Filomat 30:12 (2016), 3361–3369 DOI 10.2298/FIL1612361K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Zweier I-Convergent Double Sequence Spaces

Vakeel A. Khan^a, Nazneen Khan^a

^aDepartment of Mathematics, Aligarh Muslim University, Aligarh-202002 (INDIA)

Abstract. In this article we introduce the Zweier I-convergent double sequence spaces ${}_{2}Z_{0}^{I}$, ${}_{2}Z_{0}^{I}$ and ${}_{2}Z_{\infty}^{I}$. We prove the decomposition theorem and study topological properties, algebraic properties and some inclusion relations on these spaces.

1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively. We write

$$_2\omega = \{x = (x_{ij}) : x_{ij} \in \mathbb{R} \text{ or } \mathbb{C}\},\$$

the space of all real or complex sequences.

Let ℓ_{∞} , *c* and c_0 denote the Banach spaces of bounded, convergent and null sequences respectively normed by $||x||_{\infty} = \sup |x_k|$.

At the initial stage the notion of I-convergence was introduced by Kostyrko,Šalát and Wilczyński[1]. Later on it was studied by Šalát, Tripathy and Ziman[2], Demirci [3] and many others. I-convergence is a generalization of Statistical Convergence.

Now we have a list of some basic definitions used in the paper .

Definition 1.1. [4,5] Let X be a non empty set. Then a family of sets $I \subseteq 2^X (2^X \text{ denoting the power set of } X)$ is said to be an ideal in X if

(i) Ø ∈ I
(ii) I is additive i.e A,B∈I ⇒ A ∪ B∈I.
(iii) I is hereditary i.e A∈I, B⊆ A ⇒B∈I.

An Ideal I \subseteq 2^{*X*} is called non-trivial if I \neq 2^{*X*}. A non-trivial ideal I \subseteq 2^{*X*} is called admissible if {{*x*} : *x* \in *X*} \subseteq I. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J \neq I containing I as a subset. For each ideal I, there is a filter £(I) corresponding to I. i.e

$$\pounds(I) = \{K \subseteq N : K^c \in I\}, \text{ where } K^c = N - K.$$

²⁰¹⁰ Mathematics Subject Classification. 40C05; 46A45, 46E30, 46E30, 46E40, 46B20

Keywords. Ideal, filter, I-convergence field, I-convergent, monotone and solid double sequence spaces, Lipschitz function Received: 03 April 2014 ; Accepted: 30 November 2014

Communicated by Hari M. Srivastava

Email addresses: vakhanmaths@gmail.com (Vakeel A. Khan), nazneenmaths@gmail.com (Nazneen Khan)

Definition 1.2. A double sequence of complex numbers is defined as a function $x : \mathbb{N} \times \mathbb{N} \to \mathbb{C}$. We denote a double sequence as (x_{ij}) , where the two subscripts run through the sequence of natural numbers independent of each other. A number $a \in \mathbb{C}$ is called a double limit of a double sequence (x_{ij}) if for every $\epsilon > 0$ there exists some $N = N(\epsilon) \in \mathbb{N}$ such that

$$|(x_{ij}) - a| < \epsilon$$
, for all $i, j \ge N$ (see [6,7,8])

Definition 1.3.[7] A double sequence $(x_{ij}) \in \omega$ is said to be I-convergent to a number L if for every $\epsilon > 0$,

$$\{i, j \in \mathbb{N} : |x_{ij} - L| \ge \epsilon\} \in I.$$

In this case we write $I - \lim x_{ij} = L$.

Definition 1.4.[7] A double sequence $(x_{ij}) \in {}_2\omega$ is said to be I-null if L = 0. In this case we write

$$I - \lim x_{ii} = 0.$$

Definition 1.5. [7] A double sequence $(x_{ij}) \in {}_2\omega$ is said to be I-cauchy if for every $\epsilon > 0$ there exist numbers $m = m(\epsilon)$, $n = n(\epsilon)$ such that

$$[i, j \in \mathbb{N} : |x_{ij} - x_{mn}| \ge \epsilon\} \in I.$$

Definition 1.6.[7] A double sequence $(x_{ij}) \in {}_2\omega$ is said to be I-bounded if there exists M > 0 such that

$$\{i, j \in \mathbb{N} : |x_{ij}| > M\}.$$

Definition 1.7.[7] A double sequence space E is said to be solid or normal if $(x_{ij}) \in E$ implies $(\alpha_{ij}x_{ij}) \in E$ for all sequence of scalars (α_{ij}) with $|\alpha_{ij}| < 1$ for all $i, j \in \mathbb{N}$.

