Filomat 30:13 (2016), 3501–3509 DOI 10.2298/FIL1613501G

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Wijsman Ideal Convergent Set of Sequences Defined by an Orlicz Function

Hafize Gümüş^a

^aNecmettin Erbakan University Faculty of Eregli Education Department of Math., Eregli, Konya, Turkey

Abstract. In this study, our main topics are Wijsman ideal convergence and Orlicz function. We define Wijsman ideal convergent set of sequences defined by an Orlicz function where I is an ideal of the subset of positive integers \mathbb{N} . We also obtain some inclusion theorems.

1. Preliminaries and Notation

Statistical convergence of sequences of points was introduced by Steinhaus [21] and Fast [7] and later Schoenberg reintroduced this concept and he established some basic properties of statistical convergence and also studied the concept as a summability method [20]. The last twenty years this concept has been applied in various areas.

Let *K* be a subset of the set of all natural numbers \mathbb{N} and $K_n = |k| \le n : k \in K$ where the vertical bars indicate the number of elements in the enclosed set. The natural density of *K* is defined by $\delta(K) := \lim_{n \to \infty} n^{-1} |\{k \le n : k \in K\}$. Now we recall some definitions and results on statistical convergence.

Definition 1.1. (*Fast*, [7]) A number sequence $x = (x_k)$ is said to be statistically convergent to the number L if for every $\varepsilon > 0$,

 $\lim_{n\to\infty}\frac{1}{n}|\{k\leq n:|x_k-L|\geq\varepsilon\}|=0.$

In this case we write $st - \lim x_k = L$. Statistical convergence is a natural generalization of ordinary convergence. If $\lim x_k = L$, then $st - \lim x_k = L$. The converse does not hold in general.

I-convergence is an important notion in our area and that is based on the notion of an ideal of the subset of positive integers. Kostyrko et al. [14] introduced the notion of I-convergence in a metric space in 2000. Esi and Hazarika ([5], [6]), Hazarika and Savas [9], Savas ([17], [18], [19]), Kişi et al. ([12], [13]) and many others dealt with I-convergence and Orlicz function. Now we state the definitions of ideal and filter.

Definition 1.2. A non-empty family of sets $I \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if $\emptyset \in I$, for each $A, B \in I$ we have $A \cup B \in I$ and for each $A \in I$ and each $B \subseteq A$ we have $B \in I$.

²⁰¹⁰ Mathematics Subject Classification. Primary 40G15; Secondary 40A35

Keywords. I-convergence, set sequences, Wijsman convergence, Orlicz function.

Received: 20 October 2014; Accepted: 3 November, 2014

Communicated by Eberhard Malkowsky

Email address: hgumus@konya.edu.tr (Hafize Gümüş)

An ideal is called non-trivial if $\mathbb{N} \notin I$ and non-trivial ideal is called admissible if $\{n\} \in I$ for each $n \in \mathbb{N}$.

Definition 1.3. A non-empty family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is a filter in \mathbb{N} if and only if $\emptyset \notin \mathcal{F}$, for each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$ and for each $A \in \mathcal{F}$ and each $B \supseteq A$ we have $B \in \mathcal{F}$.

If I is a non-trivial ideal in \mathbb{N} (i.e., $\mathbb{N} \notin I$), then the family of sets

$$F(I) = \{M \subset \mathbb{N} : \exists A \in I : M = \mathbb{N} \setminus A\}$$

is a filter in \mathbb{N} .

Definition 1.4. Let I be a non-trivial ideal of subsets in \mathbb{N} . A sequence $\{x_n\}_{n \in \mathbb{N}}$ is said to be I-convergent to L if and only if for each $\varepsilon > 0$ the set

$$A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \varepsilon\}$$

belongs to *I*. This is denoted by $I - \lim_{n \to \infty} x_n = L$.

Now we have some easy but important examples about *I*-convergence.

Example 1.5. Take for I class the I_f of all finite subsets of \mathbb{N} . Then I_f is an admissible ideal and I_f –convergence coincides with the usual convergence.

Example 1.6. Denote by I_d the class of all $A \subset \mathbb{N}$ which has natural density zero. Then I_d is an admissible ideal and I_d -convergence coincides with the statistical convergence.

Recently, Das, Savas and Ghosal [3] introduced new notions, namely I-statistical convergence and I-lacunary statistical convergence.

