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Abstract.In this paper, we consider the various sets of comultiplications of a wedge of spheres and
provide some methods to calculate many kinds of comultiplications with different properties. In particular,
we concentrate on studying to compute the number of comultiplications, associative comultiplications,
commutative comultiplications, and comultiplications which are both associative and commutative of
a wedge of spheres. The more spheres that appear in a wedge, the more complicate the proofs and
computations become. Our methods involve the basic Whitehead products in a wedge of spheres and the
Hopf-Hilton invariants.

1. Introduction

In this paper we assume that all spaces are based and have the based homotopy type of based and
connected CW-complexes. All maps and homotopies preserve the base point. Unless otherwise stated,
we do not distinguish notationally between a map and its homotopy class. Thus equality of maps means
equality of homotopy classes of maps; that is, we use ‘=’ for the homotopy ‘'’.

A pair (Y, ϕ) consisting of a space Y and a function ϕ : Y → Y ∨ Y is called a co-H-space if q1ϕ = 1 and
q2ϕ = 1, where q1 and q2 are the projections Y ∨ Y → Y onto the first and second summands of the wedge
product and 1 is the identity map of Y. In this case the map ϕ : Y → Y ∨ Y is called a comultiplication.
Equivalently, (Y, ϕ) is a co-H-space if jϕ = ∆ : Y→ Y×Y, where ∆ is the diagonal map and j : Y∨Y→ Y×Y
is the inclusion. A comultiplication ϕ is called associative if (ϕ ∨ 1)ϕ = (1 ∨ ϕ)ϕ : Y → Y ∨ Y ∨ Y, and ϕ is
called commutative if Tϕ = ϕ, where T : Y ∨ Y → Y ∨ Y is the switching map. A left inverse for ϕ is a map
L : Y → Y such that ∇(L ∨ 1)ϕ = 0 and a right inverse is a map R : Y → Y such that ∇(1 ∨ R)ϕ = 0, where
∇ : Y ∨ Y→ Y is the folding map and 0 is the constant map.

Co-H-spaces, dual of H-spaces, play a fundamental role in homotopy theory. If the comultiplication
ϕ : Y→ Y∨Y is homotopy associative and has a right and left inverse, then for every space Z the set [Y,Z] of
homotopy classes from Y to Z becomes a group with the group operation depending on the comultiplication
of a space. The important examples of co-H-spaces are all n-spheres, n ≥ 1 and suspensions of a based
space. It is easily seen that the wedge of two co-H-spaces is a co-H-space, and therefore it is natural to
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This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education, Science and Technology (NRF-2015R1D1A1A09057449).
Email address: dwlee@jbnu.ac.kr (Dae-Woong Lee)



D.-W. Lee / Filomat 30:13 (2016), 3525–3546 3526

ask about the comultiplications on a wedge of spheres. It turns out that this set of comultiplications is
complicated - there are usually many comultiplications (sometimes infinitely many) with many different
properties. For example, S2

∨S5 has infinitely many homotopy classes of comultiplications and commutative
comultiplications. However, it has only 2 homotopy associative comultiplications [5]. Some indication of
this complexity appeared in an early paper of Ganea [10, pp. 194-196] who gave an intricate argument
to show that S3

∨ S15 has at least 72 associative comultiplications and at most 56 homotopy classes of
suspension comultiplications.

The study of comultiplications of a co-H-space has been carried out by several authors (see [6], [7], [3],
[14], [4] and [15]). One can find interesting examples of a co-H-space which is not homotopically equivalent
to a suspension [9] and of a co-H-space X = S3

∪ f e2p+1 which does not admit an associative comultiplication
[8], where f ∈ π2p(S3) and p is an odd prime. In [11] the set of homotopy classes of comultiplications of
a wedge of two Moore spaces was investigated as a natural extension of the earlier work [2]. It is worth
while examining the comultiplication structures on the wedge of Moore spaces for further studies.

In this paper we study the set of comultiplications on a wedge of k-spheres for k ≥ 2. In particular, we
focus on the study of the properties and cardinalities of comultiplications, associative comultiplications,
commutative comultiplications, and comultiplications which are both associative and commutative of a
wedge of spheres which is much more complicate than a wedge of two spheres. More precisely, let |S| be
the number of elements in a set S, and let A(Y) and CO(Y) be the sets of homotopy classes of associative
comultiplications and commutative comultiplications, respectively, of a wedge of spheres Y = Sn

∨ Sm
∨ Sp

with m ≤ 2n − 2 and 2 ≤ n < m < p ≤ 4n − 4. Then we can show in Theorem 3.15 and Theorem 4.7 that if m
and n are even, then

|A(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × |πp(Sm+n−1)|2 × |πp(S2m+n−2)| × |πp(Sm+2n−2)|;

and
|CO(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × |πp(S3m−2)| × |πp(S3n−2)|

×|πp(Sm+n−1)| × |πp(S2m+n−2)|3 × |πp(Sm+2n−2)|2.

The main results of this paper also show that the cardinalities ofA(Y) and CO(Y) depend on the homotopy
structures of a wedge of spheres and the parity of m or n, or both. For examples, |A(S8

∨ S12
∨ S27)| = 32

and |CO(S8
∨ S12

∨ S27)| = 16.
The paper is organized as follows: In Section 2, we introduce the Hilton’s theorem and the Hopf-Hilton

invariants. We establish basic facts concerning the various types of comultiplications on a wedge of k-
spheres and give general conditions for comultiplications to be associative or commutative in the case of
a wedge of three spheres. In Section 3, we define certain general comultiplications on a wedge of three
spheres and determine when they are associative. In Section 4.7, we prove the fundamental properties of
the commutative comultiplications which are defined in Section 3. The examples will be listed at the end
of each section.

2. Comultiplication Structures

We first consider a wedge of spheres Y = Sn1 ∨ · · · ∨ Snk . Let ζ j : Sn j → Y be the inclusion for j = 1, . . . , k.
We define and order the basic Whitehead products as follows: Basic products of weight 1 are ζ1, . . . , ζk which
are ordered by ζ1 < · · · < ζk. Assume that the basic products of weight < n have been defined and ordered
so that if r < s < n, any basic product of weight r is less than all basic products of weight s. We define
inductively a basic product of weight n by a Whitehead product [a, b], where a is a basic product of weight
k and b is a basic product of weight l, k + l = n, a < b, and if b is a Whitehead product [c, d] of basic products
c and d, then c ≤ a. The basic products of weight n are then ordered arbitrarily among themselves and are
greater than any basic product of weight < n. Suppose ζ j occurs l j times, l j ≥ 1 in the basic product wv.
Then the height hv of the basic product wv is

∑
l j(n j − 1) + 1.

