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Abstract. In this paper, we prove existence and uniqueness results for common fixed points of two or three
relatively asymptotically regular mappings satisfying the orbital continuity of one of the involved maps on
ordered orbitally complete metric spaces under generalized Φ-contractive condition. Also, we introduce
and use orbitally dominating maps and orbitally weakly increasing maps. We furnish suitable examples
to demonstrate the usability of the hypotheses of our results. As an application, we prove the existence of
solutions for certain system of integral equations.

1. Introduction and Preliminaries

Let f be a self-map on a metric space (X, d). The following concepts were introduced by Browder and
Petryshyn.

Definition 1.1. [1]

1. The map f is said to be asymptotically regular at a point x ∈ X if limn→∞ d( f nx, f n+1x) = 0.
2. The map f is said to be orbitally continuous at a point z in X if for any sequence {xn} ⊂ O(x; f ) (for some

x ∈ X), xn → z as n→∞ implies f xn → f z as n→∞.

Recall that the set O(x; f ) = { f nx : n = 0, 1, 2, . . . } is called the orbit of the self-map f at the point x ∈ X.
Clearly, every continuous self-map of a metric space is orbitally continuous, but not conversely.

Definition 1.2. [2] The space (X, d) is said to be f -orbitally complete if every Cauchy sequence contained in O(x; f )
(for some x in X) converges in X.
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Obviously, every complete metric space is f -orbitally complete for any f , but an f -orbitally complete
metric space need not be complete.

Sastry et al. [3] extended the above concepts to two and three mappings and employed them to prove
common fixed point results for commuting mappings.

Definition 1.3. Let f , 1, h be three self-mappings defined on a metric space (X, d).

1. If for a point x0 ∈ X, there exits a sequence {xn} in X such that hx2n+1 = f x2n, hx2n+2 = 1x2n+1, n = 0, 1, 2, . . . ,
then the set O(x0; f , 1, h) = {hxn : n = 1, 2, . . . } is called the orbit of ( f , 1, h) at x0.

2. The space (X, d) is said to be ( f , 1, h)-orbitally complete at x0 if every Cauchy sequence inO(x0; f , 1, h) converges
in X.

3. The map h is said to be ( f , 1, h)-orbitally continuous at x0 if it is continuous on O(x0; f , 1, h).
4. The pair ( f , 1) is said to be asymptotically regular (in short a.r.) with respect to h at x0 if there exists a sequence
{xn} in X such that hx2n+1 = f x2n, hx2n+2 = 1x2n+1, n = 0, 1, 2, . . . , and d(hxn, hxn+1)→ 0 as n→∞.

5. If h is the identity mapping on X, we omit “h” in the respective definitions.

Starting with the results of Ran and Reurings [4] and Nieto and Rodrı́guez-López [5], fixed point theory
has developed rapidly in metric spaces endowed with a partial ordering. Several authors obtained a lot
of fixed point theorems and applied them in various situations (see, e.g., [6–10] and the references cited
therein). In particular, the following notation and definitions will be used in the sequel.

If (X,�) is a partially ordered set then x, y ∈ X are called comparable if x � y or y � x holds. A subset
K of X is said to be well ordered if every two elements of K are comparable. If 1 : X → X is such that, for
x, y ∈ X, x � y implies 1x � 1y, then the mapping 1 is said to be non-decreasing.

Definition 1.4. Let (X,�) be a partially ordered set and f , 1, h : X → X.

1. [11] The mapping 1 is called dominating if x � 1x for each x ∈ X.
2. [12, 13] The pair ( f , 1) is called weakly increasing if f x � 1 f x and 1x � f1x for all x ∈ X.
3. [9] Let h be such that fX ⊆ hX and 1X ⊆ hX, and denote h−1(x) := {u ∈ X : hu = x}, for x ∈ X. We say that

( f , 1) is weakly increasing with respect to h if for all x ∈ X, we have:

1x � f y, ∀ y ∈ h−1(1x) (1)

and

f x � 1y, ∀ y ∈ h−1( f x). (2)

4. The mapping f is called ( f , 1, h)-orbitally dominating at x0 ∈ X if x � f x holds for x ∈ O(x0; f , 1, h).
5. The pair ( f , 1) is orbitally (at x0) weakly increasing with respect to h if (1) and (2) hold for all x ∈ O(x0; f , 1, h).

Remark 1.5. (1) None of two weakly increasing mappings need be non-decreasing. There exist some examples to
illustrate this fact in [14].

(2) If h is the identity mapping (hx = x for all x ∈ X), then ( f , 1) is weakly increasing with respect to h if and only
if f and 1 are weakly increasing mappings.