Now we will carry these definitions to set of sequences and we obtain Wijsman *I*-convergence.

Let (X, ρ) be a metric space. For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by

$$d(x,A) = \inf_{a \in A} \rho(x,A).$$

Definition 1.7. (Baronti and Papini, [2])Let (X, d) be a metric space. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman convergent to A if

$$\lim_{k\to\infty} d(x,A_k) = d(x,A)$$

for each $x \in X$. In this case we write $W - \lim_{k \to \infty} A_k = A$.

As an example, consider the following sequence of circles in (x, y)-plane:

$$A_k = \{(x, y) : x^2 + y^2 + 2kx = 0\}$$

As $k \to \infty$ the sequence is Wijsman convergent to *y*-axis $A = \{(x, y) : x = 0\}$.

Definition 1.8. (Baronti and Papini, [2]) Let (X, d) be a metric space. For any non-empty closed subset A_k of X for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is bounded if

 $\sup d(x,A_k) < \infty$

for each $x \in X$. In this case we write $\{A_k\} \in L_{\infty}$.

Definition 1.9. (Baronti and Papini, [2]) Let (X, d) be a metric space. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman Cesáro summable to A if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} d(x, A_k) = d(x, A)$$

for each $x \in X$ and we say that $\{A_k\}$ is Wijsman strongly Cesáro summable to A if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |d(x, A_k) - d(x, A)| = 0$$

for each $x \in X$.

In 2012, Nuray and Rhoades presented Wijsman statistical convergence for set of sequences. After this definition, Ulusu and Nuray presented the concept of Wijsman lacunary statistical convergence in 2012.

Definition 1.10. (Nuray and Rhoades, [16]) Let (X, d) be a metric space. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman statistically convergent to A if for $\varepsilon > 0$ and for each $x \in X$ we have

$$\lim_{n\to\infty}\frac{1}{n}|\{k\leq n:|d(x,A_k)-d(x,A)|\geq\varepsilon\}|=0.$$

In this case we write $st - \lim_{W} A_k = A$ or $A_k \rightarrow A(WS)$ where WS denotes the set of Wijsman statistically convergent sequences.

Definition 1.11. (*Kişi and Nuray*, [12]) Let (X, d) be a metric space and $I \subseteq 2^{\mathbb{N}}$ be a non-trivial ideal in \mathbb{N} . For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman I-convergent to A, if for each $\varepsilon > 0$ and for each $x \in X$ the set,

$$A(x,\varepsilon) = \{k \in \mathbb{N} : |d(x,A_k) - d(x,A)| \ge \varepsilon\}$$

belongs to I. In this case we write $I_W - \lim A_k = A$ or $A_k \rightarrow A(I_W)$ where I_W is the set of Wijsman I-convergent sequences.

As an example, consider the following sequence. Let $X = \mathbb{R}^2$ and $\{A_k\}$ be a sequence as follows:

$$A_{k} = \begin{cases} \{(x, y) \in \mathbb{R}^{2} : x^{2} + y^{2} - 2ky = 0\} & \text{if, } k \neq n^{2} \\ \{(x, y) \in \mathbb{R}^{2} : y = -1\} & \text{if, } k = n^{2} \end{cases}$$

and

$$A = \{ (x, y) \in \mathbb{R}^2 : y = 0 \}$$

The sequence $\{A_k\}$ is not Wijsman convergent to the set *A*. But if we take $I = I_d$ then $\{A_k\}$ is Wijsman *I*-convergent to set *A*, where I_d is the ideal of sets which have zero density.

Definition 1.12. (*Kişi and Nuray*, [13]) Let (X, d) be a metric space and $I \subseteq 2^{\mathbb{N}}$ be a non-trivial ideal in \mathbb{N} . For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman I-statistically convergent to A or $S(I_W)$ -convergent to A if for each $\varepsilon > 0$, for each $x \in X$ and $\delta > 0$ we have,

$$\left\{n \in \mathbb{N} : \frac{1}{n} |\{k \le n : |d(x, A_k) - d(x, A)| \ge \varepsilon\}| \ge \delta\right\} \in \mathcal{I}.$$

In this case, we write $A_k \to A(S(\mathcal{I}_W))$. The class of all Wijsman \mathcal{I} -statistically convergent sequences will be denoted by $S(\mathcal{I}_W)$.

