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Abstract. We define and study the properties of left big subsets of a topological polygroup and give some
new results.

1. Introduction

Applications of hypergroups have mainly appeared in special subclasses. For example polygroups,
which are a certain subclass of hypergroups, are used to study color algebra and combinatorics [3, 4]. A
polygroup is completely regular, reversible in its hypergroup. A new monograph [7] is devoted to the
study polygroup theory. It contains all the previously known results in polygroup theory.

Complete parts were introduced and studied for the first time by Koskas [16]. Later, this topic was
analyzed by Corsini [5] and Sureau [18] mostly in the general theory of hypergroups. This concept was
studied by mostly authors, for example see [5–7, 10, 11, 13]. In [10], Heidari et al. introduced and studied the
concept of topological hypergroups as a generalization of topological groups. A topological hypergroup is
a non-empty set endowed with two structures: that of a topological space and that of a hypergroup. These
structures are connected in a way that algebraic properties of the hypergroup affect topological properties
of the space and vice versa [10]. It is important to mention that this topological hypergroups are different
from topological hypergroups which were initiated by Dunkl [8] and Jewett [15].

By using complete parts in topological polygroups, some interesting results were obtained by Heidari
et al. [11]. In this paper, we establish some simple facts about complete parts in polygroups and we use
these facts to obtain some new results in topological polygroups.

2. Preliminaries and elementary observations

A hyperstructure is a non-empty set H together with a hyperoperation ◦ : H ×H→ P∗(H), where P∗(H) is
the set of all non-empty subsets of H. The couple (H, ◦) is called a hypergroupoid. In the above definition, if
A and B are two non-empty subsets of H and x ∈ H, then we define A ◦B =

⋃
a∈A,b∈B a ◦ b, A ◦ x = A ◦ {x} and

x◦A = {x}◦A. A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H , x◦ (y◦z) = (x◦ y)◦z
and is called a quasihypergroup if for every x ∈ H, we have x ◦ H = H = H ◦ x. This condition is called the
reproduction axiom. A quasihypergroup (H, ◦) which is a semihypergroup is called a hypergroup, see [5, 6].
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The notion of a hypergroup was introduced for the first time by Marty [17]. For all n > 1, we define the
relation βn on a semihypergroup H as follows:

aβnb⇔ ∃(x1, x2, . . . , xn) ∈ Hn such that {a, b} ⊆
n∏

i=1
xi

and β =
⋃
∞

i=1 βi, where β1 = {(x, x)|x ∈ H}. Clearly, the relation β is reflexive and symmetric. Denote by β∗

the transitive closure of β.

Theorem 2.1. ([9]) If (H, ◦) is a hypergroup, then β = β∗.

The relation β∗ is called the fundamental relation on H and H/β∗ is called the fundamental group. The
fundamental relation β∗ was introduced on hypergroups by Koskas [16] for the first time and studied by
many authors, for example see [5–7, 19]. The fundamental relation is defined on hypergroups as the smallest
equivalence relation so that the quotient would be a group.

Let (H, ◦) be a semihypergroup and A be a non-empty subset of H. We say that A is a complete part of H
if for any natural number n and for all a1, a2, . . . , an ∈ H, the following implication holds:

A ∩
n∏

i=1
ai , ∅ ⇒

n∏
i=1

ai ⊆ A.

Let (H1, ◦1) and (H2, ◦2) be two hypergroups. A map f : H1 → H2, is called (1) a homomorphism if for
every x, y ∈ H , we have f (x ◦1 y) ⊆ f (x) ◦2 f (y); (2) a good homomorphism if for all x, y ∈ H , we have
f (x ◦1 y) = f (x) ◦2 f (y); (3) an isomorphism if it is a homomorphism, and f−1 is a homomorphism, too. A
special subclass of hypergroups is the class of polygroups. A polygroup [3] is a system P = 〈P, ◦, e,−1

〉, where
◦ : P × P→ P∗(P) , e ∈ P, −1 is a unitary operation on P and the following axioms hold for all x, y, z ∈ P: (1)
(x ◦ y) ◦ z = x ◦ (y ◦ z); (2) e ◦ x = x ◦ e = x; (3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1

