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Available at: http://www.pmf.ni.ac.rs/filomat

On Wijsman Ideal Convergent Set of Sequences
Defined by an Orlicz Function
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Abstract. In this study, our main topics are Wijsman ideal convergence and Orlicz function. We define
Wijsman ideal convergent set of sequences defined by an Orlicz function where I is an ideal of the subset
of positive integersN. We also obtain some inclusion theorems.

1. Preliminaries and Notation

Statistical convergence of sequences of points was introduced by Steinhaus [21] and Fast [7] and later
Schoenberg reintroduced this concept and he established some basic properties of statistical convergence
and also studied the concept as a summability method [20]. The last twenty years this concept has been
applied in various areas.

Let K be a subset of the set of all natural numbers N and Kn = |k ≤ n : k ∈ K| where the vertical
bars indicate the number of elements in the enclosed set. The natural density of K is defined by δ(K) :=
limn→∞ n−1

|{k ≤ n : k ∈ K}. Now we recall some definitions and results on statistical convergence.

Definition 1.1. (Fast, [7]) A number sequence x = (xk) is said to be statistically convergent to the number L if for
every ε > 0,

lim
n→∞

1
n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write st − lim xk = L. Statistical convergence is a natural generalization of ordinary convergence. If
lim xk = L, then st − lim xk = L. The converse does not hold in general.

I−convergence is an important notion in our area and that is based on the notion of an ideal of the subset
of positive integers. Kostyrko et al. [14] introduced the notion of I−convergence in a metric space in 2000.
Esi and Hazarika ([5] , [6]), Hazarika and Savas [9], Savas ([17] , [18] , [19]), Kişi et al. ([12] , [13]) and many
others dealt with I−convergence and Orlicz function. Now we state the definitions of ideal and filter.

Definition 1.2. A non-empty family of sets I ⊆ 2N is called an ideal if and only if ∅ ∈ I, for each A,B ∈ I we have
A ∪ B ∈ I and for each A ∈ I and each B ⊆ A we have B ∈ I.
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An ideal is called non-trivial ifN < I and non-trivial ideal is called admissible if {n} ∈ I for each n ∈N .

Definition 1.3. A non-empty family of sets F ⊆ 2N is a filter inN if and only if ∅ < F , for each A,B ∈ F we have
A ∩ B ∈ F and for each A ∈ F and each B ⊇ A we have B ∈ F .

If I is a non-trivial ideal inN (i.e.,N < I), then the family of sets

F (I) = {M ⊂N : ∃A ∈ I : M =N \ A}

is a filter inN.

Definition 1.4. Let I be a non-trivial ideal of subsets inN. A sequence {xn}n∈N is said to be I−convergent to L if
and only if for each ε > 0 the set

A (ε) = {n ∈N : |xn − L| ≥ ε}

belongs to I. This is denoted by I − limn→∞ xn=L.

Now we have some easy but important examples about I−convergence.

Example 1.5. Take for I class the I f of all finite subsets ofN. Then I f is an admissible ideal and I f −convergence
coincides with the usual convergence.

Example 1.6. Denote by Id the class of all A ⊂ N which has natural density zero. Then Id is an admissible ideal
and Id-convergence coincides with the statistical convergence.

Recently, Das, Savas and Ghosal [3] introduced new notions, namely I−statistical convergence and
I−lacunary statistical convergence.
Now we will carry these definitions to set of sequences and we obtain Wijsman I−convergence.

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A of X, we define the
distance from x to A by

d(x,A) = inf
a∈A
ρ(x,A).

Definition 1.7.
(
Baronti and Papini, [2]

)
Let (X, d) be a metric space. For any non-empty closed subsets A,Ak ⊆ X

for all k ∈N we say that the sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,A)

for each x ∈ X. In this case we write W − limk→∞ Ak = A.

As an example, consider the following sequence of circles in (x, y)-plane:

Ak = {(x, y) : x2 + y2 + 2kx = 0}.

As k→∞ the sequence is Wijsman convergent to y-axis A = {(x, y) : x = 0}.