Example 1.6. [11] Let X = [0, 1] be endowed with the usual order ≤. Let 1 : X → X be defined by 1x = n
√

x.
Since x ≤ n

√
x = 1x for all x ∈ X, 1 is a dominating map.

Example 1.7. Let X = [0,+∞) be endowed with the usual order ≤. Define the mappings f , 1, h : X → X by

1x =

x, if 0 ≤ x < 1,
0, if 1 ≤ x,

f x =


√

x, if 0 ≤ x < 1,
0, if 1 ≤ x,

hx =

x2, if 0 ≤ x < 1,
0, if 1 ≤ x.

Then ( f , 1) is weakly increasing with respect to h.
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Example 1.8. Let the set X = [0,+∞) be equipped with the usual metric d and the order defined by

x � y ⇐⇒ x ≥ y.

Consider the following self-mappings on X:

hx = 6x, f x =

 1
2 x, 0 ≤ x ≤ 1

2 ,

x, x > 1
2 ,

1x =

 1
3 x, 0 ≤ x ≤ 1

3 ,

x, x > 1
3 .

Take x0 = 1
2 . It is easy to show that

O(x0; f , 1, h) ⊂
{ 1

2k · 3l
: k, l ∈N

}
.

Then ( f , 1) is orbitally (at x0 = 1
2 ) weakly increasing with respect to h.

Throughout this paper, (X, d,�) will be called an ordered metric space if

(i) (X, d) is a metric space,

(ii) (X,�) is a partially ordered set.

The space (X, d,�) will be called regular if the following hypothesis holds: if {zn} is a non-decreasing
sequence in Xwith respect to � such that zn → z ∈ X as n→∞, then zn � z.

In this paper, we prove existence and uniqueness results for common fixed points of two or three
relatively asymptotically regular mappings satisfying the orbital continuity of one of the involved maps
on ordered orbitally complete metric spaces. The so-called generalized Φ-contractive condition is utilized,
which was introduced by Pathak and Tiwari in [15]. Also, we use orbitally dominating maps and orbitally
weakly increasing maps.

We furnish suitable examples to demonstrate the usability of the hypotheses of our results. Finally, we
apply these results to prove the existence of solutions of a system of integral equations.

2. Common Fixed Points for Relatively Orbitally Weakly Increasing Mappings

In the rest of the paper, following [15], we denote by Φ the collection of all functions ϕ : [0,∞)→ [0,∞)
which are upper semicontinuous from the right, non-decreasing and satisfy lim sups→t+ ϕ(s) < t, ϕ(t) < t,
for all t > 0.

The first result of this section is the following

Theorem 2.1. Let (X, d,�) be a regular ordered metric space and let f , 1 and h be self-maps on X satisfying

[dp( f x, 1y) + adp(hx, hy)]dp( f x, 1y)

≤ a max{dp( f x, hx)dp(1y, hy), dq( f x, hy)dq′ (1y, hx)}

+ max
{
ϕ1(d2p(hx, hy)), ϕ2(dr( f x, hx)dr′ (1y, hy)), ϕ3(ds( f x, hy)ds′ (1y, hx)),

ϕ4

(
1
2

[
dl( f x, hy)dl′ ( f x, hx) + dl(1y, hx)dl′ (1y, hy)

])}
, (3)

for all x, y ∈ O(x0; f , 1, h) (for some x0) such that hx and hy are comparable, and some ϕi ∈ Φ (i = 1, 2, 3, 4),
a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 such that 2p = q + q′ = r + r′ = s + s′ = l + l′ ≤ 1.

We assume the following hypotheses:

(i) ( f , 1) is a.r. with respect to h at some x0 ∈ X;

(ii) X is ( f , 1, h)-orbitally complete at x0;
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(iii) ( f , 1) is orbitally weakly increasing with respect to h at x0;

(iv) 1 and f are ( f , 1, h)-orbitally dominating maps at x0;

(v) h is monotone and orbitally continuous at x0.

Assume either

(a) f and h are compatible; or
(b) 1 and h are compatible.

Then f , 1 and h have a common fixed point. Moreover, the set of common fixed points of f , 1 and h in O(x0; f , 1, h) is
well ordered if and only if it is a singleton.

Recall that the mappings f and h are said to be compatible if limn→∞ d( f hxn, h f xn) = 0, whenever {xn} is
a sequence in X such that limn→∞ f xn = limn→∞ hxn.

Proof. Since ( f , 1) is a.r. with respect to h at x0 in X, there exists a sequence {xn} in X such that

hx2n+1 = f x2n, hx2n+2 = 1x2n+1, ∀n ∈N0 = {0, 1, 2, . . . }, (4)

and

lim
n→∞

d(hxn, hxn+1) = 0 (5)

holds. We claim that

hxn � hxn+1, ∀n ∈N0. (6)

To this aim, we will use the increasing property with respect to h satisfied by the pair ( f , 1). From (4), we
have

hx1 = f x0 � 1y, ∀ y ∈ h−1( f x0).