◦ x. The following
elementary facts about polygroups follow easily from the axioms: e ∈ x ◦ x−1

∩ x−1
◦ x, e−1 = e, (x−1)−1 = x,

and (x ◦ y)−1 = y−1
◦ x−1. A non-empty subset K of a polygroup P is a subpolygroup of P if and only if

a, b ∈ K implies a ◦ b ⊆ K and a ∈ K implies a−1
∈ K. The subpolygroup N of P is normal in P if and only if

a−1
◦N ◦ a ⊆ N for every a ∈ P. An immediate consequence of the definition of a polygroup is the following

result:

Proposition 2.2. For any subsets A, B and C of a polygroup P = 〈P, ◦, e,−1
〉, (A ◦ B) ∩ C = ∅ if and only if

A ∩ (C ◦ B−1) = ∅.

The following proposition is surely known in folklore, but we give its proof for the sake of completeness.

Proposition 2.3. Let A and B be non-empty subsets of a polygroup P = 〈P, ◦, e,−1
〉 such that A is a complete part

and x ∈ P. Then,

(1) x−1
◦ x ◦ A = x ◦ x−1

◦ A = A;

(2) A−1 is a complete part;

(3) x ◦ A and A ◦ x are complete parts;

(4) B ⊆ x−1
◦ A if and only if x ◦ B ⊆ A.

Proof. (1) Clearly, A ⊆ x−1
◦ x ◦ A. If t ∈ A, then t ∈ ((x−1

◦ x) ◦ t) ∩ A, and so (x−1
◦ x) ◦ t ⊆ A since A is a

complete part. Thus, (x−1
◦ x) ◦A =

⋃
t∈A(x−1

◦ x) ◦ t ⊆ A. Hence, (x−1
◦ x) ◦A = A. Similarly, x ◦ x−1

◦A = A
(2) The proof is straightforward.
(3) If ∅ , (x ◦ A) ∩

∏n
i=1 ai, where n ∈ N and (a1, . . . , an) ∈ Pn, then ∅ , x−1

◦ ((x ◦ A) ∩
∏n

i=1 ai) ⊆
(x−1
◦ x ◦A)∩ (x−1

◦
∏n

i=1 ai) = A∩ (x−1
◦
∏n

i=1 ai) by (1). Since A is a complete part we have x−1
◦
∏n

i=1 ai ⊆ A
and so

∏n
i=1 ai ⊆ x ◦ A. Thus, x ◦ A is a complete part. Similarly, A ◦ x is a complete part.

(4) Let B ⊆ x−1
◦ A, then x ◦ B ⊆ x ◦ x−1

◦ A = A by (1). The converse is obvious.
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3. Complete Parts in Topological Polygroups

Until now, only a few papers treated the notion of topological hyperstructures, in the classical case,
see [2, 10–12]. Topological polygroups are studied in [11] and by considering the relative topology on
subpolygroups, the authors studied some properties of them. A topological polygroup is a polygroup P
together with a topology on P such that the polygroup’s binary hyperoperation and the polygroup’s inverse
function are continuous functions with respect to the topology.

Thus, one may perform algebraic hyperoperations, because of the polygroup structure, and one may
talk about continuous functions, because of the topology.

In this section, we study the concept of topological polygroups and we prove some new results in this
respect. Some applications of complete parts in topological polygroups are investigated.

Lemma 3.1. ([12]) Let (H, τ) be a topological space. Then, the familyB = {SV | V ∈ τ}, where SV = {U ∈ P∗(H)| U ⊆
V} is a base for a topology on P∗(H). This topology is denoted by τ∗.

Let (H, τ) be a topological space. We consider the product topology on H × H and the topology τ∗ on
P
∗(H).

Theorem 3.2. Let (H, ◦) be a hypergroupoid, τ be a topology on H and A,B ⊆ H. If the hyperoperation ◦ : H×H→
P
∗(H) is continuous, then the following conditions hold.

