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Abstract.
In this paper, we derive the forbidden set and discuss the global behavior of all solutions of the difference

equation

xn+1 =
Axn−k

B − C
∏k

i=0 xn−i

, n = 0, 1, . . .

where A,B,C are positive real numbers and the initial conditions x−k, ..., x−1, x0 are real numbers.

1. Introduction

No one can deny that, Difference equations have played an important role in analysis of mathematical
models of biology, physics and engineering. Recently, there has been a great interest in studying properties
of nonlinear and rational difference equations. One can see [1]-[25] and the references therein.

In [4], M. Aloqeili discussed the stability properties and semicycle behavior of the solutions of the dif-
ference equation

xn+1 =
xn−1

a − xnxn−1
, n = 0, 1, . . . (1)

with real initial conditions and positive real number a.

In [23], D. Simsek et al. introduced the solution of the difference equation

xn+1 =
xn−5

1 + xn−1xn−3
, n = 0, 1, ...

with positive initial conditions.
In [11], E.M. Elsayed discussed the solutions of the difference equation

xn+1 =
xn−5

−1 + xn−2xn−5
, n = 0, 1, ...
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where the initial conditions are nonzero real numbers with x−5x−2 , 1, x−4x−1 , 1 and x−3x0 , 1.
He also in [9], determined the solutions to some difference equations. He obtained the solution to the
difference equation

xn+1 =
xn−3

1 + xn−1xn−3
, n = 0, 1, ...

where the initial conditions are nonzero positive real numbers.
R. Karatas et al. [15] discussed the positive solutions and the attractivity of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
, n = 0, 1, ...

where the initial conditions are nonnegative real numbers.
The authors in [14], discussed the solutions and attractivity of the difference equation

xn+1 =
axn−(2k+2)

−a +
∏2k+2

i=0 xn−i
, n = 0, 1, ...

where a, x−(2k−2), ..., x0 are real numbers such that x−(2k−2)x−(2k−1)...x0 , a and k is a nonnegative integer.
Elabbasy et al. [8] determined and discussed the solutions of the difference equation

xn+1 =
αxn−k

β + γ
∏k

i=0 xn−i
, n = 0, 1, ...

with nonnegative real numbers α,β, γ, positive real initial conditions and positive integer k.
In [16], we investigated the behavior and periodic nature of the two difference equations

xn+1 =
xn−2

±1 + xnxn−1xn−2
, n = 0, 1, . . .

In [2], we have also discussed the oscillation, periodicity, boundedness and the global behavior of all
admissible solutions of the difference equation

xn+1 =
Axn−2r−1

B − C
∏k

i=l xn−2i
, n = 0, 1, . . .

where A,B,C are positive real numbers and l, r, k are nonnegative integers, such that l ≤ k.
Also in [1], we discussed the global stability of all solutions of the difference equation

xn+1 =
Axn−2

B + Cxnxn−1xn−2
, n = 0, 1, . . .

where A,B,C are positive real numbers and the initial conditions x−2, x−1, x0 are real numbers.
In this paper, we discuss the global behavior of all solutions of the difference equation

xn+1 =
Axn−k

B − C
∏k

i=0 xn−i
, n = 0, 1, . . . (2)

where A,B,C are positive real numbers and the initial conditions x−k, ..., x−1, x0 are real numbers. The
difference equation (2) is a more general case of the difference equation (1).

2. Linearized Stability and Solutions of Equation (2)

In this section we introduce an explicit formula for the solutions of the difference equation (2) and study
its linearized stability.
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It is convenient to reduce the parameters on which equation (2) depends on.

The change of variables k+1
√

C
A xn = yn reduces equation (2) to the equation

yn+1 =
yn−k

p −
∏k

i=0 yn−i
, n = 0, 1, . . . (3)

where p = B
A .

We will deal with equation (3) rather than equation (2).

To start navigating the global behavior of the difference equation (3), we classify the nontrivial solutions
of equation (3) into two types of solutions:

• Solutions with initial points (y−k, y−k+1, ..., y0) such that y−i = 0, for some but not all i ∈ {0, 1, ..., k}.

• Solutions with initial points (y−k, y−k+1, ..., y0) such that y−i , 0, for all i ∈ {0, 1, ..., k}.

These two types of solutions exhibit a global behavior different from each other.