Since hx1 = f x0, then x1 ∈ h−1( f x0), and we get

hx1 = f x0 � 1x1 = hx2.

Again,
hx2 = 1x1 � f y, ∀ y ∈ h−1(1x1).

Since x2 ∈ h−1(1x1), we get
hx2 = 1x1 � f x2 = hx3.

Hence, by induction, (6) holds. Therefore, we can apply (3) for x = xp and y = xq for all p and q.
Now, we assert that {hxn} is a Cauchy sequence in the metric spaceO(x0; f , 1, h). We proceed by negation

and suppose that {hx2n} is not Cauchy. Then, there exists ε > 0 for which we can find two sequences of
positive integers {m(k)} and {n(k)} such that for all positive integers k,

n(k) > m(k) > k, d(hx2m(k), hx2n(k)) ≥ ε, d(hx2m(k), hx2n(k)−2) < ε. (7)

From (7) and using the triangular inequality, we get

ε ≤ d(hx2m(k), hx2n(k))
≤ d(hx2m(k), hx2n(k)−2) + d(hx2n(k)−2, hx2n(k)−1) + d(hx2n(k)−1, hx2n(k))
< ε + d(hx2n(k)−2, hx2n(k)−1) + d(hx2n(k)−1, hx2n(k)).
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Letting k→∞ in the above inequality and using (5), we obtain

lim
k→∞

d(hx2m(k), hx2n(k)) = ε. (8)

By making use of the triangle inequalities, for ρ ∈ [0, 1], we have

dρ(hx2m(k)+2, hx2n(k)+1) ≤ dρ(hx2m(k)+2, hx2m(k)+1) + dρ(hx2m(k)+1, hx2m(k))
+ dρ(hx2m(k), hx2n(k)) + dρ(hx2n(k), hx2n(k)+1),

i.e., denoting di := d(hxi, hxi−1),

dρ(hx2m(k)+2, hx2n(k)+1) − dρ(hx2m(k), hx2n(k)) ≤ dρ2m(k)+2 + dρ2m(k)+1 + dρ2n(k)+1,

and

dρ(hx2m(k), hx2n(k)) ≤ dρ(hx2m(k), hx2m(k)+1) + dρ(hx2m(k)+1, hx2m(k)+2)
+ dρ(hx2m(k)+2, hx2n(k)+1) + dρ(hx2n(k)+1, hx2n(k)),

i.e.,

dρ(hx2m(k), hx2n(k)) − dρ(hx2m(k)+2, hx2n(k)+1) ≤ dρ2m(k)+1 + dρ2m(k)+2 + dρ2n(k)+1.

Thus, we obtain

|dρ(hx2m(k), hx2n(k)) − dρ(hx2m(k)+2, hx2n(k)+1)| ≤ dρ2m(k)+1 + dρ2m(k)+2 + dρ2n(k)+1. (9)

Similarly we have

|dρ(hx2m(k)+1, hx2n(k)) − dρ(hx2n(k), hx2m(k))| ≤ dρ2m(k)+1, (10)

|dρ(hx2m(k)+1, hx2n(k)+1) − dρ(hx2n(k), hx2m(k))| ≤ dρ2n(k)+1 + dρ2m(k)+1, (11)

and

|dρ(hx2m(k)+2, hx2n(k)) − dρ(hx2n(k), hx2m(k))| ≤ dρ2m(k)+1 + dρ2m(k)+2. (12)

Using relations (5), (9)–(12), we have

lim
k→∞

dρ(hx2m(k)+2, hx2n(k)+1) = lim
k→∞

dρ(hx2m(k)+1, hx2n(k)) = lim
k→∞

dρ(hx2m(k)+1, hx2n(k)+1)

= lim
k→∞

dρ(hx2m(k)+2, hx2n(k)) = ε. (13)

Now, using (3) with x = x2m(k)+2 and y = x2n(k)+1, we obtain

[dp( f x2m(k)+2, 1x2n(k)+1) + adp(hx2m(k)+2, hx2n(k)+1)]dp( f x2m(k)+2, 1x2n(k)+1)

≤ a max{dp( f x2m(k)+2, hx2m(k)+2)dp(1x2n(k)+1, hx2n(k)+1), dq( f x2m(k)+2, hx2n(k)+1)dq′ (1x2n(k)+1, hx2m(k)+2)}

+ max{ϕ1(d2p(hx2m(k)+2, hx2n(k)+1)), ϕ2(dr( f x2m(k)+2, hx2m(k)+2)dr′ (hx2n(k)+1, hx2n(k)+1)),