Definition 1.8.[7] A double sequence space *E* is said to be monotone if it contains the canonical preimages of its stepspaces.

Definition 1.9.[7] A double sequence space *E* is said to be convergence free if $(y_{ij}) \in E$ whenever $(x_{ij}) \in E$ and $x_{ij} = 0$ implies $y_{ij} = 0$.

Definition 1.10.[7] A double sequence space *E* is said to be a sequence algebra if $(x_{ij}, y_{ij}) \in E$ whenever $(x_{ij}), (y_{ij}) \in E$.

Definition 1.11.[7] A double sequence space *E* is said to be symmetric if $(x_{ij}) \in E$ implies $(x_{\pi(ij)}) \in E$, where π is a permutation on *N*.

A sequence space $\lambda \subset \omega$ with linear topology is called a K-space provided each of maps $p_i \longrightarrow C$ defined by $p_i(x) = x_i$ is continuous for all $i \in N$.

Let λ and μ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in N$. Then we say that A defines a matrix mapping from λ to μ , and we denote it by writing $A : \lambda \longrightarrow \mu$.

If for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A transform of x is in μ , where

$$(Ax)_n = \sum_k a_{nk} x_k, \quad (n \in N).$$
 (1)

By $(\lambda : \mu)$, we denote the class of matrices *A* such that $A : \lambda \longrightarrow \mu$.

Thus, $A \in (\lambda : \mu)$ if and only if series on the right side of (1) converges for each $n \in N$ and every $x \in \lambda$. (see[9]).

The approach of constructing the new sequence spaces by means of the matrix domain of a particular limitation method have been recently studied by Başar and Altay[10], Malkowsky[11], Ng and Lee[12] and

Wang[13], Başar, Altay and Mursaleen[14]. For more information one can refer [15,16,17] Şengönül[18] defined the sequence $y = (y_i)$ which is frequently used as the Z^p transform of the sequence $x = (x_i)$ i.e,

$$y_i = px_i + (1 - p)x_{i-1}$$

where $x_{-1} = 0, p \neq 1, 1 and <math>Z^p$ denotes the matrix $Z^p = (z_{ik})$ defined by

$$z_{ik} = \begin{cases} p, (i = k), \\ 1 - p, (i - 1 = k); (i, k \in N), \\ 0, \text{ otherwise.} \end{cases}$$

Following Basar, and Altay [10], Sengönül[18] introduced the Zweier sequence spaces Z and Z_0 as follows

$$\mathcal{Z} = \{x = (x_k) \in \omega : Z^p x \in c\}$$
$$\mathcal{Z}_0 = \{x = (x_k) \in \omega : Z^p x \in c_0\}.$$

The following Lemmas will be used for establishing some results of this article.

Lemma 1.12. A sequence space *E* is solid implies that *E* is monotone.(See[19,20]) **Lemma 1.13.** Let $K \in \pounds(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.(See[19,20]) **Lemma 1.14.** If $I \subset 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.(See[21,22,23])

Main Results

In this article we introduce the following classes of sequence spaces.

$${}_{2}\mathcal{Z}^{I} = \{x = (x_{ij}) \in {}_{2}\omega : \{(i, j) \in N \times N : I - \lim Z^{p}x = L \text{ for some L}\}\} \in I$$

$${}_{2}\mathcal{Z}^{I}_{0} = \{x = (x_{ij}) \in {}_{2}\omega : \{(i, j) \in N \times N : I - \lim Z^{p}x = 0\}\} \in I$$

$${}_{2}\mathcal{Z}^{I}_{\infty} = \{x = (x_{ij}) \in {}_{2}\omega : \{(i, j) \in N \times N : \sup_{i, j} |Z^{p}x| < \infty\}\} \in I$$