Theorem 2.1. Let y−k, y−k+1, ..., y−1 and y0 be real numbers such that y−i = 0 for some but not all i ∈ {0, 1, ..., k}.
Then the solution {yn}

∞

n=−k of equation (3) is

yn =



( 1
p )

n−1
k+1 +1y−k ,n = 1, k + 2, 2k + 3, ...

( 1
p )

n−2
k+1 +1y−k+1 ,n = 2, k + 3, 2k + 4, ...
.....
.....
.....

( 1
p )

n−k
k+1 +1y−1 ,n = k, 2k + 1, 3k + 2, ...

( 1
p )

n−k−1
k+1 +1y0 ,n = k + 1, 2k + 2, 3k + 3, ...

(4)

Proof. Let {yn}
∞

n=−k be a solution of equation (3) such that y−i = 0 for some but not all i ∈ {0, 1, ..., k}. Using equation
(3), we can write

k∏
l=0

yn+1−l =

∏k
l=0 yn−l

p −
∏k

l=0 yn−l
, n = 0, 1, ....

But as
∏k

l=0 y−l = 0, we get
∏k

l=0 yn−l = 0 for all n ≥ 1.
It follows that

yn+1 =
yn−k

p −
∏k

l=0 yn−l
=

yn−k

p

for all n ≥ 0, from which the result follows.

Now suppose that y−i , 0, for all i ∈ {0, 1, ..., k}. From equation (3) and using the substitution tn =
1

yn yn−1...yn−k
, we can obtain the linear nonhomogeneous difference equation

tn+1 = ptn − 1, t0 =
1

y0y−1...y−k
. (5)

It is clear that the mapping h(x) = px − 1 is invertible and its inverse is h−1(x) = 1
p x + 1

p .
We try to deduce the forbidden set of equation (3).
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For,
suppose that we start from an initial point (y−k, y−k+1, ..., y0) such that y0y−1...y−k = p.
The backward orbits, vn = 1

yn yn−1...yn−k
satisfy the equation

vn = h−1(vn−1) =
1
p

vn−1 +
1
p

with v0 =
1

y0y−1...y−k
=

1
p
,

then we obtain vn = 1
yn yn−1...yn−k

= h−n(v0) = 1
p
∑n

l=0( 1
p )l.

That is ynyn−1...yn−k =
p∑n

l=0( 1
p )l .

On the other hand, we can observe that if we start from an initial point (y−k, ..., y−1, y0) such that y0y−1...y−k =
p∑n0

l=0( 1
p )l for some n0 ∈N, then according to equation (5) we obtain

tn0 =
1

yn0 yn0−1...yn0−k
=

1
p
.

This implies that p − yn0 yn0−1...yn0−k = 0.
Therefore, yn0+1 is undefined.
These observations lead us to conclude the following result.

Proposition 2.2. The forbidden set F of equation (3) is

F =

∞⋃
n=0

{(u0,u1, ...,uk) :
k∏

i=0

ui =
p∑n

l=0( 1
p )l
}.

Theorem 2.3. Let y−k, y−k+1, ..., y−1 and y0 be real numbers such that α = y0y−1...y−k ,
p∑n

l=0( 1
p )l for any n ∈ N.

Then the solution of equation (3) is

yn =



y−k
∏ n−1

k+1
j=0

p(k+1) j
−α
∑(k+1) j−1

l=0 pl

p(k+1) j+1−α
∑(k+1) j

l=0 pl
,n = 1, k + 2, 2k + 3, ...

y−k+1
∏ n−2

k+1
j=0

p(k+1) j+1
−α
∑(k+1) j

l=0 pl

p(k+1) j+2−α
∑(k+1) j+1

l=0 pl
,n = 2, k + 3, 2k + 4, ...

.....

.....

.....

y−1
∏ n−k

k+1
j=0

p(k+1) j+k−1
−α
∑(k+1) j+k−2

l=0 pl

p(k+1) j+k−α
∑(k+1) j+k−1

l=0 pl
,n = k, 2k + 1, 3k + 2, ...

y0
∏ n−k−1

k+1
j=0

p(k+1) j+k
−α
∑(k+1) j+k−1

l=0 pl

p(k+1) j+k+1−α
∑(k+1) j+k

l=0 pl
,n = k + 1, 2k + 2, 3k + 3, ...

(6)

Proof. Let y−k, y−k+1, ..., y−1 and y0 be real numbers such that α = y0y−1...y−k ,
p∑n

l=0( 1
p )l for any n ∈ N.