ϕ3(ds( f x2m(k)+2, hx2n(k)+1)ds′ (1x2n(k)+1, hx2m(k)+2)),

ϕ4(
1
2

[dl( f x2m(k)+2, hx2n(k)+1)dl′ ( f x2m(k)+2, hx2m(k)+2) + dl(1x2n(k)+1, hx2m(k)+2)dl′ (1x2n(k)+1, hx2n(k)+1)])},
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i.e.,

[dp(hx2m(k)+2, hx2n(k)+1) + adp(hx2m(k)+1, hx2n(k))]dp(hx2m(k)+2, hx2n(k)+1)

≤ a max{dp(hx2m(k)+2, hx2m(k)+1)dp(hx2n(k)+1, hx2n(k)), dq(hx2m(k)+2, hx2n(k)+1)dq′ (hx2n(k)+1, hx2m(k)+1)}

+ max
{
ϕ1(d2p(hx2m(k)+1, hx2n(k))), ϕ2(dr(hx2m(k)+2, hx2m(k)+1)dr′ (hx2n(k)+1, hx2n(k))),

ϕ3(ds(hx2m(k)+2, hx2n(k))ds′ (hx2n(k)+1, hx2m(k)+1)),

ϕ4

(1
2

[
dl(hx2m(k)+2, hx2n(k))dl′ (hx2m(k)+2, hx2m(k)+1) + dl(hx2n(k)+1, hx2m(k)+1)dl′ (hx2n(k)+1, hx2n(k))

])}
.

Passing to the limit as k→∞ and using (5), (8) and (13) and the fact that ϕi ∈ Φ (i = 1, 2, 3, 4), we have

ε2p + aε2p
≤ aεq+q′ + max{ϕ1(ε2p), ϕ2(0), ϕ3(εs+s′ ), ϕ4(0)},

i.e.,

ε2p
≤ max{ϕ1(ε2p), ϕ2(0), ϕ3(εs+s′ ), ϕ4(0)},

i.e.,

ε2p
≤ ϕ(ε2p) < ε2p,

a contradiction. Hence, {hx2n} is a Cauchy sequence in X. This proves that {hxn} is a Cauchy sequence in
O(x0; f , 1, h). Since X is ( f , 1, h)-orbitally complete at x0, there exists some z ∈ X such that

hxn → z as n→∞. (14)

We will prove that z is a common fixed point of the three mappings f , 1 and h.
We have

f x2n = hx2n+1 → z as n→∞ (15)

and

1x2n+1 = hx2n+2 → z as n→∞. (16)

Suppose that (a) holds, i.e., f and h are compatible. Then, using condition (v),

lim
n→∞

f hx2n+2 = lim
n→∞

h f x2n+2 = hz. (17)

From (14) and the orbitally continuity of h, we have also

h(hxn)→ hz as n→∞. (18)

Now, using (iv), x2n+1 � 1x2n+1 = hx2n+2 and since h is monotone, hx2n+1 and hhx2n+2 are comparable. Thus,
we can apply (3) to obtain

[dp( f hx2n+2, 1x2n+1) + adp(hhx2n+2, hx2n+1)]dp( f hx2n+2, 1x2n+1)

≤ a max{dp( f hx2n+2, hhx2n+2)dp(1x2n+1, hx2n+1), dq( f hx2n+2, hx2n+1)dq′ (1x2n+1, hhx2n+2)}

+ max
{
ϕ1(d2p(hhx2n+2, hx2n+1)), ϕ2(dr( f hx2n+2, hhx2n+2)dr′ (1x2n+1, hx2n+1)),

ϕ3(ds( f hx2n+2, hx2n+1)ds′ (1x2n+1, hhx2n+2)),

ϕ4

(
1
2

[
dl( f hx2n+2, hx2n+1)dl′ ( f hx2n+2, hhx2n+2) + dl(1x2n+1, hhx2n+2)dl′ (1x2n+1, hx2n+1)

])}
. (19)
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Passing to the limit as n→∞ in (19), using (14)–(18), we obtain

d2p(hz, z) ≤ adq+q′ (z, hz) + max{ϕ1(d2p(hz, z)), ϕ2(0), ϕ3(ds+s′ (z, hz)), ϕ4(0)}

i.e.,

d2p(hz, z) ≤
a

(1 + a)
d2p(z, hz) +

1
(1 + a)

ϕ(d2p(hz, z))

that is
d2p(hz, z) < d2p(hz, z)

unless

hz = z. (20)

Now, x2n+1 � 1x2n+1 and 1x2n+1 → z as n → ∞, so by the assumption we have x2n+1 � z and hx2n+1 and hz
are comparable. Hence (3) gives