There is the Hilton’s theorem [12] concerning the basic Whitehead products as follows:
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Theorem 2.1. Let the basic products of Y = Sn1 ∨ · · · ∨ Snk be w1,w2, . . . ,wv, . . . (in order) with the height of wv
being hv. Then for every m,

πm(Y) �
∞⊕

v=1

πm(Shv ).

The isomorphism θ :
⊕
∞

v=1 πm(Shv )→ πm(Y) is defined by

θ|πm(Shv ) = wv∗ : πm(Shv )→ πm(Y).

Let ϕ : Sn
→ Sn

∨ Sn be the standard comultiplication. Then we have the induced homomorphism
ϕ∗ : πm(Sn)→ πm(Sn

∨ Sn) between homotopy groups and by the Hilton’s theorem

πm(Sn
∨ Sn) � πm(Sn) ⊕ πm(Sn) ⊕ πm(S2n−1) ⊕ πm(S3n−2) ⊕ · · · .

Let hv be the height of the vth basic product wv ∈ πhv (Sn
∨ Sn) and let prv : πm(Sn

∨ Sn) → πm(Shv ) be the
projection onto the vth summand for v = 1, 2, 3, . . ..

We define the Hopf-Hilton invariant Ht : πm(Sn)→ πm(Sht+3 ) by

Ht = prt+3 ◦ ϕ∗, t = 0, 1, 2, . . .

as in [12]. We rewrite these invariants as follows: Set

H1
1 = H0 : πm(Sn)→ πm(S2n−1)

H2
1 = H1,H2

2 = H2 : πm(Sn)→ πm(S3n−2)

and so on. Thus we have the Hopf-Hilton invariants

Hl
1,H

l
2, . . . ,H

l
tl

: πm(Sn)→ πm(S(l+1)n−l),

for l = 1, 2, 3, . . ., where tl is the number of basic products of length l.
We now describe the Hilton’s formulas [12, Theorems 6.7 and 6.9] as follows:
(1) If Z is any space and β, γ ∈ πr(Z) and α ∈ πm(Sr), then

(β + γ)α = βα + γα + [β, γ]H1
1(α)

+[β, [β, γ]]H2
1(α) + [γ, [β, γ]]H2

2(α) + . . . .

(2) Let a ∈ πn(Sr), b ∈ πr(Z), and let m be an integer. Then, if r is odd,

mb ◦ a =

{
m(b ◦ a) for m = 4s or 4s + 1,
m(b ◦ a) + [b, b] ◦H1

1(a) for m = 4s − 2 or 4s − 1.

If r is even,
mb ◦ a = m(b ◦ a) +

m(m−1)
2 [b, b] ◦H1

1(a)
+

(m+1)m(m−1)
3 [b, [b, b]] ◦H2

1(a).

From now on, we let X = Sn
∨ Sm and Y = Sn

∨ Sm
∨ Sp with 2 ≤ n < m < p unless otherwise stated, and

we fix the following notations:

• i1, i2 : Sn
→ Sn

∨ Sn are the first and the second inclusions, respectively.

• j1, j2 : Sm
→ Sm

∨ Sm are the first and the second inclusions, respectively.

• α1, α2 : Sn
→ Sn

∨ Sm
∨ Sn

∨ Sm(= X ∨ X) are the first and the third inclusions, respectively.

• β1, β2 : Sm
→ Sn

∨ Sm
∨ Sn

∨ Sm(= X ∨ X) are the second and the fourth inclusions, respectively.

• r : Sn
→ Y, s : Sm

→ Y, t : Sp
→ Y and A : Sn

∨ Sm
→ Y are the inclusions.
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• pr1, pr2 : (Sn
∨ Sm) ∨ (Sn

∨ Sm)→ Sn
∨ Sm are the first and the second projections, respectively.

• ι1, ι2 : Y→ Y ∨ Y are the first and the second inclusions, respectively.

• q1, q2 : Y ∨ Y→ Y are the first and the second projections, respectively.

• I1, I2, I3 : Y→ Y ∨ Y ∨ Y are the first, the second and the third inclusions, respectively.

• J12, J23 : Y ∨ Y→ Y ∨ Y ∨ Y are the maps defined by J12(z) = (z, ∗) and J23(z) = (∗, z), where z ∈ Y ∨ Y.

• T : Y ∨ Y→ Y ∨ Yis the switching map.

Then the following are straightforward:

• (r ∨ r)i1 = ι1r, (r ∨ r)i2 = ι2r, (s ∨ s) j1 = ι1s, (s ∨ s) j2 = ι2s.

• (A ∨ A)α j = ι jr, (A ∨ A)β j = ι js for j = 1, 2.

• J12ι j = I j for j = 1, 2.

• (ϕ ∨ 1)ι1 = J12ϕ and (ϕ ∨ 1)ι2 = I3.

• J23ι1 = I2 and J23ι2 = I3.

• (1 ∨ ϕ)ι1 = I1 and (1 ∨ ϕ)ι2 = J23ϕ.

We now order the basic products of weight 1 as follows:

• α1 < β1 < α2 < β2 in Sn
∨ Sm

∨ Sn
∨ Sm.

• ι1r < ι1s < ι2r < ι2s in Y ∨ Y.

• I1r < I1s < I2r < I2s < I3r < I3s in Y ∨ Y ∨ Y.

For the moment, more generally, let Y = Sn1∨Sn2∨· · ·∨Snk , X = Sn1∨Sn2∨· · ·∨Snk−1 , 2 ≤ n1 < n2 < · · · < nk
and let ζi : Sni → Y be the inclusion for each i = 1, 2, . . . , k and pr1, pr2 : X ∨ X → X the first and the second
projections, respectively. Then every comultiplication ϕ : Y→ Y ∨ Y has the following form

ϕ|Sn1 = ι1ζ1 + ι2ζ1,
ϕ|Sn2 = ι1ζ2 + ι2ζ2 + Pn2 ,
...

ϕ|Snk = ι1ζk + ι2ζk + Pnk

for some Pni ∈ πni (Y ∨ Y) such that q1Pni = q2Pni = 0 for each i = 2, 3, . . . , k. Conversely, if Pni : Sni → Y ∨ Y
is any map such that q1Pni = q2Pni = 0 for each i = 2, 3, . . . , k, then ϕ defined above is a comultiplication.