The solution of the linear nonhomogeneous difference equation (5) is

tn+1 = pn+1t0 −

n∑
r=0

pr, t0 =
1

y0y−1...y−k
.

If we set α = y0y−1...y−k, then we can write

k∏
l=0

yn+1−l =
α

pn+1 − α
∑n

r=0 pr
.
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It follows that ∏k
l=0 yn+1−l∏k

l=0 yn−l
=

pn
− α
∑n−1

r=0 pr

pn+1 − α
∑n

r=0 pr
.

This implies that

yn+1 = yn−k
pn
− α
∑n−1

r=0 pr

pn+1 − α
∑n

r=0 pr
,

from which we can write the form (6).

Corollary 2.4. Assume that p = 1 and α = y0y−1...y−k ,
1

n+1 for any n ∈ N. Then the solution of equation (3) is

yn =



y−k
∏ n−1

k+1
j=0

1−(k+1) jα
1−((k+1) j+1)α ,n = 1, k + 2, 2k + 3, ...

y−k+1
∏ n−2

k+1
j=0

1−((k+1) j+1)α
1−((k+1) j+2)α ,n = 2, k + 3, 2k + 4, ...

.....

.....

.....

y−1
∏ n−k

k+1
j=0

1−((k+1) j+k−1)α
1−((k+1) j+k)α ,n = k, 2k + 1, 3k + 2, ...

y0
∏ n−k−1

k+1
j=0

1−((k+1) j+k)α
1−((k+1) j+k+1)α ,n = k + 1, 2k + 2, 3k + 3, ...

(7)

Proof. It is sufficient to note that,
∑n

r=0 pr =
∑n

r=0( 1
p )r = n + 1 when p = 1.

Using this fact, the solution form (6) reduced to the form (7) and the result follows.

Corollary 2.5. Assume that p < 1 and let {yn}
∞

n=−k be a nontrivial solution of equation (3). If α = y0y−1...y−k = 0,
then the solution {yn}

∞

n=−k is unbounded.

Example (1) Figure 1. shows that if {yn}
∞

n=−2 is a solution of the equation

yn+1 =
yn−2

0.5 − ynyn−1yn−2
, n = 0, 1, . . .

with initial conditions y−2 = 2, y−1 = 0, y0 = 1 (α = 0) where k = 2 and p = 0.5, then the solution {yn}
∞

n=−2is
unbounded.

0 20 40 60 80

0

1´109

2´109

3´109

4´109

Figure 1: The difference equation yn+1 =
yn−2

0.5−yn yn−1 yn−2

We end this section with the discussion of the local stability of the equilibrium points of equation (3).
It is clear that the equilibrium point ȳ = 0 is always an equilibrium point of equation (3) and the nonzero

equilibrium points depend on whether k is even or odd.
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When k is odd, we have the nonzero equilibrium points ȳ = ± k+1
√

p − 1 if p > 1.
When k is even, we have the nonzero equilibrium point ȳ = k+1

√
p − 1, p , 1.

Lemma 2.6. Assume that P(x) is the polynomial

xk + xk−1 + ... + x + 1.

Then the zeros of P(x) are of modulus one.

The following theorem describes the local behavior of the equilibrium points.

Theorem 2.7. The following statements are true.

1. The equilibrium point ȳ = 0 is locally asymptotically stable if p > 1 and unstable if p < 1.
2. If k is even, then ȳ = k+1

√
p − 1 is unstable if p > 1 and nonhyperbolic if p < 1.

3. If k is odd, then the equilibrium points ȳ = ± k+1
√

p − 1 are unstable equilibrium points.

Proof. The linearized equation associated with equation (3) about an equilibrium point ȳ is

zn+1 −
ȳk+1

(p − ȳk+1)2

k−1∑
i=0

zn−i −
p

(p − ȳk+1)2
zn−k = 0 ,n = 0, 1, 2, . . . (8)

Its characteristic equation associated with this equation is

λk+1
−

ȳk+1

(p − ȳk+1)2

k−1∑
i=0

λk−i
−

p
(p − ȳk+1)2

= 0. (9)

Therefore, (1) follows directly.
Equation (8) about a nonzero equilibrium point ȳ is

zn+1 − (p − 1)
k−1∑
i=0

zn−i − pzn−k = 0 ,n = 0, 1, 2, . . . (10)

Also equation (9) becomes

λk+1
− (p − 1)

k−1∑
i=0

λk−i
− p = 0. (11)

Let

f (λ) = λk+1
− (p − 1)

k−1∑
i=0

λk−i
− p.