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$, and ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r .

Definition 1.13. (Ulusu and Nuray, [22]) Let (X, ρ) be a metric space and $\theta = \{k_r\}$ be a lacunary sequence. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman lacunary statistically convergent to A if $\{d(x, A_k)\}$ is lacunary statistically convergent to d(x, A); i.e., for $\varepsilon > 0$ and for each $x \in X$ we have

$$\lim_{r}\frac{1}{h_{r}}|\left\{k\in I_{r}:|d(x,A_{k})-d(x,A)|\geq\varepsilon\right\}|=0.$$

In this case we write $S_{\theta} - \lim_{W \to 0} A$ or $A_k \to A(WS_{\theta})$.

Recall that an Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, non decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to \infty$. An Orlicz function M satisfies the Δ_2 -condition if there exits a constant K > 0 such that $M(2u) \leq KM(u)$ for all $u \geq 0$. Note that if $0 < \lambda < 1$, then $M(\lambda x) \leq \lambda M(x)$ for all $x \geq 0$.

If convexity of Orlicz function *M* is replaced by M(x + y) = M(x) + M(y) then this function is called Modulus function, which was presented and discussed by Maddox [15].

2. Main Results

Definition 2.1. Let (X, d) be a metric space and θ be a lacunary sequence. A set of sequence $\{A_k\}$ is said to be Wijsman strongly I-lacunary convergent to A if for each $\varepsilon > 0$ and for each $x \in X$ we have,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| \ge \varepsilon\right\} \in \mathcal{I}$$

In this case we write $A_k \xrightarrow{I-W[N_{\theta}]} A$.

Definition 2.2. Let (X, d) be a metric space and θ be a lacunary sequence. A set of sequence $\{A_k\}$ is said to be Wijsman I-lacunary statistically convergent to A if for each $\varepsilon > 0$, for each $x \in X$ and $\delta > 0$ we have,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} | \{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\} | \ge \delta\right\} \in \mathcal{I}.$$

In this case, we write $A_k \stackrel{I-WS_{\theta}}{\rightarrow} A$.

Definition 2.3. Let (X, d) be a metric space and M be an Orlicz function. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is Wijsman strongly Cesáro summable to A with respect to an Orlicz function (Wijsman sense), if for each $x \in X$ we have,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} M(|d(x, A_k) - d(x, A)|) = 0.$$

This is denoted by $\{A_k\} \xrightarrow{W[C_1](M)} A$.

Definition 2.4. Let (X, d) be a metric space, $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal in \mathbb{N} and M be an Orlicz function. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is strongly Cesáro summable to A (Wijsman sense) with respect to an Orlicz function and ideal if for each $\varepsilon > 0$ and for each $x \in X$ we have,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} M\left(\left|d\left(x, A_{k}\right) - d\left(x, A\right)\right|\right) \ge \varepsilon\right\} \in \mathcal{I}$$

This is denoted by $\{A_k\} \xrightarrow{I-W[C_1](M)} A$.

Definition 2.5. Let (X, d) be a metric space, $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal in \mathbb{N} and M be an Orlicz function. For any non-empty closed subsets $A, A_k \subseteq X$ for all $k \in \mathbb{N}$ we say that the sequence $\{A_k\}$ is I-statistically convergent to A with respect to an Orlicz function (Wijsman sense), if for each $\varepsilon, \delta > 0$ and for each $x \in X$ we have,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left\{k \le n : M\left(\left|d\left(x, A_k\right) - d\left(x, A\right)\right|\right) \ge \varepsilon\right\} \ge \delta\right\} \in \mathcal{I}.$$

This is denoted by $\{A_k\} \xrightarrow{S(I_W)(M)} A$.

Definition 2.6. Let (X, d) be a metric space and θ be a lacunary sequence. A set of sequence $\{A_k\}$ is said to be Wijsman strongly I-lacunary convergent to A with respect to an Orlicz function if for each $\varepsilon > 0$ and for each $x \in X$ we have,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} M\left(\left|d\left(x, A_k\right) - d\left(x, A\right)\right|\right) \ge \varepsilon\right\} \in \mathcal{I}$$

In this case we write $A_k \xrightarrow{(I-W[N_{\theta}](M))} A$.