We also denote by

$$_{2}m_{\mathcal{Z}}^{I} = _{2}\mathcal{Z}_{\infty} \cap _{2}\mathcal{Z}^{I}$$
 and $_{2}m_{\mathcal{Z}_{0}}^{I} = _{2}\mathcal{Z}_{\infty} \cap _{2}\mathcal{Z}_{0}^{I}$

Theorem 2.1. The classes of sequences ${}_{2}\mathcal{Z}^{I}$, ${}_{2}\mathcal{Z}^{I}_{0}$, ${}_{2}m^{I}_{Z}$ and ${}_{2}m^{I}_{Z_{0}}$ are linear spaces.

Proof. We shall prove the result for the space ${}_2Z^I$. The proof for the other spaces will follow similarly. Let $(x_{ij}), (y_{ij}) \in {}_2Z^I$ and let α, β be scalars. Then

$$I - \lim |x_{ij} - L_1| = 0$$
, for some $L_1 \in C$;

$$I - \lim |y_{ij} - L_2| = 0$$
, for some $L_2 \in C$;

That is for a given $\epsilon > 0$, we have

$$A_1 = \{(i, j) \in N \times N : |x_{ij} - L_1| > \frac{\epsilon}{2}\} \in I,$$
(1)

$$A_2 = \{i, j \in N \times N : |y_{ij} - L_2| > \frac{\epsilon}{2}\} \in I.$$
 (2)

we have

3363

$$\begin{aligned} |(\alpha x_{ij} + \beta y_{ij}) - (\alpha L_1 + \beta L_2)| &\leq |\alpha|(|x_{ij} - L_1|) + |\beta|(|y_{ij} - L_2|) \\ &\leq |x_{ij} - L_1| + |y_{ij} - L_2|. \end{aligned}$$

Now, by (1) and (2),

$$\{(i, j) \in N \times N : |(\alpha x_{ij} + \beta y_{ij}) - (\alpha L_1 + \beta L_2)| > \epsilon\} \subset A_1 \cup A_2$$

Therefore $(\alpha x_{ij} + \beta y_{ij}) \in {}_2 \mathbb{Z}^I$. Hence ${}_2 \mathbb{Z}^I$ is a linear space.

We state the following result without proof in view of Theorem 2.1.

Theorem 2.2. The spaces $_2m_Z^l$ and $_2m_{Z_0}^l$ are normed linear spaces, normed by

$$||x_{ij}||_* = \sup_{i,j} |x_{ij}|.$$
 (3)

Theorem 2.3. A sequence $x = (x_{ij}) \in {}_2m_{\mathcal{Z}}^l$ I-converges if and only if for every $\epsilon > 0$ there exists $N_{\epsilon} = (m, n) \in N \times N$ such that

$$(i, j) \in N \times N : |x_{ij} - x_{N_{\varepsilon}}| < \epsilon\} \in {}_{2}m_{\mathcal{Z}}^{l}$$

$$\tag{4}$$

Proof. Suppose that $L = I - \lim x$. Then

$$B_{\epsilon} = \{(i, j) \in N \times N : |x_{ij} - L| < \frac{\epsilon}{2}\} \in {}_2m_{\mathcal{Z}}^I \text{ for all } \epsilon > 0.$$

Fix an $N_{\epsilon} = (m, n) \in B_{\epsilon}$. Then we have

$$|x_{N_{\epsilon}} - x_{ij}| \le |x_{N_{\epsilon}} - L| + |L - x_{ij}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all $(i, j) \in B_{\epsilon}$. Hence $\{(i, j) \in N \times N : |x_{ij} - x_{N_{\epsilon}}| < \epsilon\} \in {}_2m_{\mathbb{Z}}^l$.