Therefore, we can define a comultiplication as follows:

Definition 2.2. Let Pni ∈ πni (Y∨Y) be any map such that q1Pni = 0 = q2Pni for each i = 2, 3, . . . , k. We define
a comultiplication ϕ : Y→ Y ∨ Y by 

ϕ|Sn1 = ι1ζ1 + ι2ζ1,
ϕ|Sn2 = ι1ζ2 + ι2ζ2 + Pn2 ,
...

ϕ|Snk = ι1ζk + ι2ζk + Pnk .

The element Pni ∈ πni (Y ∨ Y) is called the ith perturbation of ϕ for i = 2, 3, . . . , k. We call P = (Pn2 ,Pn3 , . . . ,Pnk )
the perturbation of ϕ.
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It can be seen that the comultiplication ϕ in Definition 2.2 is commutative if and only if TPni = Pni for
each i = 2, 3, . . . , k; and it is associative if and only if

J12Pni + (ϕ ∨ 1)Pni = J23Pni + (1 ∨ ϕ)Pni

for each i = 2, 3, . . . , k.
Let A : X→ Y be the inclusion. Then we have

Lemma 2.3. If Pnk ∈ πnk (Y ∨ Y) satisfies q1Pnk = 0 = q2Pnk , then there exists a unique W ∈ πnk (X ∨ X) such that
Pnk = (A ∨ A)W and pr1W = 0 = pr2W.

Proof. We consider the following cofibration sequence:

X ∨ X A∨A // Y ∨ Y
q∨q // Snk ∨ Snk ,

where q : Y→ Snk is the projection. Since X ∨ X is (n1 − 1)-connected and Snk ∨ Snk is (nk − 1)-connected, by
the Blakers-Massey Theorem (see [13] and [17]), the top line in the following commutative diagram is exact

πnk (X ∨ X)
(A∨A)∗ //

f∗
��

πnk (Y ∨ Y)
(q∨q)∗ //

1∗

��

πnk (S
nk ∨ Snk )

� e∗
��

πnk (X × X)
(A×A)∗ // πnk (Y × Y)

(q×q)∗ // πnk (S
nk × Snk ),

where f∗, 1∗ and e∗ are homomorphisms induced by inclusion maps. We can see that e∗ is an isomorphism.
If Pnk ∈ πnk (Y ∨ Y) is such that q1Pnk = 0 = q2Pnk , then 1∗(Pnk ) = 0 and so e∗(q ∨ q)∗Pnk = 0. Therefore
(q∨ q)∗Pnk = 0 and hence, by exactness, there exists a unique W ∈ πnk (X∨X) such that Pnk = (A∨A)∗W since
(A ∨ A)∗ is a monomorphism. Finally, since (A × A)∗ f∗W = 0 and (A × A)∗ is a monomorphism, it follows
that f∗W = 0. Thus we have pr1W = 0 = pr2W since πnk (X × X) � πnk (X) ⊕ πnk (X).

We note that there are various types of wedges of spheres and commutative diagrams satisfying the
statements in the proof of Lemma 2.3. Fortunately, all kinds of wedges of spheres and commutative
diagrams are condensed into the above case by using the fact that the inclusion map from a wedge of
spheres to another induces a monomorphism between homotopy groups.

The computation of comultiplications on a wedge of spheres is very complicated. So we restrict our
investigation to a wedge of three spheres which is much more complicate than the wedge of two spheres.
From now on, in the case of a wedge of three spheres, we use the notation Y = Sn

∨ Sm
∨ Sp instead of

Sn1 ∨ Sn2 ∨ Sn3 , i.e., n = n1,m = n2, p = n3. And we also use the inclusions r : Sn
→ Y, s : Sm

→ Y and
t : Sp

→ Y instead of ζ1, ζ2 and ζ3, respectively, as previously mentioned.
Let W be the set of all basic Whitehead products of Sn

∨ Sm
∨ Sn

∨ Sm generated by {α1, β1, α2, β2}. Let W1
denote the set of basic Whitehead products generated by {α1, β1} or by {α2, β2}, and let W2 = W −W1. That
is, W1 is the set of basic Whitehead products like

[α1, β1], [α2, β2], [α2, [α2, β2]], [[α1, β1], [α1, [α1, β1]]], · · ·

and W2 is the set of basic Whitehead products such as

[α1, α2], [α1, β2], [α2, [α1, β1]], [[α1, β1], [α2, [α2, β2]]], · · · .

Indeed, W2 is the set of basic Whitehead products containing at least a ‘1’ and at least a ‘2’ in the subscript
of the basic Whitehead products.

Lemma 2.4. Let pr1∗, pr2∗ : πp(Sn
∨ Sm

∨ Sn
∨ Sm) −→ πp(Sn

∨ Sm) be the homomorphisms induced by the first and
the second projections pr1 and pr2, respectively. Then

Ker(pr1∗) ∩ Ker(pr2∗) �
⊕
ω∈W2

πp(Shω ),

where hω is the height of the basic Whitehead products ω ∈W2.
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Proof. If x ∈
⊕

ω∈W2
πp(Shω ), then the Hilton’s theorem shows that x can be written as an element of

πp(Sn
∨ Sm

∨ Sn
∨ Sm) as follows:

x = [α2, [α1, β1]]ψ1
1 + [β2, [α1, β1]]ψ1

2 + [α2, [α2, [α1, β1]]]ψ1
3 + . . .

+[α1, α2]ψ2
1 + [α1, [α1, α2]]ψ2

2 + [β1, [α1, α2]]ψ2
3 + . . .

+[α1, β2]ψ3
1 + [α1, [α1, β2]]ψ3

2 + [β1, [α1, β2]]ψ3
3 + . . .

+[β1, α2]ψ4
1 + [β1, [β1, α2]]ψ4

2 + [β2, [β1, α2]]ψ4
3 + . . .

+[β1, β2]ψ5
1 + [β1, [β1, β2]]ψ5

2 + [β2, [β1, β2]]ψ5
3 + . . .

+ . . .

for ψ j
i ∈ πp(Shω ) and ω ∈ W2. Here, i and j are finite for each p since hω → ∞, and the summand πp(Shω ) is

embedded into the sum via composition with ω : Shω → Sn
∨ Sm

∨ Sn
∨ Sm. By applying pr1∗ and pr2∗ on

both sides, we have
pr1∗(x) = 0 = pr2∗(x)

because all the basic Whitehead products describe above are the elements of W2. Indeed, all the basic
Whitehead products in W2 are killed off by pr1∗ and pr2∗. For example,

pr1∗([α1, [α1, β2]]) = [pr1α1, [pr1α1, pr1β2]]
= [pr1α1, [pr1α1, 0]]
= 0,

and similarly for pr2∗. We can also check the reverse inclusion.