(1) The subspace {{x} | x ∈ H} of P∗(H) and H are homeomorphic;

(2) If A and B are compact (respectively, countably compact, separable) subsets of H, then ◦(A × B) = {◦(a, b)|a ∈
A, b ∈ B} is a compact (respectively, countably compact, separable) subset of P∗(H).

Proof. (1) It is easily seen that the mappingφ from H to {{x}|x ∈ H}defined byφ(x) = {x} is a homeomorphism.
(2) Let A and B be compact (respectively, countably compact, separable) subsets of H. Then, A ×

B is compact (respectively, countably compact, separable). Since the continuous image of a compact
(respectively, countably compact, separable) subset is compact (respectively, countably compact, separable),
the set ◦(A × B) is compact (respectively, countably compact, separable).

Definition 3.3. ([11]) Let P = 〈P, ◦, e,−1
〉 be a polygroup and (P, τ) be a topological space. Then, the system

P = (P, ◦, e,−1 , τ) is called a topological polygroup if the mappings µ : P × P→ P∗(P) and ι : P→ P defined by
µ(x, y) = x ◦ y and ι(x) = x−1 are continuous.

Lemma 3.4. ([11]) Let P be a topological polygroup. Then, the hyperoperation ◦ : P × P → P∗(P) is continuous if
and only if for every x, y ∈ P and U ∈ τ such that x ◦ y ⊆ U there exist V,W ∈ τ such that x ∈ V and y ∈ W and
V ◦W ⊆ U.

Lemma 3.5. ([11]) Let P be a topological polygroup. Then, the mappings

(1) aϕ : P→ P∗(P) defined by aϕ(x) = a ◦ x;

(2) ϕa : P→ P∗(P) defined by ϕa(x) = x ◦ a;

are continuous for every a ∈ P.

Lemma 3.6. ([11]) Let U be an open subset of a topological polygroup P such that U is a complete part. Then, a ◦U
and U ◦ a are open subsets of P for every a ∈ P.

Lemma 3.7. ([11]) Let P be a topological polygroup such that every open subset of P is a complete part. LetU be an
open base at e. Then, the families {x ◦U| x ∈ P ,U ∈ U} and {U ◦ x| x ∈ P ,U ∈ U} are open bases for P.

Lemma 3.8. Let every open subset of a topological polygroup P be a complete part. If F is a compact subset of P, then
for every a ∈ P, a ◦ F and F ◦ a are compact.
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Proof. Let {Uα | α ∈ A} be an open cover of a ◦ F. Then, a ◦ F ⊆
⋃
α∈A Uα and so

F ⊆ a−1
◦ a ◦ F ⊆ a−1

◦
⋃
α∈A

Uα =
⋃
α∈A

a−1
◦Uα.

By Lemma 3.6, every a−1
◦Uα is open. Since F is compact, there existα1, . . . , αn ∈ A such that F ⊆

⋃n
i=1 a−1

◦Uαi .
Therefore, by Proposition 2.3, a ◦ F ⊆

⋃n
i=1 a ◦ a−1

◦ Uαi =
⋃n

i=1 Uαi , i.e., a ◦ F is compact. Similarly, F ◦ a is
compact.

Corollary 3.9. Let F be a compact subset of a topological polygroup P and E be a finite subset of P. If every open
subset of P is a complete part, then E ◦ F and F ◦ E are compact.

Proof. F ◦ E =
⋃

a∈E F ◦ a and every F ◦ a is compact by Lemma 3.8. Since every finite union of compact
subsets is compact, it follows that F ◦ E is compact. Similarly, E ◦ F is compact.

Remark 3.10. Being complete part is necessary in Lemma 3.8 as it is illustrated in the following example.

Example 3.11. Consider the set of integer numbers Z and define the hyperoperation ◦ on it as follows: for
every m ∈ Z, m ◦ 0 = m and if m,n ∈ Z \ {0}, then

m ◦ n =

{
E if m + n ∈ E
Ec if m + n ∈ Ec

where E = 2Z. Let τ be discrete topology on Z. Then, (Z, ◦, 0,−) is a topological polygroup, where the
unitary operation − is the ordinary negation. Thus, F = {1} is compact, but 1 ◦ F = E is not compact.