[dp( f z, 1x2n+1) + adp(hz, hx2n+1)]dp( f z, 1x2n+1)

≤ a max{dp( f z, hz)dp(1x2n+1, hx2n+1), dq( f z, hx2n+1)dq′ (1x2n+1, hz)}

+ max
{
ϕ1(d2p(hz, hx2n+1)), ϕ2(dr( f z, hz)dr′ (1x2n+1, hx2n+1)), ϕ3(ds( f z, hx2n+1)ds′ (1x2n+1, hz)),

ϕ4

(
1
2

[
dl( f z, hx2n+1)dl′ ( f z, hz) + dl(1x2n+1, hz)dl′ (1x2n+1, hx2n+1)

])}
,

Passing to the limit as n→∞ in the above inequality and using (20), it follows that

d2p( f z, z) ≤ max{ϕ1(0), ϕ2(0), ϕ3(0), ϕ4( 1
2 dl+l′ ( f z, z))} < d2p( f z, z))

which holds unless

f z = z. (21)

Similarly, x2n � f x2n and f x2n → z as n→ ∞, implies that x2n � z, hence hx2n and hz are comparable. From
(3) we get

[dp( f x2n, 1z) + adp(hx2n, hz)]dp( f x2n, 1z)

≤ a max{dp( f x2n, hx2n)dp(1z, hz), dq( f x2n, hz)dq′ (1z, hx2n)}

+ max
{
ϕ1(d2p(hx2n, hz)), ϕ2(dr( f x2n, hx2n)dr′ (1z, hz)), ϕ3(ds( f x2n, hz)ds′ (1z, hx2n)),

ϕ4

(
1
2

[
dl( f x2n, hz)dl′ ( f x2n, hx2n) + dl(1z, hx2n)dl′ (1z, hz)

])}
.

Passing to the limit as n→∞, we have

d2p(z, 1z) ≤ max{ϕ1(0), ϕ2(0), ϕ3(0), ϕ4( 1
2 dl+l′ (1z, z))} < d2p(1z, z))

which gives that

z = 1z. (22)

Therefore, f z = 1z = hz = z, hence z is a common fixed point of f , 1 and h.
Similarly, the result follows when condition (b) holds.
Now, suppose that the set of common fixed points of f , 1 and h in O(x0; f , 1, h) is well ordered. We

claim that there is a unique common fixed point of f , 1 and h in O(x0; f , 1, h). Assume to the contrary that



H.K. Nashine, Z. Kadelburg / Filomat 30:12 (2016), 3277–3289 3284

f u = 1u = hu = u and f v = 1v = hv = v but u , v. By supposition, we can replace x by u and y by v in (3) to
obtain

[dp( f u, 1v) + adp(hu, hv)]dp( f u, 1v)

≤ a max{dp( f u, hu)dp(1v, hv), dq( f u, hv)dq′ (1v, hu)}

+ max
{
ϕ1(d2p(hu, hv)), ϕ2(dr( f u, hu)dr′ (1v, hv)), ϕ3(ds( f u, hv)ds′ (1v, hu)),

ϕ4

(
1
2

[
dl( f u, hv)dl′ ( f u, hu) + dl(1v, hu)dl′ (1v, hv)

])}
,

that is

(1 + a)d2p(u, v) ≤ adq+q′ (u, v) + max{ϕ1(d2p(u, v)), ϕ2(0), ϕ3(ds+s′ (u, v)), ϕ4(0)}

i.e.,

d2p(u, v) ≤
a

1 + a
dq+q′ (u, v) +

1
1 + a

ϕ(d2p(u, v)) < d2p(u, v)

a contradiction. Hence, u = v. The converse is trivial.

Remark 2.2. It was shown by examples in [16] that (in similar situations):
(1) if the contractive condition is satisfied just on O(x0; f , 1, h), there might not exist a (common) fixed point;
(2) under the given hypotheses (common) fixed point might not be unique in the whole space X.

2.1. Some special cases

The following are some consequences of the main result.
If h = identity mapping in Theorem 2.1, we have the following result.

Corollary 2.3. Let (X, d,�) be a regular ordered metric space and let 1 and f be self-maps on X satisfying

[dp( f x, 1y) + adp(x, y)]dp( f x, 1y)

≤ a max{dp( f x, x)dp(1y, y), dq( f x, y)dq′ (1y, x)}

+ max
{
ϕ1(d2p(x, y)), ϕ2(dr( f x, x)dr′ (1y, y)), ϕ3(ds( f x, y)ds′ (1y, x)),

ϕ4

(
1
2

[
dl( f x, y)dl′ ( f x, x) + dl(1y, x)dl′ (1y, y)

])}
,

for all x, y ∈ O(x0; f , 1) (for some x0) such that x and y are comparable, and some ϕi ∈ Φ (i = 1, 2, 3, 4),
a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 such that 2p = q + q′ = r + r′ = s + s′ = l + l′ ≤ 1.