Theorem 2.5. Every comultiplication ϕ : Y→ Y∨Y on Y = Sn
∨ Sm

∨ Sp can be uniquely written in the following
form 

ϕ|Sn = ι1r + ι2r,
ϕ|Sm = ι1s + ι2s + (r ∨ r)∗WP,
ϕ|Sp = ι1t + ι2t + (A ∨ A)∗WQ.

Here, (1) WP =

∞∑
u=3

wuγu ∈ πm(Sn
∨ Sn), wu is the uth basic product in Sn

∨ Sn and γu ∈ πm(Shu ) for u = 3, 4, . . .,

and (2) WQ ∈ πp(Sn
∨ Sm

∨ Sn
∨ Sm) is

WQ =
∑
ω∈W2

ωψω,

where ω runs over all the basic Whitehead products in W2, ψω ∈ πp(Shω ), and hω is the height of the basic Whitehead
products ω ∈W2.

Proof. We prove the result for WQ. By Lemma 2.3, ϕ has the form stated in this theorem for some WQ ∈

πp(Sn
∨ Sm

∨ Sn
∨ Sm) with pr1WQ = 0 = pr2WQ. Let x ∈

⊕
ω∈W2

πp(Shω ) as in the proof of Lemma 2.4 and
y ∈

⊕
ω∈W1

πp(Shω ). Then, by using the Hilton’s theorem, we have

WQ = α1ρ1 + β1ρ2 + α2ρ3 + β2ρ4 + x + y

for ρ1, ρ3 ∈ πp(Sn) and ρ2, ρ4 ∈ πp(Sm). By Lemmas 2.3 and 2.4, and by applying pr1∗ (and then pr2∗ ) on the
above equation, we get

0 = pr1∗WQ
= pr1(α1ρ1) + pr1(β1ρ2) + pr1(α2ρ3) + pr1(β2ρ4) + pr1∗ (x) + pr1∗ (y)
= ξ(n)ρ1 + ξ(m)ρ2 + 0 + 0 + 0 + pr1∗ (y),

where ξ(n) : Sn
→ Sn

∨ Sm and ξ(m) : Sm
→ Sn

∨ Sm are the inclusion maps. By the Hilton’s theorem,
ξ(n)ρ1 = 0 = ξ(m)ρ2 and pr1∗ (y) = 0. Since the inclusions ξ(n) and ξ(m) induce monomorphisms between
homotopy groups, we have ρ1 = 0 = ρ2. Similarly, by applying pr2∗ on WQ, we have ρ3 = 0 = ρ4.
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We now consider the case of basic Whitehead products in W1, namely,

[α1, β1], [α1, [α1, β1]], [α2, β2], [α2, [α2, β2]]

and so on. By the Hilton’s theorem, and Lemmas 2.3 and 2.4, y ∈
⊕

ω∈W1
πp(Shω ) must satisfy pr1∗ (y) = 0 =

pr2∗ (y), and thus it has to be the following type

[α1, β1]0 + [α1, [α1, β1]]0 + . . . + [α2, β2]0 + [α2, [α2, β2]]0 + . . . .

Therefore
WQ =

∑
ω∈W2

ωψω,

where ψω ∈ πp(Shω ), as required. The proof in the case of WP goes to the same way.

By [1, p. 1167] we can determine the number of comultiplications of a co-H-space. By using Theorem
2.5, we now get a concrete clue how to calculate the number of comultiplications as follows:

Corollary 2.6. The number of comultiplications of Y = Sn
∨ Sm

∨ Sp is
∞∏

u=3

|πm(Shu )| ×
∏
ω∈W2

|πp(Shω )|.

By using the above results and the homotpy groups of spheres [16], we now provide an example.

Example 2.7. The cardinality of the set of comultiplications of S8
∨ S12

∨ S27 is 512. Indeed, we let |C(Y)| be
the number of comultiplications of Y. Then |C(S8

∨S12
∨S27)| = |π27(S26)| × |π27(S15)| × |π27(S19)|2× |π27(S23)| ×

|π27(S22)|2 × |π27(S26)|2 × |π27(S26)|2 × 1 × 1 × . . . = 2 × 1 × 16 × 1 × 1 × 4 × 4 × 1 × 1 × 1 × . . . = 512.

3. Associativity on a wedge of three spheres

In this section, we concentrate our attention on the associative comultiplications on a wedge of three
spheres.

Definition 3.1. Let Y = Sn
∨ Sm

∨ Sp. We then define a comultiplication ϕ = ϕP,Q : Y→ Y ∨ Y by
ϕP,Q|Sn = ι1r + ι2r,
ϕP,Q|Sm = ι1s + ι2s + P,
ϕP,Q|Sp = ι1t + ι2t + Q,

where P = (r ∨ r)[i1, i2]γ, γ ∈ πm(S2n−1), and Q : Sp
→ Y ∨ Y is a map such that q1Q = 0 = q2Q.

We are especially interested in studying the homotopy classes Q ∈ πp(Y ∨ Y) in order to get some
information for the given comultiplication ϕ : Y → Y ∨ Y. We first consider the perturbations Q j, j =
1, 2, . . . , 5 of comultiplications ϕ = ϕP,Q j , j = 1, 2, . . . , 5 constructed below, and then define a perturbation
Q ∈ πp(Y ∨ Y) of a comultiplication ϕ : Y→ Y ∨ Y by

Q =

5∑
j=1

Q j

in order to get some information about comultiplications, associative comultiplications, commutative co-
multiplications, and comultiplications which are both associative and commutative.

Notation In Sections 3 and 4, we will make use of the symbols ᾱ1, ᾱ2 : Sn
→ Y∨Y, α̂1, α̂2, α̂3 : Sn

→ Y∨Y∨Y,
β̄1, β̄2 : Sm

→ Y ∨ Y, and β̂1, β̂2, β̂3 : Sm
→ Y ∨ Y ∨ Y to denote ι1r, ι2r, I1r, I2r, I3r, ι1s, ι2s, and I1s, I2s, I3s,

respectively.
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Definition 3.2. For any homotopy classes a1 ∈ πp(S2m−1), a2, a3 ∈ πp(S3m−2), b1 ∈ πp(S2n−1), b2, b3 ∈ πp(S3n−2), c1 ∈

πp(Sn+m−1), c2, c3 ∈ πp(Sm+2n−2) and c4, c5 ∈ πp(S2m+n−2), we define Q1 ∈ πp(Y ∨ Y) by

Q1 = [β̄1, β̄2]a1 + [β̄1, [β̄1, β̄2]]a2 + [β̄2, [β̄1, β̄2]]a3
+[ᾱ1, ᾱ2]b1 + [ᾱ1, [ᾱ1, ᾱ2]]b2 + [ᾱ2, [ᾱ1, ᾱ2]]b3
+[ᾱ1, β̄2]c1 + [ᾱ1, [ᾱ1, β̄2]]c2 + [ᾱ2, [ᾱ1, β̄2]]c3
+[β̄1, [ᾱ1, β̄2]]c4 + [β̄2, [ᾱ1, β̄2]]c5.