Theorem 3.12. ([11]) Let P = (P, ◦, e,−1 , τ) be a topological polygroup and U be a basis at e. Then, the following
assertions hold:

(1) for every U ∈ U and x ∈ U there exists V ∈ U such that x ◦ V ⊆ U;

(2) for every U ∈ U there exists V ∈ U such that V ◦ V ⊆ U;

(3) for every U ∈ U there exists V ∈ U such that V−1
⊆ U.

Theorem 3.13. Let P = (P, ◦, e,−1 , τ) be a topological polygroup, A be a non-empty subset of P and a ∈ A. Then the
function fa from P∗(P) to itself defined by fa(A) = a ◦ A is continuous.

Proof. Suppose that U ∈ τ and f (A) ∈ SU. Then, a ◦ A ⊆ U. Thus, a ◦ b ⊆ U for every b ∈ A. By Lemma
3.4 there exist Vb,Wb ∈ τ such that a ∈ Vb, b ∈ Wb and Vb ◦Wb ⊆ U. Therefore, for every b ∈ A, we have
a◦Wb ⊆ U. Now, suppose that W =

⋃
b∈A Wb. Thus, fa(SW) ⊆ SU and A ∈ SW . Therefore, fa is continuous.

Example 3.14. Suppose that the multiplication table for polygroup P = 〈P, ◦, 1,−1
〉, where P = {1, 2}, 1−1 = 1

and 2−1 = 2 is
◦ 1 2
1 {1} {2}
2 {2} {1, 2}

If τ = {∅, {1}, {1, 2}}, then P = (P, ◦,−1 , τ) is a topological polygroup. We note that the open subset {1} of P is
not a complete part. The function f2 from P∗(P) to itself defined by f2(A) = 2 ◦A is continuous by Theorem
3.13. But the function f2 is not open since {{1}} ∈ τ∗ but f2({{1}}) = {{2}} is not open in P∗(P).

Proposition 3.15. Let P = (P, ◦, e,−1 , τ) be a topological polygroup and a ∈ P. Then, the map 1a : P → P∗(P)
defined by 1a(x) = a ◦ x ◦ a−1 is continuous.

Proof. By Theorem 3.13, the function fa is continuous and by Lemma 3.5, the function ϕa−1 is continuous.
Since 1a is the composite fa ◦ ϕa−1 of fa and ϕa−1 , the function 1a is continuous.
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Let P = (P, ◦, e,−1 , τ) be a topological polygroup. We denote by νP(e) the set of all neighborhoods of e.

Proposition 3.16. Let P = (P, ◦, e,−1 , τ) be a topological polygroup, every open subset of P is a complete part and
a ∈ P. Then, for every U ∈ νP(e) there exists a V ∈ νP(e) such that a ◦ V ◦ a−1

⊆ U.

Proof. By Proposition 3.15, the function 1a is continuous and so 1−1
a (SU) is open in P. Since U is a complete

part, it follows that e ∈ a−1
◦U ◦ a = 1−1

a (SU). Thus, there exists a V ∈ νP(e) such that V ⊆ a−1
◦U ◦ a, and so

a ◦ V ◦ a−1
⊆ U by Proposition 2.3.

Theorem 3.17. Let P = (P, ◦, e,−1 , τ) be a topological polygroup such that every open subset of P is a complete part, F
be a compact subsets of P and G be a closed subset of P such that F∩G = ∅. Then, there exists an open neighbourhood
V of e such that (F ◦ V) ∩ G = ∅ and (V ◦ F) ∩ G = ∅.