Conversely, suppose that $\{(i, j) \in N \times N : |x_{ij} - x_{N_e}| < \epsilon\} \in {}_2m_{\mathbb{Z}}^I$. That is

$$\{(i, j) \in N \times N : |x_k - x_{N_{\epsilon}}| < \epsilon\} \in {}_2m_{\mathcal{Z}}^l$$

for all $\epsilon > 0$. Then the set

$$C_{\epsilon} = \{(i, j) \in N \times N : x_{ij} \in [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]\} \in {}_{2}m_{\mathcal{I}}^{l} \text{ for all } \epsilon > 0$$

Let $J_{\epsilon} = [x_{N_{\epsilon}} - \epsilon, x_{N_{\epsilon}} + \epsilon]$. If we fix an $\epsilon > 0$ then we have $C_{\epsilon} \in {}_{2}m_{\mathcal{Z}}^{I}$ as well as $C_{\frac{\epsilon}{2}} \in {}_{2}m_{\mathcal{Z}}^{I}$. Hence $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in {}_{2}m_{\mathcal{Z}}^{I}$. This implies that

$$J = J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi$$

that is

$$\{(i, j) \in N \times N : x_{ij} \in J\} \in {}_2m_{\mathbb{Z}}^l$$

that is

 $diamJ \leq diamJ_{\epsilon}$

where the diam of J denotes the length of interval J. In this way, by induction we get the sequence of closed intervals

 $J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq I_k \supseteq \dots$

with the property that $diamI_k \leq \frac{1}{2}diamI_{k-1}$ for (k=2,3,4,....) and {(*i*, *j*) $\in N \times N : x_{ij} \in I_k$ } $\in m_Z^I$ for (k=1,2,3,4,....).

Then there exists a $\xi \in \cap I_k$ where $(i, j) \in N \times N$ such that $\xi = I - \lim x$, that is $L = I - \lim x$.

Theorem 2.4. Let *I* be an admissible ideal. Then the following are equivalent. (a) $(x_{ij}) \in {}_2\mathbb{Z}^I$; (b) there exists $(y_{ij}) \in {}_2\mathbb{Z}$ such that $x_{ij} = y_{ij}$, for a.a.k.r.I; (c) there exists $(y_{ij}) \in {}_2\mathbb{Z}$ and $(z_{ij}) \in {}_2\mathbb{Z}_0^I$ such that $x_{ij} = y_{ij} + z_{ij}$ for all $(i, j) \in N \times N$ and

 $\{(i, j) \in N \times N : |y_{ij} - L| \ge \epsilon\} \in I;$

(d) there exists a subset $K = \{k_1 < k_2...\}$ of N such that $K \in \mathcal{E}(I)$ and $\lim_{n \to \infty} |x_{k_n} - L| = 0$.

Proof. (a) implies (b). Let $(x_{ij}) \in {}_2\mathbb{Z}^I$. Then there exists $L \in C$ such that

$$\{(i, j) \in N \times N : |x_{ij} - L| \ge \epsilon\} \in I.$$

Let (m_t, n_t) be an increasing sequence with $(m_t, n_t) \in N \times N$ such that

$$\{(i, j) \le (m_t, n_t) : |x_{ij} - L| \ge \frac{1}{t}\} \in I.$$

Define a sequence (y_{ij}) as

 $y_{ij} = x_{ij}$, for all $(i, j) \le (m_1, n_1)$.

For $(m_t, n_t) < (i, j) \le (m_{t+1}, n_{t+1})$ for $t \in N$.

$$y_{ij} = \begin{cases} x_{ij}, \text{ if } |x_{ij} - L| < t^{-1}, \\ L, \text{ otherwise.} \end{cases}$$

Then $(y_{ij}) \in {}_2\mathcal{Z}$ and form the following inclusion

$$\{(i, j) \le (m_t, n_t) : x_{ij} \ne y_{ij}\} \subseteq \{(i, j) \le (m_t, n_t) : |x_{ij} - L| \ge \epsilon\} \in I$$

We get $x_{ij} = y_{ij}$, for a.a.k.r.I.

(b) implies (c). For $(x_{ij}) \in {}_2\mathbb{Z}^I$, there exists $(y_{ij}) \in {}_2\mathbb{Z}$ such that $x_{ij} = y_{ij}$, for a.a.k.r.I. Let $K = \{(i, j) \in N \times N : x_{ij} \neq y_{ij}\}$, then $K \in I$. Define a sequence (z_{ij}) as

$$z_{ij} = \begin{cases} x_{ij} - y_{ij}, & \text{if } (i, j) \in K, \\ 0, & \text{otherwise.} \end{cases}$$

Then $z_{ij} \in {}_2\mathbb{Z}_0^I$ and $y_{ij} \in {}_2\mathbb{Z}$.

