On 3-Arc-Transitive Covers of the Dodecahedron Graph

Jicheng Ma ${ }^{\text {a }}$
${ }^{a}$ Chongqing Key Lab. of Group \& Graph Theories and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, China

Abstract

In this paper, the following problem is considered: does there exist a t-arc-transitive regular covering graph of an s-arc-transitive graph for positive integers t greater than s ? In order to answer this question, we classify all arc-transitive cyclic regular covers of the dodecahedron graph. Two infinite families of 3 -arc-transitive abelian covering graphs are given, which give more specific examples that for an s-arc-transitive graph there exist $(s+1)$-arc-transitive covering graphs.

1. Introduction

Covering techniques are known to be a useful tool in algebraic and topological graph theory. Application of these techniques has resulted in many important examples and classifications of certain families of graphs. For example, Conway and Djoković independently used graph covers to construct the first infinite family of finite 5 -arc-transitive cubic graphs, as elementary abelian covers of Tutte's 8 -cage. In particular, the technique of 'voltage graphs' developed by Gross and Tucker [8] is often used. Later, Malnič, Marušič and Potočnik [10] took these ideas further, and conditions on regular covering projections of a given graph along a given group of automorphisms which lifts were given.

The approach developed in [10] has been successfully applied to the classification of arc-, vertex- and edge-transitive elementary abelian regular covers of a number of symmetric graphs of small valency. Many examples have been handled by this method, including the Petersen graph, the Heawood graph, the Möbius-Kantor graph, the complete graph K_{5}, and the octahedron graph. However, it is not easy to exactly determine the type of arc-transitivity and automorphism groups with this approach.

In [4], an alternative approach was introduced for finding arc-transitive covers of symmetric cubic graphs, with covering group being any abelian group. Furthermore, the exact arc-transitivity and the size of the automorphism group of each abelian covering graph can be determined.

As an application, all arc-transitive abelian regular covers of several small order symmetric cubic graphs, such as the complete graph K_{4}, the complete bipartite graph $K_{3,3}$, the cube Q_{3}, the Petersen graph (see [4] for more details), and the Heawood graph (see [5] for more details) were classified. An investigation of the results in $[4,5]$ suggests that for the 2 -arc-transitive graph K_{4}, there exist 1-arc and 2-arc-transitive abelian regular covering graphs; for the 3 -arc-transitive graph $K_{3,3}$, there exist 1 -arc, 2 -arc and 3-arc-transitive abelian regular covering graphs; for the 2-arc-transitive graph Q_{3}, there exist 1-arc and 2-arc-transitive

[^0]abelian regular covering graphs; and for the 3-arc-transitive Petersen graph, there exist 2-arc and 3-arctransitive abelian regular covering graphs.

According to these known covering graphs, we can see that for an s-arc-transitive cubic graph, there is no t-arc-transitive abelian regular covering graph for positive integers t greater than s. Now a natural question arises 'Does there exist a t-arc-transitive (abelian) regular covering graph of an s-arc-transitive graph for positive integers t greater than s ?'

The answer to this question is positive, and the only known example was mentioned by Feng, Kutnar, Malnič and Marušič in [7] that the 3-arc-transitive cubic graph F40 is a (regular) 2-cover of the 2-arc-transitive graph F20A (which is the dodecahedron graph).

In this paper, we give two infinite families of 3-arc-transitive abelian regular covering graphs of the dodecahedron graph. As a result, some more specific examples to the above question are given. Furthermore, in [9], these results were well applied in a complete classification of the arc-transitive dihedral regular covers of the Petersen graph.

The paper is organised as follow. We begin with some further background in Section 2, then classify all arc-transitive cyclic regular covers of the dodecahedron graph in Section 3.

2. Preliminary

Throughout this paper, every graph X will be finite, undirected, simple and connected, and $V(X), E(X)$ and $A(X)$ will respectively denote the vertex-set, edge-set and arc-set of X.

A covering projection is an onto and locally bijective graph homomorphism $p: Y \rightarrow X$, that is, for any pair of vertices $v \in V(X)$ and $\tilde{v} \in V(Y)$, the restriction of p on the neighbours $N(\tilde{v})$ of \tilde{v} to the neighbours $N(v)$ of v is bijection. In this case, we call X a base graph (or quotient graph), Y a covering graph or cover, and the pre-images $p^{-1}(v)$ for $v \in V(X)$ are called fibres.