Theorem 2.7. Let (X, ρ) be a metric space, $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal in \mathbb{N} and M be an Orlicz function. A, $A_k \subseteq X$, for all $k \in \mathbb{N}$, are non empty closed subsets. Then we have

- (i) $\{A_k\} \xrightarrow{I-W[C_1](M)} A \Longrightarrow \{A_k\} \xrightarrow{S(I_W)} A;$
- (*ii*) If M satisfies Δ_2 condition and $\{A_k\} \xrightarrow{S(I_W)} A$ for all $\{A_k\} \in L_{\infty}(M)$ then we have $\{A_k\} \xrightarrow{I-W[C_1](M)} A$;

(iii) If M satisfies Δ_2 *condition, then we have*

$$I - W[C_1](M) \cap L_{\infty}(M) = S(I_W) \cap L_{\infty}(M)$$

where $L_{\infty}(M) = \{A_k : M(d(x, A_k)) \in L_{\infty}, x \in X\}.$

Proof. (*i*) Suppose that $\{A_k\} \xrightarrow{I-W[C_1](M)} A$. Let $\varepsilon > 0$ be given. Then we can write

$$\frac{1}{n}\sum_{k=1}^{n} M\left(\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right|\right) \geq \frac{1}{n}\sum_{\substack{k=1\\|d(x,A_{k})-d(x,A)|\geq\varepsilon}}^{n} M\left(\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right|\right)$$
$$\geq \frac{M(\varepsilon)}{n}\left|\left\{k\leq n:\left|d\left(x,A_{k}\right)-d\left(x,A\right)\right|\geq\varepsilon\right\}\right|$$

Consequently, for any $\delta > 0$ we have

$$\left\{n \in \mathbb{N} : \frac{1}{n} \left| \{k \le n : |d(x, A_k) - d(x, A)| \ge \varepsilon \} \right| \ge \frac{\delta}{M(\varepsilon)} \right\}$$
$$\subseteq \left\{n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^n M(|d(x, A_k) - d(x, A)| \ge \delta) \right\} \in I.$$

Hence $\{A_k\} \xrightarrow{S(\mathcal{I}_W)} A$.

(*ii*) Suppose that *M* is bounded and $\{A_k\} \xrightarrow{S(I_W)} A$. Since *M* is bounded there exists a real number K > 0 such that $\sup_t M(t) \le K$. Moreover, for any $\varepsilon > 0$ we can write

$$\begin{aligned} \frac{1}{n} \sum_{k=1}^{n} M\left(|d\left(x, A_{k}\right) - d\left(x, A\right)| \right) &= \frac{1}{n} \left| \sum_{\substack{k=1 \\ |d(x, A_{k}) - d(x, A)| \ge \varepsilon}}^{n} M\left(|d\left(x, A_{k}\right) - d\left(x, A\right)| \right) + \sum_{\substack{k=1 \\ |d(x, A_{k}) - d(x, A)| < \varepsilon}}^{n} M\left(|d\left(x, A_{k}\right) - d\left(x, A\right)| \right) \right| \\ &\leq \frac{K}{n} \left| \{k \le n : |d\left(x, A_{k}\right) - d\left(x, A\right)| \ge \varepsilon \} \right| + M\left(\varepsilon\right). \end{aligned}$$

Now for any $\delta > 0$ we get

$$\left\{n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} M\left(|d\left(x, A_k\right) - d\left(x, A\right)|\right) \ge \delta\right\} \subseteq \left\{n \in \mathbb{N} : \frac{1}{n} \left|\{k \le n : |d\left(x, A_k\right) - d\left(x, A\right)| \ge \varepsilon\}\right| \ge \frac{\delta}{K}\right\} \in I$$

Hence $\{A_k\} \xrightarrow{I-W[C_1](M)} A$.