We then define a comultiplication ϕ = ϕP,Q1 : Y→ Y ∨ Y by substituting Q1 for Q in Definition 3.1.

Proposition 3.3. Let m ≤ 2n− 2 and n < m < p ≤ 8n− 8. If the Hopf-Hilton invariants H1
1(x) = 0 = H2

1(y), where
x = ai, bi, c j for i = 1, 2, 3, j = 1, 2, . . . , 5 and y = a1, b1, c1, then ϕ = ϕP,Q1 is associative if and only if (1) m and n are
even, and a2 = a3 = b2 = b3 = c2 = c3 = c4 = c5 = 0, or (2) m is even and n is odd, a2 = a3 = c2 = c3 = c4 = c5 = 0,
b2 = −b3 and 3b2 = 0, or (3) m is odd and n is even, b2 = b3 = c2 = c3 = c4 = c5 = 0, a2 = −a3 and 3a2 = 0, or (4) m
and n are odd, c2 = c3 = c4 = c5 = 0, a2 = −a3, b2 = −b3 and 3a2 = 0 = 3b2.

Proof. We recall that a necessary and sufficient condition for the comultiplication ϕ = ϕP,Q1 to be associative
is that

J12P + (ϕ ∨ 1)P = J23P + (1 ∨ ϕ)P

and
J12Q1 + (ϕ ∨ 1)Q1 = J23Q1 + (1 ∨ ϕ)Q1.

It suffices to prove the second equation because P = [ι1r, ι2r]γ = 0. We compute J12Q1:

J12Q1 = J12

(
[β̄1, β̄2]a1 + [β̄1, [β̄1, β̄2]]a2 + [β̄2, [β̄1, β̄2]]a3

+[ᾱ1, ᾱ2]b1 + [ᾱ1, [ᾱ1, ᾱ2]]b2 + [ᾱ2, [ᾱ1, ᾱ2]]b3
+[ᾱ1, β̄2]c1 + [ᾱ1, [ᾱ1, β̄2]]c2 + [ᾱ2, [ᾱ1, β̄2]]c3

+[β̄1, [ᾱ1, β̄2]]c4 + [β̄2, [ᾱ1, β̄2]]c5

)
= [β̂1, β̂2]a1 + [β̂1, [β̂1, β̂2]]a2 + [β̂2, [β̂1, β̂2]]a3

+[α̂1, α̂2]b1 + [α̂1, [α̂1, α̂2]]b2 + [α̂2, [α̂1, α̂2]]b3

+[α̂1, β̂2]c1 + [α̂1, [α̂1, β̂2]]c2 + [α̂2, [α̂1, β̂2]]c3

+[β̂1, [α̂1, β̂2]]c4 + [β̂2, [α̂1, β̂2]]c5.

We now compute (ϕ ∨ 1)Q1:

(ϕ ∨ 1)Q1

= [J12ϕs, β̂3]a1 + [J12ϕs, [J12ϕs, β̂3]]a2 + [β̂3, [J12ϕs, β̂3]]a3
+[J12ϕr, α̂3]b1 + [J12ϕr, [J12ϕr, α̂3]]b2 + [α̂3, [J12ϕr, α̂3]]b3

+[J12ϕr, β̂3]c1 + [J12ϕr, [J12ϕr, β̂3]]c2 + [α̂3, [J12ϕr, β̂3]]c3

+[J12ϕs, [J12ϕr, β̂3]]c4 + [β̂3, [J12ϕr, β̂3]]c5

= [β̂1 + β̂2, β̂3]a1 + [β̂1 + β̂2, [β̂1 + β̂2, β̂3]]a2

+[β̂3, [β̂1 + β̂2, β̂3]]a3 + [α̂1 + α̂2, α̂3]b1
+[α̂1 + α̂2, [α̂1 + α̂2, α̂3]]b2 + [α̂3, [α̂1 + α̂2, α̂3]]b3

+[α̂1 + α̂2, β̂3]c1 + [α̂1 + α̂2, [α̂1 + α̂2, β̂3]]c2

+[α̂3, [α̂1 + α̂2, β̂3]]c3 + [β̂1 + β̂2, [α̂1 + α̂2, β̂3]]c4

+[β̂3, [α̂1 + α̂2, β̂3]]c5

=
(
[β̂1, β̂3] + [β̂2, β̂3]

)
a1 +

(
[β̂1, [β̂1, β̂3]] + [β̂1, [β̂2, β̂3]]

+[β̂2, [β̂1, β̂3]] + [β̂2, [β̂2, β̂3]]
)
a2 +

(
[β̂3, [β̂1, β̂3]]

+[β̂3, [β̂2, β̂3]]
)
a3 +

(
[α̂1, α̂3] + [α̂2, α̂3]

)
b1(

[α̂1, [α̂1, α̂3]] + [α̂1, [α̂2, α̂3]] + [α̂2, [α̂1, α̂3]]
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+[α̂2, [α̂2, α̂3]]
)
b2 +

(
[α̂3, [α̂1, α̂3]] + [α̂3, [α̂2, α̂3]]

)
b3(

[α̂1, β̂3] + [α̂2, β̂3]
)
c1 +

(
[α̂1, [α̂1, β̂3]] + [α̂1, [α̂2, β̂3]]

+[α̂2, [α̂1, β̂3]] + [α̂2, [α̂2, β̂3]]
)
c2 +

(
[α̂3, [α̂1, β̂3]]

+[α̂3, [α̂2, β̂3]]
)
c3 +

(
[β̂1, [α̂1, β̂3]] + [β̂1, [α̂2, β̂3]]

+[β̂2, [α̂1, β̂3]] + [β̂2, [α̂2, β̂3]]
)
c4 +

(
[β̂3, [α̂1, β̂3]]

+[β̂3, [α̂2, β̂3]]
)
c5.