Let $p: Y \rightarrow X$ be a covering projection, and suppose α and β are automorphisms of X and Y such that $\alpha \circ p=p \circ \beta$. Then we say α lifts to β, and β projects to α, and also we call β a lift of α, and α a projection of β. Note that α is uniquely determined by β, but β is not generally determined by α. The set of all lifts of a given $\alpha \in$ Aut X is denoted by $L(\alpha)$. If every automorphism of a subgroup G of Aut X lifts (to an automorphism of Y), then $\bigcup_{\alpha \in G} L(\alpha)$ is a subgroup of Aut Y, called the lift of G. In particular, the lift of the identity subgroup of Aut X is called the group of covering transformations, or voltage group, and sometimes denoted by CT(p). The covering is called regular if its covering group acts transitively on each fibre.

The regular covering graph Y and the regular covering projection p are called abelian, or cyclic, or elementary abelian, if the covering group N is abelian, or cyclic, or elementary abelian, respectively. The normalizer of N in Aut Y projects to the largest subgroup of Aut X that lifts. Hence in particular, if the latter subgroup B, say, acts arc-transitively on X, then the lift group of B acts arc-transitively on Y, and has a normal subgroup N (the covering group) with quotient isomorphic to B.

Next, an s-arc in a graph X is an ordered ($s+1$)-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices such that any two consecutive v_{i} are adjacent, and any three consecutive v_{i} are distinct. A group of automorphisms of X is called s-arctransitive if it acts transitively on the set of s-arcs of X, and s-arc-regular if this action is sharply-transitive, and then the graph X itself is called s-arc-transitive or s-arc-regular if its full automorphism group Aut X is s-arc-transitive or s-arc-regular, respectively.

If X is cubic (3-valent), then by theorems of Tutte [11, 12], every arc-transitive group of automorphisms of X is s-arc-regular for some $s \leq 5$. Moreover, every such group G is a smooth quotient of one of seven finitely-presented groups $G_{1}, G_{2}^{1}, G_{2}^{2}, G_{3}, G_{4}^{1}, G_{4}^{2}$ and G_{5}, which can be presented as follows (see $[3,6]$):
$G_{1}=\left\langle h, a \mid h^{3}=a^{2}=1\right\rangle ;$
$G_{2}^{1}=\left\langle h, p, a \mid h^{3}=p^{2}=a^{2}=1, p h p=h^{-1}, a^{-1} p a=p\right\rangle ;$
$G_{2}^{2}=\left\langle h, p, a \mid h^{3}=p^{2}=1, a^{2}=p, p h p=h^{-1}, a^{-1} p a=p\right\rangle ;$
$G_{3}=\left\langle h, p, q, a \mid h^{3}=p^{2}=q^{2}=a^{2}=1, p q=q p, p h p=h, q h q=h^{-1}, a^{-1} p a=q\right\rangle ;$
$G_{4}^{1}=\langle h, p, q, r, a| h^{3}=p^{2}=q^{2}=r^{2}=a^{2}=1, p q=q p, p r=r p,(q r)^{2}=p$,

$$
\begin{gathered}
\left.h^{-1} p h=q, h^{-1} q h=p q, r h r=h^{-1}, a^{-1} p a=p, a^{-1} q a=r\right\rangle ; \\
G_{4}^{2}=\langle h, p, q, r, a| h^{3}=p^{2}=q^{2}=r^{2}=1, a^{2}=p, p q=q p, p r=r p,(q r)^{2}=p, \\
\left.h^{-1} p h=q, h^{-1} q h=p q, r h r=h^{-1}, a^{-1} p a=p, a^{-1} q a=r\right\rangle ; \\
G_{5}=\langle h, p, q, r, s, a| h^{3}=p^{2}=q^{2}=r^{2}=s^{2}=a^{2}=1, p q=q p, p r=r p, p s=s p, \\
q r=r q, q s=s q,(r s)^{2}=p q, h^{-1} p h=p, h^{-1} q h=r, \\
\left.h^{-1} r h=p q r, s h s=h^{-1}, a^{-1} p a=q, a^{-1} r a=s\right\rangle .
\end{gathered}
$$

In fact if G is s-arc-regular, then G is a smooth quotient of G_{s} or G_{s}^{i}, where $i=1$ or 2 depending on whether or not the group contains an involution a that reverses an arc (in the cases where s is even). Conversely, every smooth epimorphism from G_{s} or G_{s}^{i} to a finite group G (by the double coset graph construction) gives rise to a connected cubic graph on which G acts as an s-arc-regular group of automorphisms. (The 'smooth' means that the orders of the generators are preserved in the quotient.)

