zy

∣∣∣ +
a(t)Q(x)

2P(x)
y2) +

B
2
|θ3(t)|y2 + a(t)|θ2(t)|(|yz| +

d
2P(x)

y2),

and

W3 = c(t)(z +
dy

P(x)
)
∫ t

t−r

y(s)
P(x(s))

f ′(x(s))ds.

First, we show that W1 is a negative-definite function, we have two cases for all x, y and t ≥ 0. If c′(t) = 0,
then

W1 =
b′(t)R(x)

2P(x)
y2
≤ 0.

If c′(t) < 0, the quantity in the brackets below can be written as,

W1 = dc′(t)
[
F(x) +

1
d

y f (x) +
b′(t)R(x)

2dP(x)c′(t)
y2

]
= dc′(t)

F(x) +
b′(t)R(x)

2dP(x)c′(t)

{
y +

c′(t)P(x) f (x)
b′(t)R(x)

}2

−
c′(t)P(x) f 2(x)

2db′(t)R(x)

 ,
from the assumption (i), we get

W1 ≤ dc′(t)
∫ x

0
(1 −

P(x) f ′(u)
dR(x)

) f (u)du

≤ dc′(t)
∫ x

0
(1 −

p1δ1

dr0
) f (u)du

≤ c′(t)
δ2

c0
F(x) ≤ 0.

Thus, on combining the two cases, we get W1 ≤ 0 for all t ≥ 0, x and y. Similarly by 2ab ≤ a2 + b2, we have
the following :

W2 ≤

[
d
2
|θ1(t)| (1 +

Aq1

p0
) +

A
2
|θ2(t)|(1 +

d
p0

)
]

(y2 + z2) +
B
2
|θ3(t)|y2

≤ k1 [|θ1(t)| + |θ2(t)| + |θ3(t)|] (y2 + z2), (12)

and

W3 ≤
Cδ1r

2
z2 +

Cδ1dr
2p0

y2 +
Cδ1

2p2
0

(1 +
d
p0

)
∫ t

t−r
y2(ξ)dξ, (13)

where k1 = max(
d
2

(1 +
Aq1

p0
),

A
2

(1 +
d
p0

),
B
2

).

Estimates for W1, W2 and W3 into (11), yields

d
dt

V ≤ −

 εp2
1

− (λ +
dCδ1

2p0
)r

 y2
−

[
a0q0 − d

p1
−

Cδ1r
2

]
z2 +

Cδ1

2p2
0

(1 +
d
p0

) − λ

 ∫ t

t−r
y2(ξ)dξ

+k1 [|θ1(t)| + |θ2(t)| + |θ3(t)|] (y2 + z2).

Choosing λ =
Cδ1

2p2
0

(1 +
d
p0

), we obtain

d
dt

V ≤ −

 εp2
1

−
Cδ1

2p0
(d +

1
p0

+
d
p2

0

)r

 y2
−

[
a0q0 − d

p1
−

Cδ1r
2

]
z2 + k1 [|θ1(t)| + |θ2(t)| + |θ3(t)|] (y2 + z2).
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From (9), (6) and taking µ =
δ
k1

we see at once that

d
dt

U = (exp(−
k1γ(t)
δ

))(
d
dt

V −
k1(|θ1(t)| + |θ2(t)| + |θ3(t)|)

δ
V)

≤ K[−(
ε

p2
1

−
Cδ1r
2p0

(d +
1
p0

+
d
p2

0

))y2
− (

a0q0 − d
p1

−
Cδ1r

2
)z2],

where K = exp(−
k1N
δ

). Therefore, if

r < min
2(a0q0 − d)

p1Cδ1
,

2p3
0ε

Cδ1p2
1(d + dp2

0 + p0)

 .
Then

d
dt

U(t, xt, yt, zt) ≤ −β(y2 + z2), for some β > 0. (14)

On combining the inequalities in (9), (10) and (14), the hypotheses of Lemma 2.4 are satisfied. Namely, the

only solution of system (3) for which
d
dt

U(t, xt, yt, zt) = 0 is the solution x = y = z = 0. Thus, under the above
discussion, we conclude that the trivial solution of equation (3) is uniformly asymptotically stable.

Proof. [Proof of Theorem 3.2] The proof depend on some fundamental properties of a continuously differ-
entiable Lyapunov functional, we define W = W(t, xt, yt, zt) as

W(t, xt, yt, zt) = (exp(−β(t)))(V(t, xt, yt, zt), (15)

where

β(t) =

∫ t

0

[
1
µ

(|θ1(s)| + |θ2(s)| + |θ3(s)|) +
1
c0
|c′(s)|

]
ds,

and V = V(t, x, y, z) is already defined in Theorem 3.1. To show that V is a positive definite function with
the conditions in Theorem 3.2, we rewrite V thus:

V = dc(t)U0 + U1 + V2 + λ

∫ 0

−r

∫ t

t+s
y2(ξ)dξds,

where

U0 = F(x) +
1
d

y f (x) +
δ1

2d2 y2,

U1 =
1
2

[
−

c(t)δ1

d
+

b(t)R(x)
P(x)

]
y2.