Since the Whitehead products such as [β̂1, [β̂2, β̂3]], [α̂1, [α̂2, α̂3]], [α̂1, [α̂2, β̂3]] and [β̂1, [α̂2, β̂3]] in the above
equations are not basic products, we need to change them into the basic products by using the Jacobi
identity [17, p. 478] as follows:

0 = (−1)m(m−1)[β̂1, [β̂2, β̂3]] + (−1)m(m−1)+m2
[β̂2, [β̂1, β̂3]]

+(−1)m(m−1)[β̂3, [β̂1, β̂2]],

and
0 = (−1)n(m−1)[α̂1, [α̂2, β̂3]] + (−1)n(n−1)+mn[α̂2, [α̂1, β̂3]]

+(−1)m(n−1)[β̂3, [α̂1, α̂2]].

Similarly, for [α̂1, [α̂2, α̂3]] and [β̂1, [α̂2, β̂3]]. More precisely,

[β̂1, [β̂2, β̂3]] =

{
+[β̂2, [β̂1, β̂3]] − [β̂3, [β̂1, β̂2]] for m odd,
−[β̂2, [β̂1, β̂3]] − [β̂3, [β̂1, β̂2]] for m even,

[α̂1, [α̂2, α̂3]] =

{
+[α̂2, [α̂1, α̂3]] − [α̂3, [α̂1, α̂2]] for n odd,
−[α̂2, [α̂1, α̂3]] − [α̂3, [α̂1, α̂2]] for n even,

[α̂1, [α̂2, β̂3]] =


−[α̂2, [α̂1, β̂3]] − [β̂3, [α̂1, α̂2]] for m,n even,
+[α̂2, [α̂1, β̂3]] + [β̂3, [α̂1, α̂2]] for m even, n odd,
−[α̂2, [α̂1, β̂3]] + [β̂3, [α̂1, α̂2]] for m odd, n even,
+[α̂2, [α̂1, β̂3]] − [β̂3, [α̂1, α̂2]] for m,n odd,

and

[β̂1, [α̂2, β̂3]] =


−[α̂2, [β̂1, β̂3]] − [β̂3, [β̂1, α̂2]] for m,n even,
+[α̂2, [β̂1, β̂3]] − [β̂3, [β̂1, α̂2]] for m even, n odd,
+[α̂2, [β̂1, β̂3]] + [β̂3, [β̂1, α̂2]] for m odd, n even,
+[α̂2, [β̂1, β̂3]] − [β̂3, [β̂1, α̂2]] for m,n odd.

We now compute J23Q1 and (1 ∨ ϕ)Q1:

J23Q1 = [β̂2, β̂3]a1 + [β̂2, [β̂2, β̂3]]a2 + [β̂3, [β̂2, β̂3]]a3
+[α̂2, α̂3]b1 + [α̂2, [α̂2, α̂3]]b2 + [α̂3, [α̂2, α̂3]]b3

+[α̂2, β̂3]c1 + [α̂2, [α̂2, β̂3]]c2 + [α̂3, [α̂2, β̂3]]c3

+[β̂2, [α̂2, β̂3]]c4 + [β̂3, [α̂2, β̂3]]c5

and
(1 ∨ ϕ)Q1

= [β̂1, J23ϕs]a1 + [β̂1, [β̂1, J23ϕs]]a2 + [J23ϕs, [β̂1, J23ϕs]]a3
+[α̂1, J23ϕr]b1 + [α̂1, [α̂1, J23ϕr]]b2 + [J23ϕr, [α̂1, J23ϕr]]b3
+[α̂1, J23ϕs]c1 + [α̂1, [α̂1, J23ϕs]]c2 + [J23ϕr, [α̂1, J23ϕs]]c3

+[β̂1, [α̂1, J23ϕs]]c4 + [J23ϕs, [α̂1, J23ϕs]]c5
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= [β̂1, β̂2 + β̂3]a1 + [β̂1, [β̂1, [β̂2 + β̂3]]a2

+[β̂2 + β̂3, [β̂1, β̂2 + β̂3]]a3 + [α̂1, α̂2 + α̂3]b1
+[α̂1, [α̂1, α̂2 + α̂3]]b2 + [α̂2 + α̂3, [α̂1, α̂2 + α̂3]]b3

+[α̂1, β̂2 + β̂3]c1 + [α̂1, [α̂1, β̂2 + β̂3]]c2

+[α̂2 + α̂3, [α̂1, β̂2 + β̂3]]c3 + [β̂1, [α̂1, β̂2 + β̂3]]c4

+[β̂2 + β̂3, [α̂1, β̂2 + β̂3]]c5

=
(
[β̂1, β̂2] + [β̂1, β̂3]

)
a1 +

(
[β̂1, [β̂1, β̂2]] + [β̂1, [β̂1, β̂3]]

)
a2

+
(
[β̂2, [β̂1, β̂2]] + [β̂2, [β̂1, β̂3]] + [β̂3, [β̂1, β̂2]] + [β̂3, [β̂1, β̂3]]

)
a3

+
(
[α̂1, α̂2] + [α̂1, α̂3]

)
b1 +

(
[α̂1, [α̂1, α̂2]] + [α̂1, [α̂1, α̂3]]

)
b2

+
(
[α̂2, [α̂1, α̂2]] + [α̂2, [α̂1, α̂3]] + [α̂3, [α̂1, α̂2]] + [α̂3, [α̂1, α̂3]]

)
b3

+
(
[α̂1, β̂2] + [α̂1, β̂3]

)
c1 +

(
[α̂1, [α̂1, β̂2]] + [α̂1, [α̂1, β̂3]]

)
c2

+
(
[α̂2, [α̂1, β̂2]] + [α̂2, [α̂1, β̂3]] + [α̂3, [α̂1, β̂2]] + [α̂3, [α̂1, β̂3]]

)
c3

+
(
[β̂1, [α̂1, β̂2]] + [β̂1, [α̂1, β̂3]]

)
c4

+
(
[β̂2, [α̂1, β̂2]] + [β̂2, [α̂1, β̂3]] + [β̂3, [α̂1, β̂2]] + [β̂3, [α̂1, β̂3]]

)
c5.

We now prove the following two cases since the other two cases are similar to the first two cases. We note
that (−1)x = −x + [1, 1]H1

1(x) = −x by the Hilton’s formula, where 1 is the identity map of a sphere. We also
observe that the following Whitehead products in (1) and (2) are all the basic products.