By using the Conder-Ma approach introduced in [4], we determine all arc-transitive cyclic regular covers of the dodecahedron graph $G P(10,2)$, which is a generalized Petersen graph and a double cover (or 2-cover) of the Petersen graph. We know that the $\operatorname{GP}(10,2)$ is 2 -arc-regular, with automorphism group $A_{5} \times C_{2}$ of order 120 , which is a smooth quotient of the group G_{2}^{1}, say G_{2}^{1} / N. Also the $G P(10,2)$ admits 1 -arc-transitive subgroup of automorphisms which is isomorphic to the alternating group A_{5}.

3. Arc-Transitive Cyclic Regular Covers

Suppose Y is an arc-transitive regular cover of the $\operatorname{GP}(10,2)$ which is obtained by lifting the 1 -arctransitive automorphism subgroup A_{5}. Take the group $G_{1}=\left\langle h, a \mid h^{3}=a^{2}=1\right\rangle$. This group has a unique normal subgroup K of index 60 in G_{1} with $G_{1} / K \cong A_{5}$. The lift of A_{5} is isomorphic to quotient G_{1} / L where L is a normal subgroup of G_{1} contained in K. The quotient K / L is the covering group for the regular covering projection of the $G P(10,2)$ by Y. In order to find all such covers, we seek all possibilities for L of finite index in G_{1} such that L is contained in K. In fact, since every finite abelian group is a direct product of its Sylow subgroups, we can restrict our search to those L for which the index $|K: L|$ is a prime-power. (More details of the Conder-Ma approach can be seen in [4].)

Now, take the finitely-presented group G_{2}^{1}, with presentation $\left\langle h, a, p \mid h^{3}=a^{2}=p^{2}=(p h)^{2}=[a, p]=1\right\rangle$. With the help of MaGma, this group G_{2}^{1} has three normal subgroups of index 120, all with quotient $A_{5} \times C_{2}$, but these can be interchanged by 'outer' automorphisms. Thus without loss of generality we can take either one of them. We will take the one that is contained in the subgroup $G_{1}=\langle h, a\rangle$; this is a normal subgroup N of index 60 in G_{1} with $G_{1} / N \cong A_{5}$.

Using Reidemeister-Schreier theory (or the Rewrite command in Magma [1]), we find that the subgroup N is free of rank 11, on generators

$$
\begin{aligned}
& w_{1}=\left(a h^{-1}\right)^{5}, \\
& w_{3}=(a h)^{5} \text {, } \\
& w_{5}=\text { hahah }^{-1} a h^{-1} a h^{-1} a h^{-1} a h a h^{-1}, \\
& w_{7}=\left(h^{-1} a h^{-1} a h a h^{-1} a\right)^{2}, \\
& w_{9}=h^{-1} \text { ahah }^{-1} \text { ahahahah }^{-1} \text { ahah }^{-1} \text {, } \\
& w_{2}=\operatorname{hah}^{-1} a h^{-1} a h^{-1} a h^{-1} a h, \\
& w_{4}=a h a h^{-1} a h^{-1} a h^{-1} a h^{-1} a h a, \\
& w_{6}=h^{-1} a h a h^{-1} a h^{-1} a h^{-1} a h^{-1} \text { ahah, } \\
& w_{8}=\left(\text { hahah }^{-1} \text { aha }\right)^{2}, \\
& w_{11}=\text { ah }^{-1} \text { ahah }^{-1} \text { ahahahah }{ }^{-1} \text { ahah }^{-1} a .
\end{aligned}
$$