Definition 1.8.
(
Baronti and Papini, [2]

)
Let (X, d) be a metric space. For any non-empty closed subset Ak of X for

all k ∈N we say that the sequence {Ak} is bounded if

sup
k

d(x,Ak) < ∞

for each x ∈ X. In this case we write {Ak} ∈ L∞.
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Definition 1.9.
(
Baronti and Papini, [2]

)
Let (X, d) be a metric space. For any non-empty closed subsets A,Ak ⊆ X

for all k ∈N we say that the sequence {Ak} is Wijsman Cesáro summable to A if

lim
n→∞

1
n

n∑
k=1

d(x,Ak) = d(x,A)

for each x ∈ X and we say that {Ak} is Wijsman strongly Cesáro summable to A if

lim
n→∞

1
n

n∑
k=1

|d(x,Ak) − d(x,A)| = 0

for each x ∈ X.

In 2012, Nuray and Rhoades presented Wijsman statistical convergence for set of sequences. After this
definition, Ulusu and Nuray presented the concept of Wijsman lacunary statistical convergence in 2012.

Definition 1.10.
(
Nuray and Rhoades, [16]

)
Let (X, d) be a metric space. For any non-empty closed subsets A,Ak ⊆

X for all k ∈N we say that the sequence {Ak} is Wijsman statistically convergent to A if for ε > 0 and for each x ∈ X
we have

lim
n→∞

1
n
|{k ≤ n : |d(x,Ak) − d(x,A)| ≥ ε}| = 0.

In this case we write st − limW Ak = A or Ak → A(WS) where WS denotes the set of Wijsman statistically
convergent sequences.

Definition 1.11. (Kişi and Nuray, [12]) Let (X, d) be a metric space and I ⊆ 2N be a non-trivial ideal inN. For any
non-empty closed subsets A,Ak ⊆ X for all k ∈ N we say that the sequence {Ak} is Wijsman I−convergent to A, if
for each ε > 0 and for each x ∈ X the set,

A (x, ε) = {k ∈N : |d (x,Ak) − d (x,A)| ≥ ε}

belongs to I. In this case we write IW − lim Ak = A or Ak → A(IW) where IW is the set of Wijsman I−convergent
sequences.

As an example, consider the following sequence. Let X = R2 and {Ak} be a sequence as follows:

Ak =


{(

x, y
)
∈ R2 : x2 + y2

− 2ky = 0
}

if, k , n2{(
x, y

)
∈ R2 : y = −1

}
if, k = n2

and

A =
{(

x, y
)
∈ R2 : y = 0

}
.

The sequence {Ak} is not Wijsman convergent to the set A. But if we take I = Id then {Ak} is Wijsman
I−convergent to set A, where Id is the ideal of sets which have zero density.

Definition 1.12. (Kişi and Nuray, [13]) Let (X, d) be a metric space and I ⊆ 2N be a non-trivial ideal in N. For
any non-empty closed subsets A,Ak ⊆ X for all k ∈ N we say that the sequence {Ak} is Wijsman I−statistically
convergent to A or S (IW)-convergent to A if for each ε > 0, for each x ∈ X and δ > 0 we have,{

n ∈N :
1
n
|{k ≤ n : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δ

}
∈ I.
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In this case, we write Ak → A (S (IW)) . The class of all Wijsman I−statistically convergent sequences will
be denoted by S (IW) .

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr−kr−1 →

∞ as r → ∞. Throughout this paper the intervals determined by θ will be denoted by Ir = (kr−1, kr], and
ratio kr

kr−1
will be abbreviated by qr.

Definition 1.13. (Ulusu and Nuray, [22]) Let (X, ρ) be a metric space and θ = {kr} be a lacunary sequence. For any
non-empty closed subsets A,Ak ⊆ X for all k ∈ N we say that the sequence {Ak} is Wijsman lacunary statistically
convergent to A if {d(x,Ak)} is lacunary statistically convergent to d(x,A); i.e., for ε > 0 and for each x ∈ X we have

lim
r

1
hr
| {k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε} | = 0.

In this case we write Sθ − limW = A or Ak → A(WSθ).

Recall that an Orlicz function is a function M : [0,∞) → [0,∞) which is continuous, non decreasing and
convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞ as x → ∞. An Orlicz function M satisfies the
∆2-condition if there exits a constant K > 0 such that M (2u) ≤ KM (u) for all u ≥ 0. Note that if 0 < λ < 1,
then M (λx) ≤ λM (x) for all x ≥ 0.
If convexity of Orlicz function M is replaced by M(x + y) = M(x) + M(y) then this function is called Modulus
function, which was presented and discussed by Maddox [15].