We assume the following hypotheses:

(i) ( f , 1) is a.r. at some point x0 ∈ X;

(ii) X is ( f , 1)-orbitally complete at x0;

(iii) 1 and f are orbitally weakly increasing at x0;

(iv) 1 and f are ( f , 1)-orbitally dominating maps at x0.

Then 1 and f have a common fixed point. Moreover, the set of common fixed points of 1 and f in O(x0; f , 1) is
well ordered if and only if it is a singleton.

If f = 1 in Theorem 2.1, we have the following result.
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Corollary 2.4. Let (X, d,�) be a regular ordered metric space and let 1 and h be self-maps on X satisfying

[dp(1x, 1y) + adp(hx, hy)]dp(1x, 1y)

≤ a max{dp(1x, hx)dp(1y, hy), dq(1x, hy)dq′ (1y, hx)}

+ max
{
ϕ1(d2p(hx, hy)), ϕ2(dr(1x, hx)dr′ (1y, hy)), ϕ3(ds(1x, hy)ds′ (1y, hx)),

ϕ4

(
1
2

[
dl(1x, hy)dl′ (1x, hx) + dl(1y, hx)dl′ (1y, hy)

])}
,

for all x, y ∈ O(x0; 1, h) (for some x0) such that hx and hy are comparable, and some ϕi ∈ Φ (i = 1, 2, 3, 4),
a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 such that 2p = q + q′ = r + r′ = s + s′ = l + l′ ≤ 1.

We assume the following hypotheses:

(i) 1 is a.r. with respect to h at x0 ∈ X;

(ii) X is (1, h)-orbitally complete at x0;

(iii) 1 is orbitally weakly increasing with respect to h at x0;

(iv) 1 is a (1, h)-orbitally dominating map at x0;

(v) h is monotone and orbitally continuous at x0.

Then 1 and h have a common fixed point. Moreover, the set of common fixed points of 1 and h in O(x0; 1, h) is well
ordered if and only if it is a singleton.

If h = identity mapping in the Corollary 2.4, we have the following result.

Corollary 2.5. Let (X, d,�) be a regular ordered metric space and let 1 be a self-map on X satisfying for all
x, y ∈ O(x0; 1) such that x and y are comparable,

[dp(1x, 1y) + adp(x, y)]dp(1x, 1y)

≤ a max{dp(1x, x)dp(1y, y), dq(1x, y)dq′ (1y, x)}

+ max
{
ϕ1(d2p(x, y)), ϕ2(dr(1x, x)dr′ (1y, y)), ϕ3(ds(1x, y)ds′ (1y, x)),

ϕ4

(
1
2

[
dl(1x, y)dl′ (1x, x) + dl(1y, x)dl′ (1y, y)

])}
,

for some ϕi ∈ Φ (i = 1, 2, 3, 4), a, p, q, q′, r, r′, s, s′, l, l′ ≥ 0 such that 2p = q + q′ = r + r′ = s + s′ = l + l′ ≤ 1.
We assume the following hypotheses:

(i) 1 is a.r. at some point x0 of X;

(ii) X is 1-orbitally complete at x0;

(iii) 1x � 1(1x) for all x ∈ O(1; x0);

(iv) 1 is an orbitally dominating map at x0.

Then 1 has a fixed point. Moreover, the set of fixed points of 1 in O(x0; 1) is well ordered if and only if it is a singleton.

If a = 0 in Theorem 2.1, we have the following consequence.

Theorem 2.6. Let (X, d,�) be a regular ordered metric space and let f , 1 and h be self-maps on X satisfying

d2p( f x, 1y) ≤ max
{
ϕ1(d2p(hx, hy)), ϕ2(dr( f x, hx)dr′ (1y, hy)), ϕ3(ds( f x, hy)ds′ (1y, hx)),

ϕ4

(
1
2

[
dl( f x, hy)dl′ ( f x, hx) + dl(1y, hx)dl′ (1y, hy)

])}
, (23)
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for all x, y ∈ O(x0; f , 1, h) (for some x0) such that hx and hy are comparable, and some ϕi ∈ Φ (i = 1, 2, 3, 4),
p, r, r′, s, s′, l, l′ ≥ 0 such that 2p = r + r′ = s + s′ = l + l′ ≤ 1. Suppose that the conditions (i)–(v) and (a) or (b) of
Theorem 2.1 hold. Then f , 1 and h have a common fixed point. Moreover, the set of common fixed points of f , 1 and h
in O(x0; f , 1, h) is well ordered if and only if it is a singleton.