Proof. If x ∈ F, then x ∈ P \ G. Since P \ G is an open subset of P by Lemma 3.7, there exists an open
neighbourhood Vx of e such that x ∈ x ◦Vx ⊆ P \G. Then, x ◦Vx ∩G = ∅. By Theorem 3.12 we can also take
an open neighbourhood Wx of e such that Wx ◦Wx ⊆ Vx. So, F ⊆

⋃
x∈F x ◦Wx. Hence, there exists a finite set

C ⊆ F such that F ⊆ ∪x∈Cx ◦Wx. Put V1 =
⋂

x∈C Wx. We claim that (F ◦ V1) ∩ G = ∅. That is for each t ∈ F,
t ◦ V1 ∩ G = ∅. Given a t ∈ F. Then, there exists x in C such that t ∈ x ◦Wx. Thus,

t ◦ V1 ⊆ x ◦Wx ◦ V1 ⊆ x ◦Wx ◦Wx ⊆ x ◦ Vx ⊆ P \ G,

and so (t ◦ V1) ∩ G = ∅. Thus, (F ◦ V1) ∩ G = ∅.
Similarly, one can find an open neighbourhood V2 of e in P satisfying (V2 ◦ F) ∩ G = ∅. Then, the set

V = V1 ∩ V2 is as required.

Theorem 3.18. Let P = (P, ◦, e,−1 , τ) be a topological polygroup such that every open subset of P is a complete part,
F be a compact subset of P and G be a closed subset of P. Then, the sets F ◦ G and G ◦ F are closed in P.

Proof. We prove that P \ (F ◦ G) is open. If a ∈ P \ (F ◦ G) then we claim that (F−1
◦ a) ∩ G = ∅. Indeed, if

x ∈ (F−1
◦a)∩G then x ∈ F−1

◦a and x ∈ G. So, there exists an f ∈ F such that x ∈ f−1
◦a. Thus, a ∈ F◦x ⊆ F◦G,

which is a contradiction. Since the unitary operation is continuous and F is compact, then F−1 is compact.
By Lemma 3.8, F−1

◦ a is compact. Hence, by Theorem 3.17 there exists an open neighborhood U of e such
that (F−1

◦ a ◦U)∩G = ∅. Therefore, by Proposition 2.2, (a ◦U)∩ (F ◦G) = ∅. Thus, a ∈ a ◦U ⊆ P \F ◦G. That
is P \ (F ◦ G) is open. Hence, F ◦ G is closed. Analogously, it is possible to prove that G ◦ F is closed.

Lemma 3.19. ([11]) If H is a subpolygroup of a polygroup P = (P, ◦, e,−1 , τ) and every open subset of P is a complete
part, then H is a subpolygroup of P.

Theorem 3.20. Let H be a non-empty subset of a topological polygroup P = (P, ◦, e,−1 , τ) and every open subset of
P is a complete part. Then

(1) H =
⋂

U∈ νP(e) U ◦H =
⋂

U∈νP(e) H ◦U =
⋂

U∈νP(e),V∈νP(e) U ◦H ◦ V;

(2) if H is a normal subpolygroup, then H is a normal subpolygroup.

Proof. (1) Suppose that x ∈ H and U−1
∈ νP(e). Since U−1

◦ x is open and x ∈ U−1
◦ x, there exists a

t ∈ U−1
◦ x ∩ H. Hence, there exists a u ∈ U such that t ∈ u−1

◦ x, and so x ∈ u ◦ t ⊆ U ◦ H. Thus,
x ∈
⋂

U∈νP(e) U ◦H. Now, suppose that x ∈
⋂

U∈νP(e) U ◦H and x < H, then there exists a symmetric U ∈ νP(e)
such that U ◦ x ∩H = U−1

◦ x ∩H = ∅. Hence, x < U ◦H which is contradiction.
Let V ∈ νP(e). Since e ∈ V, we have U ◦H ⊆ U ◦H ◦ V for every U ∈ νP(e). Therefore,

H =
⋂

U∈νP(e) U ◦H
⊆
⋂

U∈νP(e),V∈νP(e) U ◦H ◦ V
=
⋂

U∈νP(e)
⋂

V∈νP(e) U ◦H ◦ V
=
⋂

U∈νP(e) U ◦H
⊆
⋂

U∈νP(e) U ◦U ◦H
=
⋂

W∈νP(e) W ◦H.
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(2) Since H is a subpolygroup of P, H is a subpolygroup of P. Let x be in H. We prove that a◦x◦a−1
⊆ H for

every a ∈ P. Let U,V ∈ νP(e), then by Lemma 3.16, there exist U1,V1 ∈ νP(e) such that a◦U1 ⊆ U◦a,V1 ◦a−1
⊆

a−1
◦ V. Since x ∈ H, it follows from (1) that x ∈ U1 ◦H ◦ V1. Therefore,

a ◦ x ◦ a−1
⊆ a ◦U1 ◦H ◦ V1 ◦ a−1

⊆ U ◦ a ◦H ◦ a−1
◦ V ⊆ U ◦H ◦ V.