(c)implies (d). Let $P_1 = \{(i, j) \in N \times N : |z_{ij}| \ge \epsilon\} \in I$ and

$$K = P_1^c = \{(i_1, j_1) < (i_2, j_2) < \dots\} \in \pounds(I).$$

Then we have $\lim_{n\to\infty} |x_{(i_n,j_n)} - L| = 0.$

(d) implies (a). Let $K = \{(i_1, j_1) < (i_2, j_2) < ...\} \in \pounds(I)$ and $\lim_{n \to \infty} |x_{(i_n, j_n)} - L| = 0$. Then for any $\epsilon > 0$, and Lemma 1.17, we have

$$\{(i, j) \in N \times N : |x_{ij} - L| \ge \epsilon\} \subseteq K^c \cup \{(i, j) \in K : |x_{ij} - L| \ge \epsilon\}.$$

Thus $(x_{ij}) \in {}_2\mathcal{Z}^I$.

Theorem 2.5. The inclusions ${}_{2}\mathcal{Z}_{0}^{I} \subset {}_{2}\mathcal{Z}^{I} \subset {}_{2}\mathcal{Z}_{\infty}^{I}$ hold and are proper.

Proof. Let $(x_{ij}) \in {}_2\mathbb{Z}^I$. Then there exists $L \in C$ such that

$$I - \lim |x_{ij} - L| = 0$$

We have $|x_{ij}| \leq \frac{1}{2}|x_{ij} - L| + \frac{1}{2}|L|$. Taking the supremum over (i, j) on both sides we get $(x_{ij}) \in {}_2Z_{\infty}^I$. The inclusion ${}_2Z_0^I \subset {}_2Z^I$ is obvious. The strict inclusion is also trivial.

Theorem 2.6. The function $\hbar : {}_{2}m_{\mathcal{Z}}^{I} \to R$ is the Lipschitz function, where ${}_{2}m_{\mathcal{Z}}^{I} = {}_{2}\mathcal{Z}^{I} \cap {}_{2}\mathcal{Z}_{\infty}$, and hence uniformly continuous.

Proof. Let $x, y \in {}_2m_{\mathcal{Z}'}^l, x \neq y$. Then the sets

 $A_x = \{(i, j) \in N \times N : |x_{ij} - \hbar(x)| \ge ||x - y||_*\} \in I,$

 $A_y = \{(i, j) \in N \times N : |y_{ij} - \hbar(y)| \ge ||x - y||_*\} \in I.$

Thus the sets,

$$B_x = \{(i, j) \in N \times N : |x_{ij} - \hbar(x)| < ||x - y||_*\} \in \pounds(I)$$

$$B_y = \{(i, j) \in N \times N : |y_{ij} - \hbar(y)| < ||x - y||_*\} \in \pounds(I).$$

Hence also $B = B_x \cap B_y \in \pounds(I)$, so that $B \neq \phi$. Now taking (i,j) in B,

$$|\hbar(x) - \hbar(y)| \le |\hbar(x) - x_{ij}| + |x_{ij} - y_{ij}| + |y - \hbar(y)| \le 3||x - y||_{*}.$$

Thus \hbar is a Lipschitz function.

For $_2m_{Z_0}^l$ the result can be proved similarly.

Theorem 2.7. If $x, y \in {}_2m_{\mathcal{Z}}^I$, then $(x.y) \in {}_2m_{\mathcal{Z}}^I$ and $\hbar(xy) = \hbar(x)\hbar(y)$.