From the assumptions of Theorem 3.2, we obtain:

dc(t)U0 = dc(t)
[
F(x) +

δ1

2d2 (y +
d
δ1

f (x))2
−

1
2δ1

f 2(x)
]

≥ dc(t)
[∫ x

0
(1 −

f ′(u)
δ1

) f (u)du
]

≥ dc(t)
[∫ x

0
(1 −

dr0b0

p1C
1
δ1

) f (u)du
]
≥ 0.
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Condition (j) implies that U1 ≥ 0. Hence, since V2 is positive definite, there exist sufficiently small positive
constant, such that

V ≥ δ(x2 + y2 + z2).

Therefore we can find a continuous function W1(|ϕ(0)|) with

W1(|ϕ(0)|) ≥ 0 and W1(|ϕ(0)|) ≤W(t, ϕ),

by the fact that β(t) ≤
N
µ

+
N1

c0
. The existence of a continuous function W2(‖ϕ‖) which satisfies the inequality

W(t, ϕ) ≤W2(‖ϕ‖), is easily verified (see (10)).
Let (x, y, z) be a solution of (5). Differentiating the Lyapunov functional V(t, xt, yt, zt) along this solution, we
find

d
dt

V = dc′(t)F(x) + c′(t)y f (x) +
c′(t)δ1

2d
y2
− λ

∫ t

t−r
y2(ξ)dξ + λry2

− dθ1(t)(yz +
a(t)Q(x)

2P(x)
y2) − a(t)θ2(t)(yz +

d
2P(x)

y2) +
b(t)
2
θ3(t)y2

+ c(t)(z +
d

P(x)
y)

∫ t

t−r
y(s)

f ′(x(s))
P(x(s))

ds +
1

P(x)
(d − a(t)Q(x))z2

+ (
c(t) f ′(x)

P(x)
−

db(t)R(x)
P2(x)

)y2 + (
da′(t)Q(x)

2P2(x)
+

b′(t)R(x)
2P(x)

−
c′(t)δ1

2d
)y2.

Making use of the definitions of W2 and W3, it is clear that

d
dt

V ≤ dc′(t)F(x) + c′(t)y f (x) +
c′(t)δ1

2d
y2
− λ

∫ t

t−r
y2(ξ)dξ + λry2

+ W2 + W3 +
1

P(x)
(d − a(t)Q(x))z2 + (

c(t) f ′(x)
P(x)

−
db(t)R(x)

P2(x)
)y2

+

(
da′(t)Q(x)

2P2(x)
+

b′(t)R(x)
2P(x)

−
c′(t)δ1

2d

)
y2.

By the assumptions (A1)-(A3) and the inequalities (12), (13), we find

d
dt

V ≤ dc′(t)
[
F(x) +

1
d

y f (x) +
δ1

2d2 y2
]

+

Cδ1

2p2
0

(1 +
d
p0

) − λ

 ∫ t

t−r
y2(ξ)dξ

−

[
db0r0 − p1Cδ1

P2(x)
− (λ +

Cδ1d
2p0

)r
]

y2
−

[
1
p1

(a0q0 − d) −
Cδ1r

2

]
z2

+

[
da′(t)Q(x) + b′(t)R(x)P(x) − P2(x)

c′(t)δ1

d

]
y2

2P2(x)

+ k1 [|θ1(t)| + |θ2(t)| + |θ3(t)|] (y2 + z2),

choosing λ =
Cδ1

2p2
0

(1 +
d
p0

), we have

d
dt

V ≤ dc′(t)
[
F(x) +

1
d

y f (x) +
δ1

2d2 y2
]
−

db0r0 − p1Cδ1

2p2
1

−
Cδ1

2p0
(d +

1
p0

+
d
p2

0

)r

 y2 (16)

−

[
a0q0 − d

p1
−

Cδ1r
2

]
z2 + k1 [|θ1(t)| + |θ2(t)| + |θ3(t)|] (y2 + z2).
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From (15), it is easily verified that

d
dt

W(t, xt, yt, zt) = (exp(−β(t)))(
d
dt

V − (
1
µ
γ′(t) +

1
c0
|c′(t)|)V),

on applying the inequalities (9), (16) and since

dc′(t)[F(x) +
1
d

y f (x) +
δ1

2d2 y2] = dc′(t)U0,

we get

d
dt

V − (
1
µ
γ′(t) +

1
c0
|c′(t)|)V ≤ −

db0r0 − p1Cδ1

2p2
1

−
Cδ1

2p0
(d +

1
p0

+
d
p2

0

)r

 y2

−

[
a0q0 − d

p1
−

Cδ1r
2

]
z2 + d |c′(t)|U0

−
δ
µ
γ′(t)(x2 + y2 + z2) −

1
c0
|c′(t)|V

+k1γ
′(t)(y2 + z2).

Putting µ =
δ
k1

and by the fact that V ≥ dc0U0, we obtain

d
dt

W ≤ − M

db0r0 − p1Cδ1

2p2
1

−
Cδ1

2p0
(d +

1
p0

+
d
p2

0

)r

 y2
−M

[
a0q0 − d

p1
−

Cδ1r
2

]
z2,

where M = exp−
(

k1N
δ

+
N1

c0

)
. Therefore, if

r < min
2(a0q0 − d)

p1Cδ1
,

p3
0(db0r0 − p1Cδ1)

p2
1Cδ1(d + dp2

0 + p0)

 .
Then

d
dt

W(t, xt, yt, zt) ≤ −α(y2 + z2), for some α > 0.

Thus, under the above discussion, we conclude that the trivial solution of equation (3) is uniformly asymp-
totically stable.
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