Thus, by (1), a ◦ x ◦ a−1
⊆ H.

4. Left Big Subsets of Polygroups

In this section, we define and study the concept of left big subsets of polygroups. Applications of
complete parts in topological polygroups in which every non-empty open subset is left big are investigated.

Definition 4.1. A non-empty subset B of a hypergroupoid (H, ◦) is left (right ) big if there exists a finite subset
F of H such that H = F ◦ B (H = B ◦ F). If F ◦ B = H = B ◦ F, then we say that B is big.

Remark 4.2. If (H, ◦) is a quasihypergroup, then it is evident that H is big. The converse of this implication
is not true in general as shown in the following example.

Example 4.3. Suppose that H = {a, b} and the hyperoperation ◦ on H is defined as follows:

◦ a b
a {a, b} {a}
b {a} {a}

It is easy to see that H is big but the hypergroupoid (H, ◦) is not a quasihypergroup.

Example 4.4. Let H be a set and S be a non-empty subset of H. For every a, b ∈ H we define a ◦ b = S. Then,
H is left big in the hypergroupoid (H, ◦) if and only if H = S.

Example 4.5. Let (H, ◦) be the polygroup defined in Example 3.11. Then, S = {0} is not big. It is evident
that any non-zero subset of H which is non-empty is big.

Proposition 4.6. Let P = 〈P, ◦, e,−1
〉 be a polygroup. Then the following conditions hold:

(1) If B ⊆ P is left big, then B−1 is right big;

(2) If A ⊆ B ⊆ P and A is left big, then B is left big.

Proof. (1) Let F be a finite subset of P such that F ◦ B = P. Then, B−1
◦ F−1 = P, and so B−1 is right big.

(2) It is evident.

Proposition 4.7. Let B be a left big subset of a polygroup P = 〈P, ◦, e,−1
〉. If B is a complete part and H is a

subpolygroup of P, then (B−1
◦ B) ∩H is a left big subset of H.

Proof. Since B is a left big subset of P, there exists a finite subset F such that F ◦ B = P. For every f ∈ F, if
( f ◦ B)∩H , ∅, choose an a f in ( f ◦ B)∩H and if ( f ◦ B)∩H = ∅, choose an arbitrary element a f in H. Thus,
F1 = {a f | f ∈ F} is a finite subset of H. If x ∈ H, then there exists an f ∈ F such that x ∈ f ◦B since the equality
P = F ◦ B holds. Thus, a f ∈ ( f ◦ B) ∩H by definition of F1, and so a−1

f ◦ x ⊆ B−1
◦ f−1

◦ f ◦ B = B−1
◦ B since

B is a complete part. Thus, H ⊆ F1 ◦ ((B−1
◦ B) ∩ H) and so H = F1 ◦ ((B−1

◦ B) ∩ H) which completes the
proof.

Theorem 4.8. Let P1 = 〈P1, ◦1, e1,−1
〉 and 〈P2, ◦2, e2,−1

〉 be two polygroups and f : P1 → P2 be a good homomor-
phism which is surjective. Then
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(1) if B is a left big subset of P2, then f−1(B) is a left big subset of P1;

(2) if A is a left big subset of P1, then f (A) is a left big subset of P2.

Proof. (1) Let B be a left big subset of P2, then there exists an n-element subset F = {x1, . . . , xn} of P2 such
that F ◦2 B = P2. For every 1 ≤ i ≤ n choose a ti in f−1(xi). Now, suppose that F1 = {t1, . . . , tn}. Then,
f (F1 ◦1 f−1(B)) = f (F1) ◦2 f ( f−1(B)) = F ◦2 B = P2 . Hence, F1 ◦1 f−1(B) = P1. which shows that f−1(B) is a left
big subset of P1.