We can see that

f (λ) = (λ − p)
k∑

l=0

λl = (λ − p)P(λ).

Then the roots of equation (11) are the zeros of f (λ). Using lemma (2.6), we see that, the roots of equation (11) are p
and k other roots with modulus 1.
Therefore, (2) and (3) follow directly.
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3. Global Behavior of Equation (3)

The solution of equation (3) can be written as

y(k+1)m+i = y−(k+1)+i

m∏
j=0

p(k+1) j+i−1
− α
∑(k+1) j+i−2

l=0 pl

p(k+1) j+i − α
∑(k+1) j+i−1

l=0 pl
, i = 1, 2, ..., k + 1 and m = 0, 1, ... (12)

But as
p(k+1) j+i−1

− α
∑(k+1) j+i−2

l=0 pl

p(k+1) j+i − α
∑(k+1) j+i−1

l=0 pl
=

p(k+1) j+i−1µ − α

p(k+1) j+iµ − α
, where µ = 1 − p + α.

We can write

y(k+1)m+i = y−(k+1)+i

m∏
j=0

βi( j), i = 1, 2, ..., k + 1 and m = 0, 1, ...

where

βi( j) =
p(k+1) j+i−1µ − α

p(k+1) j+iµ − α
, i = 1, 2, ..., k + 1.

Theorem 3.1. Assume that {yn}
∞

n=−k is a solution of equation (3) such that α , p∑n
l=0( 1

p )l for any n ∈ N. If α = p − 1,

then {yn}
∞

n=−k is a periodic solution with period k + 1.

Proof. It is sufficient to see that if α = p − 1, then µ = 0. Therefore,

y(k+1)m+i = y−(k+1)+i

m∏
j=0

p(k+1) j+i−1µ − α

p(k+1) j+iµ − α
= y−(k+1)+i, i = 1, 2, ..., k + 1.

Proposition 3.2. Assume that p < 1 and let α , p∑n
l=0( 1

p )l for any n ∈ N. Then there exists j0 ∈N such that βi( j) > 0

for all j ≥ j0.

Proof. We have three situations:

1. If α < p − 1 < 0, then 0 < µ − α < −α. Hence for each j ∈N,
p(k+1) j+i−1µ − α > µ − α > 0, i = 1, 2, ..., k + 1. Then

βi( j) =
p(k+1) j+i−1µ − α

p(k+1) j+iµ − α
> 0 for all j ≥ 0.

2. If p − 1 < α < 0, then 0 < −α < µ − α.
But

lim
j→∞

βi( j) = lim
j→∞

p(k+1) j+i−1µ − α

p(k+1) j+iµ − α
= 1.

Then there exists j0 ∈N such that βi( j) > 0 for all j ≥ j0.
3. When p − 1 < 0 < α, the situation is similar to that in (2).

In all cases there exists j0 ∈N such that βi( j) > 0 for all j ≥ j0.

Theorem 3.3. Assume that {yn}
∞

n=−k is a solution of equation (3) such that α , p− 1 and α , p∑n
l=0( 1

p )l for any n ∈ N.

Then the following statements are true.
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1. If p > 1, then {yn}
∞

n=−k converges to ȳ = 0.
2. If p < 1 and α , 0, then {yn}

∞

n=−k is bounded.

Proof. Let {yn}
∞

n=−k be a solution of equation (3) such that α , p∑n
l=0( 1

p )l for any n ∈ N.

The condition α , p − 1 ensures that the solution {yn}
∞

n=−k is not a (k + 1)-periodic solution.

1. Suppose that p > 1. It is clear that, as the equilibrium point 1
p−1 of equation (5) is repelling, every non-constant

solution of equation (5) approaches∞ or −∞ according to the value of t0 = 1
α .

We shall consider the following situations:
(a) If α = 1

t0
< 0, then according to equation (5), we have∏k

i=0 yn−i = 1
tn
< 0, for each n ∈N. Therefore,

| yn+1 |=
| yn−k |

| p −
∏k

i=0 yn−i |
<
| yn−k |

p
, n = 0, 1, . . .