(1) If m and n are even, then the equality J12Q1 + (ϕ ∨ 1)Q1 = J23Q1 + (1 ∨ ϕ)Q1 holds if and only if

0 = (−[β̂3, [β̂1, β̂2]])a2 + (−[α̂3, [α̂1, α̂2]])b2 + (−[β̂3, [α̂1, α̂2]])c2

+(−[α̂2, [β̂1, β̂3]])c4 + [β̂2, [α̂1, β̂3]]c4 + (−[β̂3, [β̂1, α̂2]])c4

−([β̂2, [β̂1, β̂3]] + [β̂3, [β̂1, β̂2]])a3
−([α̂2, [α̂1, α̂3]] + [α̂3, [α̂1, α̂2]])b3

−([α̂2, [α̂1, β̂3]] + [α̂3, [α̂1, β̂2]])c3

−([β̂2, [α̂1, β̂3]] + [β̂3, [α̂1, β̂2]])c5

= [β̂3, [β̂1, β̂2]](−a2 − a3) + [β̂2, [β̂1, β̂3]](−a3)
+[α̂3, [α̂1, α̂2]](−b2 − b3) + [α̂2, [α̂1, α̂3]](−b3)
+[β̂3, [α̂1, α̂2](−c2) + [α̂2, [α̂1, β̂3]](−c3) + [α̂3, [α̂1, β̂2]](−c3)
+[α̂2, [β̂1, β̂3]](−c4) + [β̂3, [β̂1, α̂2]](−c4)
+[β̂2, [α̂1, β̂3]](c4 − c5) + [β̂3, [α̂1, β̂2](−c5).

Thus ϕ is associative if and only if a2 = a3 = b2 = b3 = c2 = c3 = c4 = c5 = 0.
(2) If m is even and n is odd, then the associativity of ϕ = ϕP,Q1 holds if and only if

0 = (−[β̂3, [β̂1, β̂2]])a2 + 2[α̂2, [α̂1, α̂3]]b2 + (−[α̂3, [α̂1, α̂2]])b2

+2[α̂2, [α̂1, β̂3]]c2 + [β̂3, [α̂1, α̂2]]c2 + [α̂2, [β̂1, β̂3]]c4

+(−[β̂3, [β̂1, α̂2]])c4 + [β̂2, [α̂1, β̂3]]c4

−([β̂2, [β̂1, β̂3]] + [β̂3, [β̂1, β̂2]])a3
−([α̂2, [α̂1, α̂3]] + [α̂3, [α̂1, α̂2]])b3

−([α̂2, [α̂1, β̂3]] + [α̂3, [α̂1, β̂2]])c3

−([β̂2, [α̂1, β̂3]] + [β̂3, [α̂1, β̂2]])c5

= [β̂3, [β̂1, β̂2]](−a2 − a3) + [β̂2, [β̂1, β̂3]](−a3)
+[α̂3, [α̂1, α̂2]](−b2 − b3) + [α̂2, [α̂1, α̂3]](2b2 − b3)
+[α̂2, [α̂1, β̂3]](2c2 − c3) + [β̂3, [α̂1, α̂2]c2

+[α̂3, [α̂1, β̂2]](−c3) + [α̂2, [β̂1, β̂3]]c4

+[β̂3, [β̂1, α̂2]](−c4) + [β̂2, [α̂1, β̂3]](c4 − c5)
+[β̂3, [α̂1, β̂2](−c5).

Thus ϕ is associative if and only if a2 = a3 = c2 = c3 = c4 = c5 = 0, b2 = −b3 and 3b2 = 0.
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Remark 3.4. We note that if p ≤ 4n − 4, then the conclusion of Proposition 3.3 holds because x and y are
suspensions by the Freudenthal suspension theorem [17] and thus the Hopf-Hilton invariants are trivial.

Definition 3.5. Let Q2 be the sum of the maps

Sp c6 // Sm+2n−2 [α2,[α1,β1]] // X ∨ X A∨A // Y ∨ Y

and

Sp c7 // S2m+n−2 [β2,[α1,β1]] // X ∨ X A∨A // Y ∨ Y

for some c6 and c7; that is,
Q2 = [ᾱ2, [ᾱ1, β̄1]]c6 + [β̄2, [ᾱ1, β̄1]]c7,

and define ϕ = ϕP,Q2 : Y→ Y ∨ Y by Definition 3.1.

Proposition 3.6. Let m ≤ 2n − 2 and n < m < p ≤ 8n − 8. If the Hopf-Hilton invariants H1
1(c6) and H1

1(c7) are
trivial, then the comultiplication ϕ = ϕP,Q2 is associative if and only if c6 = c7 = 0.

Proof. We compute J12Q2 and J23Q2:

J12Q2 = J12([ᾱ2, [ᾱ1, β̄1]]c6 + [β̄2, [ᾱ1, β̄1]]c7)
= [α̂2, [α̂1, β̂1]]c6 + [β̂2, [α̂1, β̂1]]c7

and
J23Q2 = [α̂3, [α̂2, β̂2]]c6 + [β̂3, [α̂2, β̂2]]c7.

We now compute (ϕ ∨ 1)Q2:

(ϕ ∨ 1)Q2 = [α̂3, [J12ϕr, J12ϕs]]c6 + [β̂3, [J12ϕr, J12ϕs]]c7
= [α̂3, [J12(ᾱ1 + ᾱ2), J12(β̄1 + β̄2)]]c6

+[β̂3, [J12(ᾱ1 + ᾱ2), J12(β̄1 + β̄2)]]c7

= [α̂3, [α̂1 + α̂2, β̂1 + β̂2]]c6 + [β̂3, [α̂1 + α̂2, β̂1 + β̂2]]c7

=
(
[α̂3, [α̂1, β̂1]] + [α̂3, [α̂1, β̂2]] + (−1)mn[α̂3, [β̂1, α̂2]]

+[α̂3, [α̂2, β̂2]]
)
c6 +

(
[β̂3, [α̂1, β̂1]] + [β̂3, [α̂1, β̂2]]

+(−1)mn[β̂3, [β̂1, α̂2]] + [β̂3, [α̂2, β̂2]]
)
c7.

Similarly,
(1 ∨ ϕ)Q2 = [α̂2 + α̂3, [α̂1, β̂1]]c6 + [β̂2 + β̂3, [α̂1, β̂1]]c7

=
(
[α̂2, [α̂1, β̂1]] + [α̂3, [α̂1, β̂1]]

)
c6(

[β̂2, [α̂1, β̂1]] + [β̂3, [α̂1, β̂1]]
)
c7.

Thus ϕ is associative if and only if

0 = [α̂3, [α̂1, β̂2]]c6 + (−1)mn[α̂3, [β̂1, α̂2]]c6

+[β̂3, [α̂1, β̂2]]c7 + (−1)mn[β̂3, [β̂1, α̂2]]c7.

We note that the above Whitehead products are all basic products. From the Hilton’s theorem, we conclude
that the associativity of ϕP,Q2 holds if and only if c6 = c7 = 0.