Proof. For $\epsilon > 0$

$$B_x = \{(i, j) \in N \times N : |x - \hbar(x)| < \epsilon\} \in \pounds(I),$$

$$B_y = \{(i, j) \in N \times N : |y - \hbar(y)| < \epsilon\} \in \pounds(I).$$

Now,

$$|x.y - \hbar(x)\hbar(y)| = |x.y - x\hbar(y) + x\hbar(y) - \hbar(x)\hbar(y)|$$

$$\leq |x||y - \hbar(y)| + |\hbar(y)||x - \hbar(x)|$$
(5)

As $_2m_{\mathcal{Z}}^I \subseteq \mathcal{Z}_{\infty}$, there exists an $M \in R$ such that $\hbar |x| < M$ and $|\hbar(y)| < M$. Using eqn(5) we get

 $|x.y - \hbar(x)\hbar(y)| \le M\epsilon + M\epsilon = 2M\epsilon$

For all $(i, j) \in B_x \cap B_y \in \pounds(I)$. Hence $(x.y) \in {}_2m_{\mathcal{Z}}^I$ and $\hbar(xy) = \hbar(x)\hbar(y)$. For ${}_2m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.8. The spaces ${}_{2}\mathcal{Z}_{0}^{I}$ and ${}_{2}m_{\mathcal{Z}_{0}}^{I}$ are solid and monotone.

Proof. We shall prove the result for ${}_2Z_0^l$. Let $(x_{ij}) \in Z_0^l$. Then

$$I - \lim_{i \to j} |x_{ij}| = 0 \tag{6}$$

Let (α_{ij}) be a sequence of scalars with $|\alpha_{ij}| \le 1$ for all $(i, j) \in N \times N$. Then the result follows from (6) and the following inequality

 $|\alpha_{ij}x_{ij}| \le |\alpha_{ij}||x_{ij}| \le |x_{ij}|$ for all $(i, j) \in N \times N$. That the space ${}_2\mathcal{Z}_0^I$ is monotone follows from the Lemma 1.16. For ${}_2m_{\mathcal{Z}_0}^I$ the result can be proved similarly.

Theorem 2.9. If *I* is not maximal, then the space ${}_{2}Z^{I}$ is neither solid nor monotone. **Proof.** Here we give a counter example. Let $(x_{ij}) = 1$ for all $(i, j) \in N \times N$. Then $(x_{ij}) \in {}_{2}Z^{I}$. Let $K \subseteq N \times N$ be such that $K \notin I$ and $N \times N - K \notin I$ Define the sequence

$$(y_{ij}) = \begin{cases} (x_{ij}), & \text{if } (i, j) \in K, \\ 0, & otherwise. \end{cases}$$

Then (y_{ij}) belongs to the canonical preimage of K-step space of ${}_2Z^I$ but $(y_{ij}) \notin {}_2Z^I$. Hence ${}_2Z^I$ is not monotone.

Theorem 2.10. The spaces ${}_{2}\mathcal{Z}^{I}$ and ${}_{2}\mathcal{Z}^{I}_{0}$ are sequence algebras.

Proof. We prove that ${}_2Z_0^I$ is a sequence algebra. Let $(x_{ij}), (y_{ij}) \in {}_2Z_0^I$. Then

$$I - \lim |x_{ij}| = 0$$
 and $I - \lim |y_{ij}| = 0$

Then we have $I - \lim |(x_{ij}.y_{ij})| = 0$. Thus $(x_{ij}.y_{ij}) \in {}_2\mathbb{Z}_0^I$ Hence ${}_2\mathbb{Z}_0^I$ is a sequence algebra. For the space ${}_2\mathbb{Z}^I$, the result can be proved similarly.

Theorem 2.11. The spaces ${}_{2}\mathcal{Z}^{I}$ and ${}_{2}\mathcal{Z}^{I}_{0}$ are not convergence free in general.

Proof. Here we give a counter example. Let $I = I_f$. Consider the sequence (x_{ij}) and (y_{ij}) defined by

$$x_{ij} = \frac{1}{i,j}$$
 and $y_{ij} = i,j$ for all $(i,j) \in N \times N$

Then $(x_{ij}) \in {}_2Z^I$ and ${}_2Z_0^I$, but $(y_{ij}) \notin {}_2Z^I$ and ${}_2Z_0^I$. Hence the spaces ${}_2Z^I$ and ${}_2Z_0^I$ are not convergence free.