(b) If 0 < α = 1
t0
< p − 1, then according to equation (5),

∏k
i=0 yn−i = 1

tn
→ 0 as n → ∞. Then there exists

n0 ∈N such that 0 <
∏k

i=0 yn−i < p − 1 for each n > n0. Therefore,

| yn+1 |=
| yn−k |

| p −
∏k

i=0 yn−i |
<| yn−k |, n ≥ n0.

(c) If p − 1 < α = 1
t0
< p, then according to equation (5), there exists n0 ∈ N such that

∏k
i=0 yn−i = 1

tn
< 0

for each n ≥ n0. Therefore,

| yn+1 |=
| yn−k |

| p −
∏k

i=0 yn−i |
<
| yn−k |

p
, n ≥ n0.

(d) If α = 1
t0
> p > 0, then according to equation (5),

∏k
i=0 yn−i = 1

tn
< 0 for each n > 0. Therefore,

| yn+1 |=
| yn−k |

| p −
∏k

i=0 yn−i |
<
| yn−k |

p
, n = 0, 1, . . .

In all cases, yn → 0 as n→∞.
2. Suppose that p < 1. Using proposition (3.2), there exists j0 ∈ N such that βi( j) > 0 for all j ≥ j0. Hence for

each i ∈ {1, 2, ..., k + 1}, we have for large m

y(k+1)m+i = y−(k+1)+i

m∏
j=0

βi( j) = y−(k+1)+i

j0−1∏
j=0

βi( j)
m∏

j= j0

βi( j)

= y−(k+1)+i

j0−1∏
j=0

βi( j) exp(ln
m∏

j= j0

βi( j))

= y−(k+1)+i

j0−1∏
j=0

βi( j) exp (
m∑

j= j0

ln βi( j)).

It is sufficient to test the convergence of the series
∑
∞

j= j0 | ln βi( j) |.
But

lim
j→∞

ln βi( j + 1)
ln βi( j)

=
0
0
.
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Then

lim
j→∞

ln βi( j + 1)
ln βi( j)

= lim
j→∞

d
dj (ln βi( j + 1))

d
dj (ln βi( j))

= lim
j→∞

(p−1)(ln p)µ(k+1)p(k+1)( j+1)+i−1

(p(k+1)( j+1)+i−1µ−α)(p(k+1)( j+1)+iµ−α)

(p−1)(ln p)µ(k+1)p(k+1) j+i−1

(p(k+1) j+i−1µ−α)(p(k+1) j+iµ−α)

= pk+1 < 1.

It follows from D’ Alemberts’ test that the series
∑
∞

j= j0 | ln βi( j) | is convergent.
This ensures that the solution {yn}

∞

n=−k is bounded.

Example (2) Figure 2. shows that if {yn}
∞

n=−2 is the solution of the equation

yn+1 =
yn−2

2 − ynyn−1yn−2
, n = 0, 1, . . .

with initial conditions y−2 = 2, y−1 = 1, y0 = 2 (α , p − 1 and α , p∑n
l=0( 1

p )l for any n ∈ N) where k = 2 and

p = 2, then the solution {yn}
∞

n=−2 converges to zero.

0 10 20 30 40 50 60

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Figure 2: The difference equation yn+1 =
yn−2

2−yn yn−1 yn−2

We can observe in case p < 1 that, the behavior of the solution {yn}
∞

n=−k is totally different according to
whether α = 0 or α , 0. This is obvious in corollary (2.5) and theorem (3.3).

Theorem 3.4. Assume that p < 1 and let {yn}
∞

n=−k be a solution of equation (3) such that α , p∑n
l=0( 1

p )l for any n ∈ N.

Then {yn}
∞

n=−k converges to a (k + 1)-periodic solution {ρ0, ρ1, ..., ρk} of equation (3) with ρ0ρ1...ρk = p − 1.

Proof. By theorem (3.3), there exist k + 1 real numbers ρi ∈ R such that

lim
j→∞

y(k+1)m+i = ρi, i ∈ {0, 1, ..., k}.

If we set n = (k + 1)m + i − 1, i = 0, 1, ..., k in equation (3), we get

y(k+1)m+i =
y(k+1)(m−1)+i

p −
∏k

l=0 y(k+1)(m−1)+i−l+k
, i = 0, 1, ..., k and m = 0, 1, ...
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By taking the limit as m→∞, we obtain

ρi =
ρi

p −
∏k

l=0 ρi−l+k
, i = 0, 1, ..., k.