(*iii*) The proof of this part follows from parts (*i*) and (*ii*). \Box

Theorem 2.8. Let (X, ρ) be a metric space, $I \subseteq 2^{\mathbb{N}}$ be an admissible ideal in \mathbb{N} , $\theta = (k_r)$ be a lacunary sequence and M be an Orlicz function. For any non-empty closed subsets A_k , $B_k \subseteq X$ for all $k \in \mathbb{N}$ such that $d(x, A_k) > 0$ and $d(x, B_k) > 0$ for $x \in X$ we have,

- (i) (a) $A_k \xrightarrow{I W[N_{\theta}](M)} A \Rightarrow A_k \xrightarrow{I WS_{\theta}} A;$ (b) $I - W[N_{\theta}](M) \subset I - WS_{\theta};$
- (*ii*) If M satisfies Δ_2 condition and $\{A_k\} \xrightarrow{I-WS_{\theta}} A$ for all $\{A_k\} \in L_{\infty}(M)$ then we have $\{A_k\} \xrightarrow{I-W[N_{\theta}](M)} A$;
- (iii) If M satisfies Δ_2 condition then $I WS_{\theta} \cap L_{\infty}(M) = I W[N_{\theta}](M) \cap L_{\infty}(M)$.

Proof. (*i*) *a*) Suppose that $A_k \xrightarrow{I-W[N_{\theta}](M)} A$. Let $\varepsilon > 0$ be given. Then we can write

$$\frac{1}{h_r} \sum_{k \in I_r} M\left(|d(x, A_k) - d(x, A)| \right) = \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |d(x, A_k) - d(x, A)| \ge \varepsilon}} M\left(|d(x, A_k) - d(x, A)| \right) + \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |d(x, A_k) - d(x, A)| < \varepsilon}} M\left(|d(x, A_k) - d(x, A)| \right)$$

and so

$$\frac{1}{h_r}\sum_{k\in I_r} M\left(|d(x,A_k) - d(x,A)|\right) \geq \frac{M(\varepsilon)}{h_r} \left|\{k \in I_r : |d(x,A_k) - d(x,A)| \geq \varepsilon\}\right|.$$

Then for any $\delta > 0$

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon \} \right| \ge \frac{\delta}{M(\varepsilon)} \right\} \subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} M\left(|d(x, A_k) - d(x, A)| \ge \delta\right) \right\} \in \mathcal{I}.$$

This proves the result.

b) In order to establish $I - W[N_{\theta}](M) \subseteq I - WS_{\theta}$ is proper, for any given θ we choose $\{A_k\}$ as follows:

$$\{A_k\} = \begin{cases} \{k\} &, \text{ if } k_{r-1} < k \le k_{r-1} + \left[\sqrt{h_r}\right] & r = 1, 2, \dots \\ \{0\} &, \text{ otherwise} \end{cases}$$

3506

Then for any $\varepsilon > 0$,

$$\frac{1}{h_r}|\{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\}| = \frac{1}{h_r}|\{k \in I_r : |d(x, A_k) - d(x, \{0\})| \ge \varepsilon\}| \le \frac{\left[\left|\sqrt{h_r}\right|\right]}{h_r}$$

and for any $\delta > 0$,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} |\{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\}| \ge \delta\right\} \subseteq \left\{r \in \mathbb{N} : \frac{\left[|\sqrt{h_r}|\right]}{h_r} \ge \delta\right\}.$$

Since the set on the right-hand side is a finite set and so belongs to I, it follows that $A_k \xrightarrow{I-WS_{\theta}} A$.

On the other hand

$$\frac{1}{h_r}\sum_{k\in I_r}M|d(x,A_k)-d(x,\{0\})| = \frac{1}{h_r}\frac{\left[\sqrt{h_r}\right]\left(\left[\sqrt{h_r}\right]+1\right)}{2}$$

Then

$$\begin{cases} r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} M | d(x, A_k) - d(x, \{0\}) | \ge \frac{1}{4} \end{cases} = \begin{cases} r \in \mathbb{N} : \frac{\left[\sqrt{h_r}\right] \left(\left[\sqrt{h_r}\right] + 1\right)}{h_r} \ge \frac{1}{2} \\ = \{m, m+1, m+2, \ldots\} \end{cases}$$

for some $m \in \mathbb{N}$ which belongs to F(I), since I is admissible. So $A_k \xrightarrow{I-W[N_{\theta}](M)} \{0\}$.