Theorem 2.12. If I is not maximal and $I \neq I_f$, then the spaces ${}_2Z^I$ and ${}_2Z_0^I$ are not symmetric.

Proof. Let $A \in I$ be infinite. If

$$x_{ij} = \begin{cases} 1, \text{ for } i, j \in A, \\ 0, \text{ otherwise.} \end{cases}$$

Then $x_{ij} \in {}_2\mathcal{Z}_0^I \subset {}_2\mathcal{Z}^I$

let $K \subset N$ be such that $K \notin I$ and $N - K \notin I$. Let $\phi : K \to A$ and $\psi : N - K \to N - A$ be bijections, then the map $\pi : N \to N$ defined by

$$\pi(k) = \begin{cases} \phi(k), \text{ for } k \in K, \\ \psi(k), \text{ otherwise.} \end{cases}$$

is a permutation on *N*, but $x_{(\pi(m)\pi(n))} \notin \mathbb{Z}^I$ and $x_{(\pi(m)\pi(n))} \notin {}_2\mathbb{Z}_0^I$. Hence ${}_2\mathbb{Z}^I$ and ${}_2\mathbb{Z}_0^I$ are not symmetric.

Theorem 2.13. The sequence spaces ${}_{2}\mathcal{Z}^{I}$ and ${}_{2}\mathcal{Z}^{I}_{0}$ are linearly isomorphic to the spaces ${}_{2}c^{I}$ and ${}_{2}\mathcal{Z}^{I}_{0}$ respectively, i.e ${}_{2}\mathcal{Z}^{I} \cong {}_{2}c^{I}$ and ${}_{2}\mathcal{Z}^{I}_{0} \cong {}_{2}c^{I}_{0}$.

Proof. We shall prove the result for the space ${}_2Z^I$ and ${}_2c^I$. The proof for the other spaces will follow similarly. We need to show that there exists a linear bijection between the spaces ${}_2Z^I$ and c^I . Define a map $T: {}_2Z^I \longrightarrow {}_2c^I$ such that $x \to x' = Tx$

$$T(x_{ij}) = px_{ij} + (1-p)x_{(i-1)(j-1)} = x_{ij}$$

where $x_{-1} = 0, p \neq 1, 1 . Clearly T is linear. Further, it is trivial that <math>x = 0 = (0, 0, 0,)$ whenever Tx = 0 and hence injective. Let $x'_{ij} \in {}_2c^I$ and define the sequence $x = x_{ij}$ by

$$x_{ij} = M \sum_{r=0}^{i} \sum_{s=0}^{j} (-1)^{(i-r)(j-s)} N^{(i-r)(j-s)} x'_{ij}$$

for $(i, j) \in N \times N$ and where $M = \frac{1}{p}$ and $N = \frac{1-p}{p}$. Then we have

$$\lim_{(i,j)\to\infty} px_{ij} + (1-p)x_{(i-1)(j-1)} = p\lim_{(i,j)\to\infty} M \sum_{r=0}^{i} \sum_{s=0}^{j} (-1)^{(i-r)(j-s)} N^{(i-r)(j-s)} x'_{ij}$$
$$+ (1-p)\lim_{(i,j)\to\infty} M \sum_{r=0}^{i-1} \sum_{s=0}^{j-1} (-1)^{(i-1-r)(j-1-s)} N^{(i-1-r)(j-1-s)} x'_{(i-1)(j-1)}$$
$$= \lim_{(i,j)\to\infty} x'_{ij}$$

which shows that $x \in {}_2\mathbb{Z}^I$. Hence T is a linear bijection. Also we have $||x||_* = ||Z^p x||_c$ Therefore

$$\begin{split} \|x\|_{*} &= \sup_{(i,j)\in N\times N} |px_{ij} + (1-p)x_{(i-1)(j-1)}| \\ &= \sup_{(i,j)\in N\times N} |pM\sum_{r=0}^{i}\sum_{s=0}^{j} (-1)^{(i-r)(j-s)} N^{(i-r)(j-s)} x'_{ij} \\ &+ (1-p)M\sum_{r=0}^{i-1}\sum_{s=0}^{j-1} (-1)^{(i-1-r)(j-1-s)} N^{(i-1-r)(j-1-s)} x'_{(i-1)(j-1)} \\ &= \sup_{(i,j)\in N\times N} |x'_{ij}| = ||x'||_{2^{C'}}. \end{split}$$

Hence $_2\mathcal{Z}^I \cong _2c^I$.