2. Main Results

Definition 2.1. Let (X, d) be a metric space and θ be a lacunary sequence. A set of sequence {Ak} is said to be Wijsman
strongly I−lacunary convergent to A if for each ε > 0 and for each x ∈ X we have,r ∈N :

1
hr

∑
k∈Ir

|d(x,Ak) − d(x,A)| ≥ ε

 ∈ I.

In this case we write Ak
I−W[Nθ]
→ A.

Definition 2.2. Let (X, d) be a metric space and θ be a lacunary sequence. A set of sequence {Ak} is said to be Wijsman
I−lacunary statistically convergent to A if for each ε > 0, for each x ∈ X and δ > 0 we have,{

r ∈N :
1
hr
| {k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε} | ≥ δ

}
∈ I.

In this case, we write Ak
I−WSθ
→ A.

Definition 2.3. Let (X, d) be a metric space and M be an Orlicz function. For any non-empty closed subsets A,Ak ⊆ X
for all k ∈ N we say that the sequence {Ak} is Wijsman strongly Cesáro summable to A with respect to an Orlicz
function (Wijsman sense), if for each x ∈ X we have,

lim
n→∞

1
n

n∑
k=1

M (|d (x,Ak) − d (x,A)|) = 0.

This is denoted by {Ak}
W[C1](M)
→ A.
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Definition 2.4. Let (X, d) be a metric space, I ⊆ 2N be an admissible ideal inN and M be an Orlicz function. For
any non-empty closed subsets A,Ak ⊆ X for all k ∈N we say that the sequence {Ak} is strongly Cesáro summable to
A (Wijsman sense) with respect to an Orlicz function and ideal if for each ε > 0 and for each x ∈ X we have,n ∈N :

1
n

n∑
k=1

M (|d (x,Ak) − d (x,A)|) ≥ ε

 ∈ I.

This is denoted by {Ak}
I−W[C1](M)
→ A.

Definition 2.5. Let (X, d) be a metric space, I ⊆ 2N be an admissible ideal inN and M be an Orlicz function. For
any non-empty closed subsets A,Ak ⊆ X for all k ∈N we say that the sequence {Ak} is I−statistically convergent to
A with respect to an Orlicz function (Wijsman sense) , if for each ε, δ > 0 and for each x ∈ X we have,{

n ∈N :
1
n
{k ≤ n : M (|d (x,Ak) − d (x,A)|) ≥ ε} ≥ δ

}
∈ I.

This is denoted by {Ak}
S(IW)(M)
→ A.

Definition 2.6. Let (X, d) be a metric space and θ be a lacunary sequence. A set of sequence {Ak} is said to be Wijsman
strongly I−lacunary convergent to A with respect to an Orlicz function if for each ε > 0 and for each x ∈ X we have,r ∈N :

1
hr

∑
k∈Ir

M (|d (x,Ak) − d (x,A)|) ≥ ε

 ∈ I.

In this case we write Ak
(I−W[Nθ](M))
→ A.

Theorem 2.7. Let
(
X, ρ

)
be a metric space, I ⊆ 2N be an admissible ideal in N and M be an Orlicz function.

A,Ak ⊆ X, for all k ∈N, are non empty closed subsets. Then we have

(i) {Ak}
I−W[C1](M)
→ A =⇒ {Ak}

S(IW)
→ A;

(ii) If M satisfies ∆2 condition and {Ak}
S(IW)
→ A for all {Ak} ∈ L∞ (M) then we have {Ak}

I−W[C1](M)
→ A;

(iii) If M satisfies ∆2 condition, then we have

I −W [C1] (M) ∩ L∞ (M) = S (IW) ∩ L∞ (M)

where L∞ (M) = {Ak : M (d (x,Ak)) ∈ L∞, x ∈ X}.

Proof. (i) Suppose that {Ak}
I−W[C1](M)
→ A. Let ε > 0 be given. Then we can write

1
n

n∑
k=1

M (|d (x,Ak) − d (x,A)|) ≥
1
n

n∑
k=1

|d(x,Ak)−d(x,A)|≥ε

M (|d (x,Ak) − d (x,A)|)

≥
M (ε)

n
|{k ≤ n : |d (x,Ak) − d (x,A)| ≥ ε}| .