In Theorem 2.1, if we put a = 0 and ϕi(t) = kt (i = 1, 2, 3, 4), where 0 < k < 1, we get the following
consequence.

Theorem 2.7. Let (X, d,�) be a regular ordered metric space and let f , 1 and h be self-maps on X satisfying

d2p( f x, 1y) ≤ k max
{
d2p(hx, hy), dr( f x, hx)dr′ (1y, hy), ds( f x, hy)ds′ (1y, hx),

1
2

[
dl( f x, hy)dl′ ( f x, hx) + dl(1y, hx)dl′ (1y, hy)

]}
, (24)

for all x, y ∈ O(x0; f , 1, h) (for some x0) such that hx and hy are comparable, and some k, 0 < k < 1, p, r, r′, s, s′, l, l′ ≥ 0
such that 2p = r + r′ = s + s′ = l + l′ ≤ 1. Suppose that the conditions (i)–(v) and (a) or (b) of Theorem 2.1 hold.
Then f , 1 and h have a common fixed point. Moreover, the set of common fixed points of f , 1 and h in O(x0; f , 1, h) is
well ordered if and only if it is a singleton.

Example 2.8. Let X = [0,+∞) be equipped with standard metric and order. Consider the mappings
f , 1, h : X → X given by

f x =

 3+x
4 , 0 ≤ x ≤ 1

4x − 3, x > 1,
1x =

 2+x
3 , 0 ≤ x ≤ 1

3x − 2, x > 1,
hx =

 1+x
2 , 0 ≤ x ≤ 1

5x − 4, x > 1.

Conditions (i)–(v) and (a) (or (b)) of Theorem 2.1 are easy to check. For example, in order to check condition
(iii), take x0 = 0. Then O(x0; f , 1, h) ⊂ [0, 1]. If x, y ∈ [0, 1] are such that hy = 1x then y = 2x+1

3 and
1x = 2+x

3 ≤
x+5

6 =
3+y

4 = f y; similarly, hy = f x implies that f x ≤ 1y. Note, however, that conditions (iii) and
(iv) are not fulfilled on the whole space X.

We will prove now that condition (24) of Theorem 2.7 is fulfilled with x0 = 0, p = r = r′ = s = s′ = l =
l′ = 1

2 , k = 2
3 t. Take x, y ∈ O(0; f , 1, h) ⊂ [0, 1]. Then (24) becomes∣∣∣∣∣3 + x

4
−

2 + y
3

∣∣∣∣∣ ≤ 2
3

max


∣∣∣∣∣x − y

2

∣∣∣∣∣ ,
√

1 − x
4
·

1 − y
6

,

√∣∣∣∣∣3 + x
4
−

1 + y
2

∣∣∣∣∣ · ∣∣∣∣∣2 + y
3
−

1 + x
2

∣∣∣∣∣ ,
1
2

√∣∣∣∣∣3 + x
4
−

1 + y
2

∣∣∣∣∣ · 1 − x
4

+

√∣∣∣∣∣2 + y
3
−

1 + x
2

∣∣∣∣∣ · 1 − y
6


 .

Using the substitution x = 1 − ξ, y = 1 − ξt, 0 ≤ ξ ≤ 1, t ≥ 0, the previous inequality becomes∣∣∣∣∣ t
3
−

1
4

∣∣∣∣∣ ≤ 2
3

max


∣∣∣∣∣1 − t

2

∣∣∣∣∣ ,
√

t
24
,

√∣∣∣∣∣ t
2
−

1
4

∣∣∣∣∣ · ∣∣∣∣∣12 − t
3

∣∣∣∣∣, 1
2

√1
4

∣∣∣∣∣ t
2
−

1
4

∣∣∣∣∣ +

√
1
5

∣∣∣∣∣12 − t
3

∣∣∣∣∣

 ,

and can be checked by discussion on possible values of t ≥ 0. Note, again, that condition (24) does not hold
for all x, y ∈ X.

Thus, f , 1 and h have a (unique) common fixed point (which is z = 1).

3. Application to Systems of Integral Equations

Consider the following system of integral equations: u(t) =
∫ T

0 K1(t, s,u(s)) ds + w(t),

u(t) =
∫ T

0 K2(t, s,u(s)) ds + w(t),
(25)
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t ∈ I = [0,T], where T > 0. The purpose of this section is to give an existence theorem for a solution of the
system (25) using Theorem 2.7.

Let � be an arbitrary partial order relation on Rn. Let X := C(I,Rn) with the usual supremum norm,
i.e., ‖x‖X = maxt∈I ‖x(t)‖, for x ∈ C(I,Rn). Consider on X the partial order defined by

x � y if and only if x(t)� y(t) for any t ∈ [0,T].