(*ii*) Suppose that *M* is bounded and $A_k \xrightarrow{I-WS_{\theta}} A$. Since *M* is bounded there exists a real number K > 0 such that $\sup_t M(t) \le K$. Moreover, for any $\varepsilon > 0$,

$$\begin{aligned} \frac{1}{h_r} \sum_{k \in I_r} M\left(|d(x, A_k) - d(x, A)| \right) &= \frac{1}{h_r} \left| \sum_{\substack{k=1 \\ |d(x, A_k) - d(x, A)| \ge \varepsilon}}^n M\left(|d(x, A_k) - d(x, A)| \right) + \sum_{\substack{k \in I_r \\ |d(x, A_k) - d(x, A)| < \varepsilon}} M\left(|d(x, A_k) - d(x, A)| \right) \right| \\ &\leq \frac{K}{h_r} \left| \{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon \} \right| + M\left(\varepsilon\right). \end{aligned}$$

Consequently, we get

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} M\left(|d(x, A_k) - d(x, A)|\right) \ge \varepsilon\right\} \subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r} \left|\{k \in I_r : |d(x, A_k) - d(x, A)| \ge \varepsilon\}\right| \ge \frac{\varepsilon}{K}\right\} \in \mathcal{I}.$$

This proves the result.

(*iii*) The proof of this part follows from parts (*i*) and (*ii*). \Box

Theorem 2.9. For any $\theta = (k_r)$ lacunary sequence and for any Orlicz function M, I-statistical convergence implies I-lacunary statistical convergence for sequence of sets with respect to M if and only if $\liminf_r q_r > 1$. If $\liminf_r q_r = 1$ then there exists a bounded sequence $\{A_k\}$ which is I-statistically convergent but not I-lacunary statistically convergent with respect to M.

3508

Proof. Suppose first that $\liminf_r q_r > 1$. Then there exists $\alpha > 0$ such that $q_r > 1 + \alpha$ for sufficiently large r, which implies that

$$\frac{h_r}{k_r} \ge \frac{\alpha}{1+\alpha}$$

Since $\{A_k\} \xrightarrow{S(I_W)(M)} A$ and for sufficiently large *r*, we have

$$\begin{aligned} \frac{1}{k_r} |k \le k_r : M(|d(x, A_k) - d(x, A)| \ge \varepsilon)| &\ge \frac{1}{k_r} |\{k \in I_r : M(|d(x, A_k) - d(x, A)| \ge \varepsilon)\}| \\ &\ge \frac{\alpha}{1 + \alpha} \frac{1}{h_r} |\{k \in I_r : M(|d(x, A_k) - d(x, A)| \ge \varepsilon)\}|. \end{aligned}$$

Then for any $\delta > 0$, we get

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} |\{k \in I_r : M(|d(x, A_k) - d(x, A)| \ge \varepsilon)\}| \ge \delta\right\}$$
$$\subseteq \left\{r \in \mathbb{N} : \frac{1}{k_r} |\{k \le k_r : M(|d(x, A_k) - d(x, A)| \ge \varepsilon)\}| \ge \frac{\delta\alpha}{(1+\alpha)}\right\} \in I.$$

This proves the sufficiency.

Conversely, suppose that $\liminf_r q_r = 1$. Hence we can select a subsequence $\{k_{r_j}\}$ of the lacunary sequence $\theta = (k_r)$ such that

$$\frac{k_{r_j}}{k_{r_j-1}} < 1 + \frac{1}{j}$$
 and $\frac{k_{r_j-1}}{k_{r_{j-1}}} > j$, where $r_j \ge_{r_{j-1}} +2$.

Now we define a sequence $\{A_k\}$ as follows:

$$A_k = \begin{cases} x^2 + (y-1)^2 = \frac{1}{k^4} &, \text{ if } i \in I_{r_j}, \\ \{(0,0)\} &, \text{ otherwise.} \end{cases}$$

Then

$$\frac{1}{h_{r_j}}\sum_{k\in I_{r_j}} M\left(|d(x,A_k) - d(x,\{(0,0)\})|\right) = K, \text{ for } j = 1,2, \dots (K \in \mathbb{R}^+)$$

and

$$\frac{1}{h_{r_j}} \sum_{k \in I_{r_i}} M\left(|d(x, A_k) - d(x, \{(0, 0)\})| \right) = 0, \text{ for } r \neq r_j.$$