Consequently, for any δ > 0 we have{
n ∈N :

1
n
|{k ≤ n : |d (x,Ak) − d (x,A)| ≥ ε}| ≥

δ
M (ε)

}

⊆

{
n ∈N :

1
n

n∑
k=1

M (|d (x,Ak) − d (x,A)| ≥ δ)
}
∈ I.
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Hence {Ak}
S(IW)
→ A.

(ii) Suppose that M is bounded and {Ak}
S(IW)
→ A. Since M is bounded there exists a real number K > 0

such that supt M (t) ≤ K. Moreover, for any ε > 0 we can write

1
n

n∑
k=1

M (|d (x,Ak) − d (x,A)|) =
1
n

 n∑
k=1

|d(x,Ak)−d(x,A)|≥ε

M (|d (x,Ak) − d (x,A)|) +
n∑

k=1
|d(x,Ak)−d(x,A)|<ε

M (|d (x,Ak) − d (x,A)|)


≤

K
n
|{k ≤ n : |d (x,Ak) − d (x,A)| ≥ ε}| + M (ε) .

Now for any δ > 0 we get{
n ∈N :

1
n

n∑
k=1

M (|d (x,Ak) − d (x,A)|) ≥ δ
}
⊆

{
n ∈N :

1
n
|{k ≤ n : |d (x,Ak) − d (x,A)| ≥ ε}| ≥

δ
K

}
∈ I.

Hence {Ak}
I−W[C1](M)
→ A.

(iii) The proof of this part follows from parts (i) and (ii).

Theorem 2.8. Let
(
X, ρ

)
be a metric space, I ⊆ 2N be an admissible ideal inN, θ = (kr) be a lacunary sequence and

M be an Orlicz function. For any non-empty closed subsets Ak, Bk ⊆ X for all k ∈ N such that d (x,Ak) > 0 and
d (x,Bk) > 0 for x ∈ X we have,

(i) (a) Ak
I−W[Nθ](M)
→ A⇒ Ak

I−WSθ
→ A;

(b) I −W [Nθ] (M) ⊂ I −WSθ;

(ii) If M satisfies ∆2 condition and {Ak}
I−WSθ
→ A for all {Ak} ∈ L∞ (M) then we have {Ak}

I−W[Nθ](M)
→ A;

(iii) If M satisfies ∆2 condition then I −WSθ ∩ L∞ (M) = I −W [Nθ] (M) ∩ L∞ (M) .

Proof. (i) a) Suppose that Ak
I−W[Nθ](M)
→ A. Let ε > 0 be given. Then we can write

1
hr

∑
k∈Ir

M (|d(x,Ak) − d(x,A)|) =
1
hr

∑
k∈Ir

|d(x,Ak )−d(x,A)|≥ε

M (|d(x,Ak) − d(x,A)|) +
1
hr

∑
k∈Ir

|d(x,Ak )−d(x,A)|<ε

M (|d(x,Ak) − d(x,A)|)

and so

1
hr

∑
k∈Ir

M (|d(x,Ak) − d(x,A)|) ≥
M (ε)

hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| .

Then for any δ > 0{
r ∈N :

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| ≥

δ
M (ε)

}
⊆

{
r ∈N :

1
hr

∑
k∈Ir

M (|d(x,Ak) − d(x,A)| ≥ δ)
}
∈ I.

This proves the result.
b) In order to establish I −W [Nθ] (M) ⊆ I −WSθ is proper, for any given θ we choose {Ak} as follows:

{Ak} =

{
{k} , if kr−1 < k ≤ kr−1 +

[√
hr

]
r = 1, 2, ...

{0} , otherwise
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Then for any ε > 0,

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| =

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x, {0})| ≥ ε}| ≤

[∣∣∣√hr

∣∣∣]
hr

and for any δ > 0,

{
r ∈N :

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δ

}
⊆

r ∈N :

[∣∣∣√hr

∣∣∣]
hr

≥ δ

 .

Since the set on the right-hand side is a finite set and so belongs to I, it follows that Ak
I−WSθ
→ A.

On the other hand

1
hr

∑
k∈Ir

M|d(x,Ak) − d(x, {0})| =
1
hr

[√
hr

] ([√
hr

]
+ 1

)
2

.