Then (X,�) is a partially ordered set. Also (X, ‖·‖X) is a complete metric space. Moreover for any increasing
sequence {xn} in X converging to x∗ ∈ X, we have xn(t)� x∗(t) for any t ∈ [0,T].

Define f , 1 : X → X by

f x(t) =

∫ T

0
K1(t, s, x(s))ds + w(t), t ∈ [0,T],

and

1x(t) =

∫ T

0
K2(t, s, x(s))ds + w(t), t ∈ [0,T].

Theorem 3.1. Consider the integral equations (25). Assume the following hypotheses:
(i) K1,K2 : [0,T] × [0,T] ×Rn

→ Rn and w : Rn
→ Rn are continuous,

(ii) for each t, s ∈ [0,T],

K1(t, s, x(s))� K2(t, s,
∫ T

0
K1(s, τ, x(τ)) dτ + w(s)),

K2(t, s, x(s))� K1(t, s,
∫ T

0
K2(s, τ, x(τ)) dτ + w(s)),

(iii) there exists a continuous function G : I × I→ R+ such that

‖K1(t, s,u(t)) − K2(t, s, v(t))‖p

≤ G(t, s) max


‖u(t) − v(t)‖2p, ‖ f u(t) − u(t)‖r‖1v(t) − v(t)‖r′ ,

‖ f u(t) − v(t)‖s‖1v(t) − u(t)‖s′ ,
1
√

2
[ ‖ f u(t) − v(t)‖l‖ f u(t) − u(t)‖l′ + ‖1v(t) − u(t)‖l‖1v(t) − v(t)‖l′ ]


for each t, s ∈ I and comparable u, v ∈ X, where p, r, r′, s, s′, l, l′ ≥ 0 with 2p = r + r′ = s + s′ = l + l′ ≤ 1;

(iv) max
t∈I

∫ T

0
G(t, s) ds = α < T−p.

(v) x � f x and x � 1x for all x ∈ X.
Then the system of integral equations (25) has a solution u∗ in C(I,Rn).

Proof. By assumption (ii), we have, for all t ∈ [0,T],

f x(t) =

∫ T

0
K1(t, s, x(s)) ds + w(t)

�

∫ T

0
K2(t, s,

∫ T

0
K1(s, τ, x(τ)) dτ + w(s)) ds + w(t)

=

∫ T

0
K2(t, s, f x(s))ds + w(t)

= 1 f x(t)
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and

1x(t) =

∫ T

0
K2(t, s, x(s)) ds + w(t)

�

∫ T

0
K1(t, s,

∫ T

0
K2(s, τx(τ)) dτ + w(s)) ds + w(t)

=

∫ T

0
K1(t, s, f x(s)) ds + w(t)

= f1x(t).

Thus, we have 1x � f1x and f x � 1 f x for all x ∈ X. This shows that 1 and f are weakly increasing. From
assumption (v), f and 1 are dominating maps.

Also, for each comparable u, v ∈ X, by (iii) and (iv), we have:

‖ f u(t) − 1v(t)‖ ≤
∫ T

0
‖K1(t, s,u(s)) − K2(t, s, v(s))‖ ds

≤ T
(∫ T

0
G(t, s) ds

)1/p

max


‖u(t) − v(t)‖2p, ‖ f u(t) − u(t)‖r‖1v(t) − v(t)‖r′ ,

‖ f u(t) − v(t)‖s‖1v(t) − u(t)‖s′ ,
1
√

2
[ ‖ f u(t) − v(t)‖l‖ f u(t) − u(t)‖l′ + ‖1v(t) − u(t)‖l‖1v(t) − v(t)‖l′ ]


1/p

≤ Tα1/p max
{

d2p(u, v), dr( f u,u)dr′ (1v, v), ds( f u, v)ds′ (1v,u),
1
√

2
[dl( f u, v)dl′ ( f u,u) − dl(1v,u)dl′ (1v, v)]

}1/2p

.

On routine calculations, we get

d2p( f u, 1v) ≤ α2T2p max
{

d2p(u, v), dr( f u,u)dr′ (1v, v), ds( f u, v)ds′ (1v,u),
1
2 [dl( f u, v)dl′ ( f u,u) + dl(1v,u)dl′ (1v, v)]

}
for each comparable u, v ∈ X. Then, Theorem 2.7 is applicable, where h is the identity mapping and
k = α2T2p

∈ (0, 1). So f and 1 have a common fixed point. Thus, there exists a u∗ ∈ C(I), a common fixed
point of f and 1, that is u∗ is a solution to (25).
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