But from equation (5) we have
∏k

l=0 yn−l = ynyn−1...yn−k = 1
tn
→ p − 1 as n→∞.

This implies that
∏k

i=0 y(k+1)m+i → ρ0ρ1...ρk = p − 1 as m→∞.
Therefore, {yn}

∞

n=−k converges to the (k + 1)-periodic solution

{..., ρ0, ρ1, ..., ρk−1,
p − 1

ρ0ρ1...ρk−1
, ρ0, ρ1, ..., ρk−1,

p − 1
ρ0ρ1...ρk−1

, ...}

Example (3) Figure 3. shows that if {yn}
∞

n=−3 is the solution of the equation

yn+1 =
yn−3

0.8 − ynyn−1yn−2yn−3
, n = 0, 1, . . .

with initial conditions y−3 = 2, y−2 = 2.6, y−1 = 0.2, y0 = 2.2 (α , 0 and α , p∑n
l=0( 1

p )l for any n ∈ N) where

k = 3 and p = 0.8, then the solution {yn}
∞

n=−2 is bounded.
Moreover, the solution {yn}

∞

n=−2 converges to 4-periodic solution.

0 20 40 60 80

-1

0

1

2

Figure 3: The difference equation yn+1 =
yn−3

0.8−yn yn−1 yn−2 yn−3

4. Case p = 1

We end this work with the discussion of the case p = 1.
If we set p = 1 in equation (12), we get

y(k+1)m+i = y−(k+1)+i

m∏
j=0

ζi( j), i = 1, 2, ..., k + 1 and m = 0, 1, ... (13)

where

ζi( j) =
1 − α((k + 1) j + i − 1)

1 − α((k + 1) j + i)
, i = 1, 2, ..., k + 1.
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Proposition 4.1. Assume that p = 1 and let α , 1
n+1 for any n ∈ N. Then there exists j0 ∈ N such that ζi( j) > 0

for all j ≥ j0.

Proof. When α < 0, the result is obvious where ζi( j) > 0 for each j ∈N.
When α > 0, It is sufficient to see that,

lim
j→∞

ζi( j) = lim
j→∞

1 − α((k + 1) j + i − 1)
1 − α((k + 1) j + i)

= 1.

This implies that, there exists j0 ∈N such that ζi( j) > 0 for all j ≥ j0.

Theorem 4.2. Assume that p = 1. Then any solution {yn}
∞

n=−k of equation (3) with α , 0 and α , 1
n+1 for any n ∈ N

converges to zero.

Proof. Let {yn}
∞

n=−k be a solution of equation (3) such that α , 1
n+1 for any n ∈ N.

The condition α , 0 ensures that the solution {yn}
∞

n=−k is not a (k + 1)-periodic solution.
Using proposition (4.1), there exists j0 ∈ N such that ζi( j) > 0 for all j ≥ j0. Hence for each i ∈ {1, 2, ..., k + 1}, we
have for large m

y(k+1)m+i = y−(k+1)+i

m∏
j=0

ζi( j) = y−(k+1)+i

j0−1∏
j=0

ζi( j)
m∏

j= j0

ζi( j)

= y−(k+1)+i

j0−1∏
j=0

ζi( j) exp(ln
m∏

j= j0

ζi( j))

= y−(k+1)+i

j0−1∏
j=0

ζi( j) exp (
m∑

j= j0

ln ζi( j))

= y−(k+1)+i

j0−1∏
j=0

ζi( j) exp (−
m∑

j= j0

ln
1
ζi( j)

).

We shall show that
∑
∞

j= j0 ln 1
ζi( j) =

∑
∞

j= j0 ln 1−α((k+1) j+i)
1−α((k+1) j+i−1) = ∞, by considering the series

∑
∞

j= j0
α

−1+α((k+1) j+i) . But as

lim
j→∞

ln (1 − α((k + 1) j + i))/(1 − α((k + 1) j + i − 1))
α/(−1 + α((k + 1) j + i))

= 1,

using the limit comparison test, we get
∑
∞

j= j0 ln 1
ζi( j) = ∞.

Therefore,

y(k+1)m+i = y−(k+1)+i

j0−1∏
j=0

ζi( j) exp (−
m∑

j= j0

ln
1
ζi( j)

)

converges to zero as m→∞.
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