(2) Let A be a left big subset of P1, then there exists a finite subset F of P1 such that F ◦1 A = P1. Thus,
P2 = f (F ◦1 A) = f (F) ◦2 f (A) which shows that f (A) is a left big subset of P2 .

Definition 4.9. A topological polygroup P is called totally bounded if every open non-empty subset U of P
is left big.

Clearly, a topological polygroup P is totally bounded if and only if every open non-empty subset U of
P is right big.

Theorem 4.10. If P = (P, ◦, e,−1 , τ) is a totally bounded topological polygroup such that every open subset of P is a
complete part, then for every U ∈ νP(e) there exists a V ∈ νP(e) such that for every 1 ∈ P , 1 ◦ V ◦ 1−1

⊆ U.

Proof. Let U ∈ νP(e), then there exist V,W ∈ νP(e) such that V ◦V ⊆ U, W ◦W ⊆ V and W = W−1 by Theorem
3.12. Therefore, W ◦W ◦W ⊆ U. By hypothesis, there exists a finite subset F of P such that W ◦ F = P,
and so F ⊆ ∪x∈FW ◦ x. Let V = ∩x∈Fx−1

◦W ◦ x. For every y in F: y ◦ V ◦ y−1 = y ◦ (∩x∈Fx−1
◦W ◦ x) ◦ y ⊆

y◦ y−1
◦W ◦ y◦ y−1 = W by Proposition 2.3. If 1 ∈ P, then there exists a z ∈ F and a w ∈W such that 1 ∈ w◦ z.

Hence, 1 ◦ V ◦ 1−1
⊆ (w ◦ z) ◦ V ◦ (z−1

◦ w−1) ⊆ w ◦ (z ◦ V ◦ z−1) ◦ w−1
⊆ W ◦W ◦W ⊆ U and this completes

the proof.

Lemma 4.11. Let P = (P, ◦, e,−1 , τ) be a topological polygroup, every open subset of P is a complete part andU be a
base at e. Then, P is totally bounded if and only if for every U ∈ U, U is left big.

Proof. Obviously, if P is totally bounded, then every member of U is left big. Conversely, suppose that
every member of U is left big. Let V be an open subset of P and x ∈ V. Then, by Lemma 3.7, there exists
a W ∈ U such that W ◦ x ⊆ V. Since W is left big, there exists a finite subset F of P such that P = F ◦W.
Thus, P = P ◦ x = (F ◦W) ◦ x = F ◦ (W ◦ x) ⊆ F ◦V. Hence, P = F ◦V, i.e., V is left big. Therefore, P is totally
bounded.

Proposition 4.12. If every open subset of a totally bounded topological polygroup P = (P, ◦, e,−1 , τ) is a complete
part and H is a subpolygrop of P, then H is totally bounded.

Proof. Let U ∈ νH(e). Then, there exists a W ∈ νP(e) such that U = H ∩W. By Theorem 3.12, pick a V ∈ νP(e)
such that V−1

◦V ⊆W. Then, (V−1
◦V)∩H ⊆W ∩H = U. By Proposition 4.7, (V−1

◦V)∩H is big in H, and
so U is big in H. Thus, H is totally bounded by Lemma 4.11.

Theorem 4.13. Let P = (P, ◦, e,−1 , τ) be a topological polygroup and H be a dense subpolygroup of P. If H is totally
bounded and every open subset of P is a complete part, then P is totally bounded.