Then it is quite clear that $\{A_k\}$ does not belong to $\mathcal{I} - W[N_{\theta}](M)$. Since $\{A_k\}$ is bounded then we have $\{A_k\} \xrightarrow{\mathcal{I}-WS_{\theta}} A$. Next, let $k_{r_{j-1}} \leq n \leq k_{r_{j+1}-1}$ Then, from Theorem 2.1 in [3], we can write

$$\frac{\varepsilon}{n} |k \le n : M(|d(x, A_k) - d(x, \{(0, 0)\})|$$

$$\le \frac{1}{n} \sum_{k=1}^n M(|d(x, A_k) - d(x, \{(0, 0)\})|)$$

$$\le \frac{k_{r_{j-1}} + h_{r_j}}{k_{r_j-1}} \le \frac{1}{j} + \frac{1}{j} = \frac{2}{j}.$$

Hence $\{A_k\}$ is Wijsman *I*-statistically convergent with respect to *M* for any admissible ideal *I*. \Box

3. References

[1] V. Baláž, J. Červeňanski, P. Kostyrko and T. Šalát, , *I-convergence and I-continutiy of real functions*, Acta Mathematica 5 (2002) 56 - 62.

[2] M. Baronti and P. Papini, *Convergence of sequences of sets*, Methods of Functional Analysis in Approximation Theory, Basel: Birkhauser(1986)133-155.

[3] P. Das, E. Savaş and S. Kr., Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Letters 36(2011) 1509-1514.

[4] A. Esi and M. Et, Some new sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 31(8) (2000)967-972.
[5] A. Esi and B. Hazarika), Lacunary summable sequence spaces of fuzzy numbers defined by ideal convergence and an Orlicz function, Afrika Matematika, (2014) DOI: 10.1007/s13370-012-0117-3.

[6] A. Esi and B. Hazarika, Some new generalized classes of sequences of Fuzzy numbers defined by an Orlicz function, Annals of Fuzzy Math. Informatics 4(2)(2012) 401-406.

[7] H. Fast, Sur la convergence statistique, Coll. Math. 2 (1951) 241-244.

[8] B. Hazarika, *Some new sequence of fuzzy numbers defined by Orlicz functions using a fuzzy metric*, Comput. Math. Appl. 61(9) (2011), 2762-2769.

[9] B. Hazarika and E. Savas, Some *I*-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Math. Comp. Modell. 54 (2011), 2986-2998.

[10] B. Hazarika, On fuzzy real valued generalized difference *I* – convergent sequence spaces defined by Musielak-Orlicz function, J. Intell. Fuzzy Systems 25(1) (2013) 9-15.

[11] B. Hazarika, K. Tamang and B. K. Singh, , Zweier Ideal Convergent Sequence Spaces Defined by Orlicz Function, The J. Math. and Computer Sci. 8 (2014) 307-318.

[12] O. Kişi and F. Nuray, New Convergence Definitions for Sequence of Sets, Abstract and Applied Analysis., Vol. 2013(2013), Article ID:852796, 6 pages.

[13] O. Kişi and F. Nuray, On $S_{\lambda}(I)$ –asymptotically statistical equivalence of sequence of sets, Mathematical Analysis, Vol.2013, Article ID:602963, (2013)6 pages.

[14] P. Kostyrko, T. Šalát and W. Wilezyński, I-Convergence, Real Analysis Exchange 26(2000) 669-680.

[15] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100(1986) 161-166.

[16] F. Nuray and B. E. Rhoades, Statistical convergence of sequences of sets, Fasciculi Mathematici 49(2012) 87-99.

[17] E. Savaş, On Some New Sequence Spaces in 2-Normed Spaces Using Ideal Convergence and an Orlicz Function, J. Ineq. Appl.(2010), Article Number:482392 DOI:10.1155/2010/482392.

[18] E. Savaş, *A-sequence spaces in 2-normed spaces using Ideal Convergence and an Orlicz Function*, Abst. Appl. Anal., Vol. 2011(2011), Article ID:741382.

[19] E. Savaş, Δ^m -strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function, Applied Mathematics and Computation 217(1) (2010) 271–276.

[20] I.J. Schoenberg, *The integrability of certain functions and related summability methods*, Amer. Math. Monthly 66(1959) 361-375.

[21] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2(1951) 73-74.

[22] U. Ulusu and F. Nuray, *Lacunary statistical convergence of sequence of sets*, Progress in Applied Mathematics 4(2)(2012) 99-109.

[23] R. A. Wijsman, *Convergence of sequences of Convex sets, Cones and Functions II*, Trans. Amer. Math. Soc., Vol 123, no:1(1966)