Easy calculations show that the generators h, a and p act by conjugation as below:

$$
\begin{aligned}
h^{-1} w_{1} h & =w_{3}{ }^{-1} \\
h^{-1} w_{2} h & =w_{1} \\
h^{-1} w_{3} h & =w_{2}{ }^{-1} \\
h^{-1} w_{4} h & =w_{6} \\
h^{-1} w_{5} h & =w_{4} \\
h^{-1} w_{6} h & =w_{5} \\
h^{-1} w_{7} h & =w_{9}-1 \\
h^{-1} w_{8} h & =w_{7}^{-1} \\
h^{-1} w_{9} h & =w_{8} \\
h^{-1} w_{10} h & =w_{9} w_{10}{ }^{-1} w_{11}-1 \\
h^{-1} w_{11} h & =w_{7} w_{9}{ }^{-1} w_{10}
\end{aligned}
$$

$$
\begin{aligned}
a^{-1} w_{1} a & =w_{3}^{-1} \\
a^{-1} w_{2} a & =w_{4} \\
a^{-1} w_{3} a & =w_{1}^{-1} \\
a^{-1} w_{4} a & =w_{2} \\
a^{-1} w_{5} a & =w_{3} w_{7} \\
a^{-1} w_{6} a & =w_{1}^{-1} w_{8}{ }^{-1} \\
a^{-1} w_{7} a & =w_{1} w_{5} \\
a^{-1} w_{8} a & =w_{3} w_{6}^{-1} \\
a^{-1} w_{9} a & =w_{11} \\
a^{-1} w_{10} a & =w_{10}-1 \\
a^{-1} w_{11} a & =w_{9}
\end{aligned}
$$

$$
\begin{aligned}
p^{-1} w_{1} p & =w_{3} \\
p^{-1} w_{2} p & =w_{2}^{-1} \\
p^{-1} w_{3} p & =w_{1} \\
p^{-1} w_{4} p & =w_{4}^{-1} \\
p^{-1} w_{5} p & =w_{6}^{-1} \\
p^{-1} w_{6} p & =w_{5}^{-1} \\
p^{-1} w_{7} p & =w_{8} \\
p^{-1} w_{8} p & =w_{7} \\
p^{-1} w_{9} p & =w_{9}{ }^{-1} \\
p^{-1} w_{10} p & =w_{9}{ }^{-1} w_{10} w_{11} \\
p^{-1} w_{11} p & =w_{11}{ }^{-1} .
\end{aligned}
$$

Now take the quotient G_{1} / N^{\prime}, which is an extension of the free abelian group $N / N^{\prime} \cong \mathbb{Z}^{11}$ by the group $G_{1} / N \cong A_{5}$, and replace the generators h, a and all w_{i} by their images in this group. Also let K denote the subgroup N / N^{\prime}, and let G be G_{1} / N^{\prime}. Then, in particular, G is an extension of \mathbb{Z}^{11} by $G_{1} / N \cong A_{5}$.

By the above observations, we see that the generators h, a and p induce linear transformations of the free abelian group $K \cong \mathbb{Z}^{11}$. For example,

$$
h \mapsto\left(\begin{array}{rrrrrrrrrrr}
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0
\end{array}\right)
$$

and

$$
a \mapsto\left(\begin{array}{rrrrrrrrrrr}
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

These two matrices generate a group isomorphic to A_{5}, and with the matrix induced by p, these three matrices will generate a group isomorphic to $A_{5} \times C_{2}$.

Next, the character table of the group A_{5} is given in Table 1 , with α and β being the zeroes of the polynomial $t^{2}-t-1$ (or in other words, the golden ratio $\frac{1+\sqrt{5}}{2}$ and its conjugate $\frac{1-\sqrt{5}}{2}$).

Element order	1	2	3	5	5
Class size	1	15	20	12	12
χ_{1}	1	1	1	1	1
χ_{2}	3	-1	0	α	β
χ_{3}	3	-1	0	β	α
χ_{4}	4	0	1	-1	1
χ_{5}	5	1	-1	0	0

Table 1: The character table of the group A_{5}
By inspecting traces of the matrices of orders 2 and 3 induced by each of a and h, we see that the character of the 11-dimensional representation of A_{5} over \mathbb{Q} associated with the above action of $G=\langle h, a\rangle$ on K is $\chi_{2}+\chi_{3}+\chi_{5}$, which is expressible as the sum of $\chi_{2}+\chi_{3}$ and χ_{5}, the characters of two irreducible representations over \mathbb{Q} of dimensions 6 and 5 .