Acknowledgments. The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- [1] P.Kostyrko, T.Šalát, W.Wilczyński, I-convergence, Real Anal. Exch. 26(2) 669-686(2000).
- [2] T.Šalát, B.C.Tripathy, M.Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ., (28)279-286 (2004).
- [3] K.Demirci, I-limit superior and limit inferior, Math. Commun.,6: 165-172(2001).
- [4] P.Das, P.Kostyrko, P.Malik, W. Wilczyński, I and I*-Convergence of Double Sequences, Mathematica Slovaca, 58,605-620,(2008).
- [5] B.C.Tripathy and B.Hazarika, Paranorm I-Convergent sequence spaces, Math. Slovaca, 59(4)485-494. (2009).
- [6] M.Gurdal, S.Ahmet, Extremal I-Limit Points of Double sequences, Applied Mathematics E-Notes,8,131-137,(2008).
- [7] V.A.Khan and N.Khan, On a new I-convergent double sequence spaces, International Journal of Analysis, Hindawi Publishing Corporation, Article ID-126163 Vol 2013,1-7(2013).
- [8] V.A.Khan and S.Tabassum, On Some New double sequence spaces of Invariant Means defined by Orlicz function, Communications Fac. Sci. 60,11-21 (2011).
- [9] V.A.Khan and K. Ebadullah, On Zweier I-convergent sequence spaces defined by Orlicz functions, Proyecciones Journal of Mathematics, Universidad Catolica del Norte Antofagasta-Chile(CHILE), Vol. 33, No.3, 259-276 (2014).
- [10] F.Başar and B.Altay, On the spaces of sequences of p-bounded variation and related matrix mappings, Ukrainian Math.J.55. (2003).
- [11] E.Malkowsky, Recent results in the theory of matrix transformation in sequence spaces, Math. Vesnik. (49)187-196(1997).
- [12] P.N.Ng and P.Y.Lee, Cesaro sequence spaces of non-absolute type, Comment. Math. Prace. Mat. 20(2)429-433(1978).
- [13] C.S.Wang, On Nörlund sequence spaces, Tamkang J.Math. (9) 269-274 (1978).
- [14] B.Altay, F.Başar, and M.Mursaleen, On the Euler sequence space which include the spaces l_p and l_{∞} , Inform.Sci., 176(10)(2006), 1450-1462.
- [15] N.L. Braha, H.M.Srivastava and S.A.Mohiuddine, A Korovin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162-169.
- [16] M. Mursaleen, A.Khan and H.M.Srivastava, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 (2013), 6911-6918.
- [17] H.M.Srivastava, M. Mursaleen and A.Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling, 55 (2012) 2040-2051.
- [18] M.Sengönül, On The Zweier Sequence Space, Demonstratio Math. Vol.XL No.(1)181-196(2007).
- [19] V.A.Khan and N.Khan, On some I- Convergent double sequence spaces defined by a sequence of modulii, Journal of Mathematical Analysis, 4(2), 1-8, (2013).
- [20] V.A.Khan and N.Khan, On some I- Convergent double sequence spaces defined by a modulus function, Engineering, Scientific Research, 5, 35-40, (2013).
- [21] V.A.Khan and N.Khan, I-Pre-Cauchy Double Sequences and Orlicz Functions, Engineering, Scientific Research, 5, 52-56, (2013).
- [22] V.A.Khan and K.Ebadullah, Ayhan Esi, N. Khan, M.Shafiq, On Paranorm Zweier I-Convergent Sequence Spaces, Journal of Mathematics, Hindawi Publishing Corporation, Vol 2013, Article ID 613501, 1-6(2013).
- [23] V.A.Khan and K.Ebadullah, The Sequence Space BV_{σ}^{I} (p),Filomat(SERBIA) DOI 10.2298/FIL1404829K 28:4 (2014),829 838.