Proof. Let U be in νP(e), then there exits a V ∈ νP(e) such that V ◦ V ⊆ U by Theorem 3.12. Since V ∩ H is
open in H and H is totally bounded, there exists a finite set F ⊆ H such that F ◦ (V ∩ H) = H. Hence, by
Theorem 3.20:

P = H =
⋂

W∈νP(e)
H ◦W ⊆ H ◦ V = F ◦ (V ∩H) ◦ V ⊆ F ◦ V ◦ V ⊆ F ◦U,

and so P = F ◦U. Thus, by Lemma 4.11, P is totally bounded.
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Theorem 4.14. Let P = (P, ◦, e,−1 , τ) be a topological polygroup. Then, P is not totally bounded if and only if there
exist a sequence (xn)n∈N of elements of P and a non-empty open set V such that xn ◦ V ∩ xm ◦ V = ∅ for every
m , n ∈N.

Proof. If P is not totally bounded, then there is a U ∈ νP(e) such that U is not left big by Lemma 4.11. By
Theorem 3.12, there exists a V ∈ νP(e) such that V ◦V−1

⊆ U. The subset V ◦V−1 is not left big since U is not
left big. Thus, there is a 11 in P\ (V◦V−1). Similarly, there is a 12 in P\ (V◦V−1)∪ (11 ◦ (V◦V−1)). By a simple
induction a sequence (1n)n∈N can be defined such that for every n > 1, 1n ∈ P\ ((V◦V−1)

⋃
∪

n−1
i=1 1i◦ (V◦V−1)).

If n > m and x ∈ (1n ◦V)∩ (1m ◦V), then there exist v1 and v2 in V such that x ∈ 1n ◦ v1 and x ∈ 1m ◦ v2. Thus,
1n ∈ x ◦ v−1

1 and 1m ∈ x ◦ v−1
2 so 1n ∈ x ◦ v−1

1 ⊆ 1m ◦ v2 ◦ v−1
1 ⊆ 1m ◦ (V ◦ V−1), which is a contradiction.

Conversely, suppose that there exist a W ∈ νP(e) and a sequence (xn)n∈N of elements of P such that for
every distinct elements m,n of N we have xn ◦W ∩ xm ◦W = ∅. By Theorem 3.12, there exists a V ∈ νP(e)
such that V−1

⊆ W. Thus, for every distinct elements m,n ofN we have xn ◦ V−1
∩ xm ◦ V−1 = ∅. We claim

that V is not left big. Otherwise, suppose that there exists a finite set F such that F ◦ V = P. Thus, there are
distinct natural numbers m,n and an x ∈ F such that {xm, xn} ⊆ x ◦V. Therefore, x ∈ xn ◦V−1

∩ xm ◦V−1 and
this is a contradiction.

Theorem 4.15. Let (P1, ◦1, e1,−1 , τ1) and (P2, ◦2, e2,−1 , τ2) be two topological polygroups and f : P1 → P2 be a
continuous surjective good homomorphism. Then the following assertions hold:

(1) if P1 is totally bounded, then P2 is totally bounded;

(2) if β = { f−1(U) | U ∈ τ2} is a base for the topological space (P1, τ1) and P2 is totally bounded, then P1 is totally
bounded.

Proof. (1) Let P1 be totally bounded and U be open in P2. Then, f−1(U) is an open subset of P1 which is left
big since P1 is totally bounded. Now, by Theorem 4.8, U = f ( f−1(U)) is left big. Thus, P2 is totally bounded.

(2) Let β = { f−1(U) | U ∈ τ2} is a base for the topological space (P1, τ1), P2 is totally bounded and
V ∈ νP1 (e1). Then, there exists U ∈ νP2 (e2) such that f−1(U) ⊆ V since β is a base. Since P2 is totally bounded,
U is left big. Hence, by Theorem 4.8, f−1(U) is left big, and so V is left big. Thus, by Lemma 4.11, P1 is
totally bounded.

5. Conclusion

A topological polygroup is a polygroup P together with a topology on P such that the hyperoperation
and the polygroup’s inverse function are continuous functions with respect to the topology. A subset A is a
complete part of P if for any natural number n and for all a1, a2, . . . , an ∈ P, the following implication holds:
A∩
∏n

i=1 ai , ∅ ⇒
∏n

i=1 ai ⊆ A. In this paper, we investigated the properties of complete parts and open sets
in a topological polygroup.

Also it might be interesting to study topological polygroups in the fuzzy case.
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