In the following part, for every positive integer m we let $K^{(m)}$ denote the subgroup of K generated by the m th powers of all its elements, and if m is a prime-power, say $m=k^{\ell}$, then we will consider G-invariant subgroups of each 'layer' K_{j-1} / K_{j} of K / K_{ℓ}, where $K_{j}=K^{\left(k^{j}\right)}$ for every non-negative integer j.

Now let k be any odd prime. Then $\alpha^{2}-\alpha-1=0$ for some $\alpha \in \mathbb{Z}_{k}$ if and only if $(2 \alpha-1)^{2}=4 \alpha^{2}-4 \alpha+1=5$ for some $\alpha \in \mathbb{Z}_{5}$, or equivalently, if and only if 5 is a quadratic residue $\bmod k$.

Hence if $k \equiv \pm 1 \bmod 5$, then the group $K / K^{(k)} \cong\left(\mathbb{Z}_{k}\right)^{11}$ is the direct sum of three G-invariant subgroups of rank 3, 3 and 5 respectively.

If $k \equiv \pm 2 \bmod 5\left(\right.$ and k is odd), then no such zeroes of $t^{2}-t-1$ exist in \mathbb{Z}_{k}, and the corresponding 6-dimensional representation of A_{5} is irreducible over \mathbb{Z}_{k}. (Note that this holds just as well when $k=3$, since the representations χ_{2} and χ_{3} are distinct when defined over GF(9).) And it follows that $K / K^{(k)}$ has only rank 5 and rank 6 proper G-invariant subgroups.

Hence for every prime $k \neq 2,3$ and $k \equiv \pm 1,2 \bmod 5, K / K^{(k)}$ has no non-trivial proper G-invariant subgroups of rank 10 , and therefore no cyclic \mathbb{Z}_{k}-covers exist.

When $k=3$ or 5 , with the help of Magma (especially the GModule and Submodules commands), the quotient $K / K^{(k)} \cong\left(\mathbb{Z}_{5}\right)^{11}$ has four G-invariant proper subgroups of rank $3,5,6$ and 8 , respectively. Therefore, there is no rank $10 G$-invariant subgroup, equivalently there is no cyclic \mathbb{Z}_{5}-cover. The quotient $K / K^{(k)} \cong$ $\left(\mathbb{Z}_{3}\right)^{11}$ has four G-invariant proper subgroups. These include the subgroups of ranks $4,5,6$ and 10 . Especially, the rank 10 subgroup denoted by L_{1} is generated by

$$
\begin{aligned}
& x_{1}=w_{1} w_{11}-1, x_{2}=w_{2} w_{11}-1, x_{3}=w_{3} w_{11}, x_{4}=w_{4} w_{11}-1, x_{5}=w_{5} w_{11}{ }^{-1}, \\
& x_{6}=w_{6} w_{11}-1, x_{7}=w_{7} w_{11}, x_{8}=w_{8} w_{11}^{-1}, x_{9}=w_{1} w_{11}^{-1}, x_{10}=w_{10} .
\end{aligned}
$$

In $K / K^{(9)}$, however, with the help of Magma, there is no G-invariant subgroup of rank 10 and isomorphic to $\left(\mathbb{Z}_{9}\right)^{10}$; the only four G-invariant subgroups of $K / K^{(9)}$ are of rank 5, 6 or 10 and isomorphic to $\mathbb{Z}_{3} \oplus\left(\mathbb{Z}_{9}\right)^{4}$, $\left(\mathbb{Z}_{9}\right)^{5},\left(\mathbb{Z}_{9}\right)^{6}$ and $\left(\mathbb{Z}_{3}\right)^{4} \oplus\left(\mathbb{Z}_{9}\right)^{6}$, respectively.

For $k=2$, again with the help of Magma, if necessary, it is easy to show that the group $K / K^{(k)}$ has six non-trivial proper G-invariant subgroups, namely one of rank 4, three of rank 5 , one of rank 6 and one of rank 10. Especially, the rank 10 subgroup denoted by L_{2} is generated by

$$
\begin{aligned}
& y_{1}=w_{1} w_{6}, y_{2}=w_{2} w_{6}, y_{3}=w_{3} w_{6}, y_{4}=w_{4} w_{6}, y_{5}=w_{5} w_{6} \\
& y_{6}=w_{7}, \quad y_{7}=w_{8}, y_{8}=w_{9}, y_{9}=w_{10}, y_{10}=w_{11} .
\end{aligned}
$$