Then

{
r ∈N :

1
hr

∑
k∈Ir

M|d(x,Ak) − d(x, {0})| ≥
1
4

}
=

r ∈N :

[√
hr

] ([√
hr

]
+ 1

)
hr

≥
1
2


= {m,m + 1,m + 2, ...}

for some m ∈Nwhich belongs to F(I), since I is admissible. So Ak
I−W[Nθ](M)
9 {0}.

(ii) Suppose that M is bounded and Ak
I−WSθ
→ A. Since M is bounded there exists a real number K > 0

such that supt M (t) ≤ K. Moreover, for any ε > 0,

1
hr

∑
k∈Ir

M (|d(x,Ak) − d(x,A)|) =
1
hr

 n∑
k=1

|d(x,Ak)−d(x,A)|≥ε

M (|d (x,Ak) − d (x,A)|) +
∑
k∈Ir

|d(x,Ak )−d(x,A)|<ε

M (|d(x,Ak) − d(x,A)|)


≤

K
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| + M (ε) .

Consequently, we get{
r ∈N :

1
hr

∑
k∈Ir

M (|d(x,Ak) − d(x,A)|) ≥ ε
}
⊆

{
r ∈N :

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| ≥

ε
K

}
∈ I.

This proves the result.

(iii) The proof of this part follows from parts (i) and (ii) .

Theorem 2.9. For any θ = (kr) lacunary sequence and for any Orlicz function M, I−statistical convergence
implies I−lacunary statistical convergence for sequence of sets with respect to M if and only if lim infr qr > 1. If
lim infr qr = 1 then there exists a bounded sequence {Ak} which is I−statistically convergent but not I−lacunary
statistically convergent with respect to M.
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Proof. Suppose first that lim infr qr > 1. Then there exists α > 0 such that qr > 1 + α for sufficiently large r,
which implies that

hr

kr
≥

α
1 + α

.

Since {Ak}
S(IW)(M)
→ A and for sufficiently large r, we have

1
kr
|k ≤ kr : M (|d(x,Ak) − d(x,A)| ≥ ε)| ≥

1
kr
|{k ∈ Ir : M (|d(x,Ak) − d(x,A)| ≥ ε)}|

≥
α

1 + α
1
hr
|{k ∈ Ir : M (|d(x,Ak) − d(x,A)| ≥ ε)}| .

Then for any δ > 0, we get{
r ∈N :

1
hr
|{k ∈ Ir : M (|d(x,Ak) − d(x,A)| ≥ ε)}| ≥ δ

}
⊆

{
r ∈N :

1
kr
|{k ≤ kr : M (|d(x,Ak) − d(x,A)| ≥ ε)}| ≥

δα
(1 + α)

}
∈ I.

This proves the sufficiency.
Conversely, suppose that lim infr qr = 1. Hence we can select a subsequence

{
kr j

}
of the lacunary sequence

θ = (kr) such that

kr j

kr j−1
< 1 +

1
j

and
kr j−1

kr j−1

> j, where r j ≥r j−1 +2.

Now we define a sequence {Ak} as follows:

Ak =

 x2 +
(
y − 1

)2 =
1
k4 , if i ∈ Ir j ,

{(0, 0)} , otherwise.

Then

1
hr j

∑
k∈Irj

M (|d(x,Ak) − d(x, {(0, 0)})|) = K, for j = 1, 2, .. (K ∈ R+)

and

1
hr j

∑
k∈Irj

M (|d(x,Ak) − d(x, {(0, 0)})|) = 0, for r , r j.

Then it is quite clear that {Ak} does not belong to I −W [Nθ] (M). Since {Ak} is bounded then we have

{Ak}
I−WSθ
9 A. Next, let kr j−1 ≤ n ≤ kr j+1−1 Then, from Theorem 2.1 in [3], we can write

ε
n
|k ≤ n : M (|d(x,Ak) − d(x, {(0, 0)})|

≤
1
n

n∑
k=1

M (|d(x,Ak) − d(x, {(0, 0)})|)

≤
kr j−1 + hr j

kr j−1
≤

1
j

+
1
j

=
2
j
.

Hence {Ak} is Wijsman I−statistically convergent with respect to M for any admissible ideal I.
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[17] E. Savaş, On Some New Sequence Spaces in 2-Normed Spaces Using Ideal Convergence and an Orlicz Function, J. Ineq.
Appl.(2010), Article Number:482392 DOI:10.1155/2010/482392.
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