Finally, an easy analysis of the situation for the cases $m=2^{2}=4$ and $m=2^{3}=8$ shows that $K / K^{(m)}$ only has one homocyclic G-invariant subgroup of rank 10 , denoted by L_{3}, isomorphic to $\left(\mathbb{Z}_{4}\right)^{10}$, and is generated by

$$
\begin{aligned}
& z_{1}=w_{1} w_{6}{ }^{-1}, z_{2}=w_{2} w_{6}{ }^{-1}, z_{3}=w_{3} w_{6}, z_{4}=w_{4} w_{6}{ }^{-1}, z_{5}=w_{5} w_{6}{ }^{-1} \\
& z_{6}=w_{7} w_{6}{ }^{2}, z_{7}=w_{8} w_{6}{ }^{2}, z_{8}=w_{9} w_{6}{ }^{2}, z_{9}=w_{10} w_{6}{ }^{2}, z_{10}=w_{11} w_{6}{ }^{2}
\end{aligned}
$$

Hence, equivalently, the dodecahedron graph only has three arc-transitive cyclic regular covers with covering groups $\mathbb{Z}_{3}, \mathbb{Z}_{2}$ and \mathbb{Z}_{4}, which are all at least 1 -arc-transitive.

Now, we find out which of the cyclic regular covers obtainable from G-invariant subgroups of finite prime-power index in $K=N / N^{\prime}$ admit a larger group of automorphisms than the lift of the group $G / N \cong A_{5}$.

We note that all these three G-invariant subgroups L_{1}, L_{2} and L_{3} can be normalized by the additional generator p in G_{2}^{1} with the following actions:

$$
\begin{array}{rlllll}
x_{1}=w_{1} w_{11}-1 & \mapsto & w_{3} w_{11}=x_{3}, & x_{2}=w_{2} w_{11}{ }^{-1} & \mapsto & w_{2}^{-1} w_{11}=x_{2}{ }^{-1}, \\
x_{3}=w_{3} w_{11} & \mapsto & w_{1} w_{11}=x_{1}, & x_{4}=w_{4} w_{11}-1 & \mapsto & w_{4}^{-1} w_{11}=x_{4}^{-1}, \\
x_{5}=w_{5} w_{11} 1^{-1} & \mapsto & w_{6}{ }^{-1} w_{11}=x_{6}{ }^{-1}, & x_{6}=w_{6} w_{11}-1 & \mapsto & w_{5}{ }^{-1} w_{11}=x_{5}^{-1}, \\
x_{7}=w_{7} w_{11} & \mapsto & w_{8} w_{11}-1=x_{8}, & x_{8}=w_{8} w_{11}{ }^{-1} & \mapsto & w_{7} w_{11}=x_{7}, \\
x_{9}=w_{9} w_{11}^{-1} & \mapsto & w_{9}{ }^{-1} w_{11}=x_{9}{ }^{-1}, & x_{10}=w_{10} & \mapsto & w_{9}{ }^{-1} w_{10} w_{11}=x_{9}{ }^{-1} x_{10} ;
\end{array}
$$

and

Next, we consider whether or not these three G_{2}^{1}-invariant subgroups L_{1}, L_{2} and L_{3} are $G_{3}-, G_{4}^{1-}, G_{4}^{2}$ or G_{5}-invariant, which we can obtain by checking whether those can be normalised by additional generators, such as q of G_{3}. However, by a complete list of symmetric cubic graphs up to 10,000 vertices given by Conder [2], we know that there is a unique symmetric cubic graph of order 60, 40 and 80 , respectively, and is respectively of 2 -arc, 3 -arc and 3 -arc-transitive. Hence the three arc-transitive cyclic covers of the dodecahedron graph we found before are 2 -arc-transitive \mathbb{Z}_{3}-cover, 3-arc-transitive \mathbb{Z}_{2}-cover and 3-arctransitive \mathbb{Z}_{4}-cover, respectively. Moreover, we know that the G_{2}^{1}-invariant subgroup $L_{1} \cong\left(\mathbb{Z}_{3}\right)^{10}$ cannot be of G_{3}-invariant, both the G_{2}^{1}-invariant subgroups $L_{2} \cong\left(\mathbb{Z}_{2}\right)^{10}$ and $L_{3} \cong\left(\mathbb{Z}_{4}\right)^{10}$ are G_{3}-invariant.

From the above arguments, we can see that there exist two G_{3}-invariant subgroups $L_{2} \cong\left(\mathbb{Z}_{2}\right)^{10}$ and $L_{3} \cong\left(\mathbb{Z}_{4}\right)^{10}$. Hence in $K / K^{\left(2^{t}\right)}$ for integer $t \geq 1$, the two abelian covering groups $K / L_{2} K^{\left(2^{t}\right)}$ and $K / L_{3} K^{\left(2^{t}\right)}$ are isomorphic to $\mathbb{Z}_{2^{t}} \oplus\left(\mathbb{Z}_{2^{t-1}}\right)^{10}$ and $\mathbb{Z}_{2^{t}} \oplus\left(\mathbb{Z}_{2^{t-2}}\right)^{10}$, respectively.

Thus, we have the following:
Theorem 3.1. Let $m=k^{\ell}$ be any power of a prime k, with $\ell>0$. Then the arc-transitive cyclic regular covers of the dodecahedron graph with covering group of exponent m are as follows :
(a) If $k=2$, there are exactly two such covers, namely

- one 3-arc-transitive cover with covering group \mathbb{Z}_{2} where $\ell=1$,
- one 3-arc-transitive cover with covering group \mathbb{Z}_{4} where $\ell=2$.
(b) If $k=3$, there is exactly one such cover, namely
- one 2-arc-transitive cover with covering group \mathbb{Z}_{3} where $\ell=1$.
(c) There is no arc-transitive cyclic cover for other prime integer $k \neq 2,3$.

Proposition 3.2. There exist two infinite families of 3-arc-transitive abelian regular covers of the dodecahedron graph, with abelian covering groups

$$
\mathbb{Z}_{2^{t+1}} \oplus\left(\mathbb{Z}_{2^{t}}\right)^{10} \quad \text { and } \quad \mathbb{Z}_{2^{t+2}} \oplus\left(\mathbb{Z}_{2^{t}}\right)^{10}
$$

for integer $t \geq 0$, respectively.

Acknowledgments

The authors acknowledge the use of Magma [1], which helped show the way to many of the results given in this paper. Also the author is indebted to the referee for the valuable comments and suggestions.

References

[1] W. Bosma, J. Cannon and C. Playoust, The Magma Algebra System I: The User Language, J. Symbolic Comput. 24 (1997), $235-265$.
[2] M.D.E. Conder, A complete list of symmetric cubic graphs on up to 10,000 vertices, www.math.auckland.ac.nz/~conder/symmcubic10000list.txt .
[3] M.D.E. Conder and P. Lorimer, Automorphism groups of symmetric graphs of valency 3, J. Combin. Theory Ser. B 47 (1989), 60-72.
[4] M.D.E. Conder and J. Ma, Arc-transitive abelian regular covers of cubic graphs, J. Algebra 387 (2013), 215-242.
[5] M.D.E. Conder and J. Ma, Arc-transitive abelian covers of the Heawood graphs, J. Algebra 387 (2013), 243-267.
[6] D.Ž. Djoković and G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980), 195-230.
[7] Y-Q. Feng, K. Kutnar, A. Malnič and D. Marušič, On 2-fold covers of graphs, J. Combin. Theory Ser. B 98 (2008), 324-341.
[8] J.L. Gross and T.W. Tucker, Topological Graph Theory, Dover, 2001 (original Wiley, 1987).
[9] J. Ma, Arc-transitive dihedral regular covers of cubic graphs, The Electro. J. Combin. 21(3) (2014), P3.5.
[10] A. Malnič, D. Marusič and Potočnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004), 71-97.
[11] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947), 459-474.
[12] W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624.

[^0]: 2010 Mathematics Subject Classification. Primary 05C25; Secondary 20B25
 Keywords. Dodecahedron graph; Regular cover; Arc-transitive graph; Cubic graph
 Received: 20 October 2014; Accepted: 06 August 2015
 Communicated by Francesco Belardo
 Research supported by the NNSFC (grant no. 11401067), SRF for ROCS, SEM, and CUAS (grant no. R2012SC22).
 Email address: ma_jicheng@hotmail.com (Jicheng Ma)