Definition 3.7. Let Q3 be the sum of the maps

Sp c8 // Sm+2n−2 [β1,[α1,α2]] // X ∨ X A∨A // Y ∨ Y
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and

Sp c9 // Sm+2n−2 [β2,[α1,α2]] // X ∨ X A∨A // Y ∨ Y

for some c8 and c9; that is,
Q3 = [β̄1, [ᾱ1, ᾱ2]]c8 + [β̄2, [ᾱ1, ᾱ2]]c9,

and define ϕ = ϕP,Q3 : Y→ Y ∨ Y by Definition 3.1.

Proposition 3.8. Let m ≤ 2n − 2 and n < m < p ≤ 8n − 8. If the Hopf-Hilton invariants H1
1(c8) and H1

1(c9) are
trivial, then the comultiplication ϕ = ϕP,Q3 is associative if and only if c8 = c9 = 0.

Proof. We compute J12Q3:
J12Q3 = J12([β̄1, [ᾱ1, ᾱ2]]c8 + [β̄2, [ᾱ1, ᾱ2]]c9)

= [β̂1, [α̂1, α̂2]]c8 + [β̂2, [α̂1, α̂2]]c9.

Similarly,
J23Q3 = [β̂2, [α̂2, α̂3]]c8 + [β̂3, [α̂2, α̂3]]c9.

We now compute (ϕ ∨ 1)Q3:

(ϕ ∨ 1)Q3 = [J12ϕs, [J12ϕr, α̂3]]c8 + [β̂3, [J12ϕr, α̂3]]c9
= [J12(β̄1 + β̄2), [J12(ᾱ1 + ᾱ2), α̂3]]c8

+[β̂3, [J12(ᾱ1 + ᾱ2), α̂3]]c9

= [β̂1 + β̂2, [α̂1 + α̂2, α̂3]]c8 + [β̂3, [α̂1 + α̂2, α̂3]]c9

=
(
[β̂1, [α̂1, α̂3]] + [β̂1, [α̂2, α̂3]] + [β̂2, [α̂1, α̂3]]

+[β̂2, [α̂2, α̂3]]
)
c8 +

(
[β̂3, [α̂1, α̂3]] + [β̂3, [α̂2, α̂3]]

)
c9.

Similarly,
(1 ∨ ϕ)Q3 = [β̂1, [α̂1, α̂2 + α̂3]]c8 + [β̂2 + β̂3, [α̂1, α̂2 + α̂3]]c9

=
(
[β̂1, [α̂1, α̂2]] + [β̂1, [α̂1, α̂3]]

)
c8 +

(
[β̂2, [α̂1, α̂2]]

+[β̂2, [α̂1, α̂3]] + [β̂3, [α̂1, α̂2]] + [β̂3, [α̂1, α̂3]]
)
c9.

Since [β̂1, [α̂2, α̂3]] is not a basic product, by using the Jacobi identity, we write it as a sum of basic products
as follows:

[β̂1, [α̂2, α̂3]] =


−[α̂2, [β̂1, α̂3]] − [α̂3, [β̂1, α̂2]] for m,n even,
+[α̂2, [β̂1, α̂3]] − [α̂3, [β̂1, α̂2]] for m even, n odd,
+[α̂2, [β̂1, α̂3]] + [α̂3, [β̂1, α̂2]] for m odd, n even,
+[α̂2, [β̂1, α̂3]] − [α̂3, [β̂1, α̂2]] for m,n odd.

(1) If m and n are even, then ϕP,Q3 is associative if and only if

0 =
(
−[α̂2, [β̂1, α̂3]] − [α̂3, [β̂1, α̂2]] + [β̂2, [α̂1, α̂3]]

)
c8

−

(
[β̂2, [α̂1, α̂3]] + [β̂3, [α̂1, α̂2]]

)
c9

= [α̂2, [β̂1, α̂3]](−c8) + [α̂3, [β̂1, α̂2]](−c8) + [β̂2, [α̂1, α̂3]](c8 − c9)
+[β̂3[α̂1, α̂2]](−c9).

(2) If m is even and n is odd, then the associativity holds if and only if

0 =
(
[α̂2, [β̂1, α̂3]] − [α̂3, [β̂1, α̂2]] + [β̂2, [α̂1, α̂3]]

)
c8

−

(
[β̂2, [α̂1, α̂3]] + [β̂3, [α̂1, α̂2]]

)
c9

= [α̂2, [β̂1, α̂3]](c8) + [α̂3, [β̂1, α̂2]](−c8) + [β̂2, [α̂1, α̂3]](c8 − c9)
+[β̂3[α̂1, α̂2]](−c9).

Since the above Whitehead products in (1) and (2) are all basic products, ϕ is associative if and only if
c8 = c9 = 0. Similarly, the other cases could be treated by using the same method.
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Definition 3.9. Let Q4 be the map of compositions

Sp c10 // S2m+n−2 [α2,[β1,β2]] // X ∨ X A∨A // Y ∨ Y

for some c10; that is,
Q4 = [ᾱ2, [β̄1, β̄2]]c10,

and define ϕ = ϕP,Q4 : Y→ Y ∨ Y by Definition 3.1.

Proposition 3.10. Let m ≤ 2n− 2 and n < m < p ≤ 8n− 8. If the Hopf-Hilton invariant H1
1(c10) is trivial, then the

comultiplication ϕ = ϕP,Q4 is associative if and only if c10 = 0.

Proof. We compute J12Q4 and (ϕ ∨ 1)Q4:

J12Q4 = J12[ᾱ2, [β̄1, β̄2]]c10 = [α̂2, [β̂1, β̂2]]c10

and
(ϕ ∨ 1)Q4 = (ϕ ∨ 1)[ᾱ2, [β̄1, β̄2]]c10 = [α̂3, [J12ϕs, β̂3]]c10

= [α̂3, [J12(β̄1 + β̄2), β̂3]]c10 = [α̂3, [β̂1 + β̂2, β̂3]]c10

= [α̂3, [β̂1, β̂3]]c10 + [α̂3, [β̂2, β̂3]]c10.

Similarly, we have
J23Q4 = J23[ᾱ2, [β̄1, β̄2]]c10 = [α̂3, [β̂2, β̂3]]c10

and
(1 ∨ ϕ)Q4 = (1 ∨ ϕ)[ᾱ2, [β̄1, β̄2]]c10 = [J23ϕr, [β̂1, J23ϕs]]c10

= [J23(ᾱ1 + ᾱ2), [β̂1, J23(β̄1 + β̄2)]]c10

= [α̂2 + α̂3, [β̂1, β̂2 + β̂3]]c10

= [α̂2, [β̂1, β̂2]]c10 + [α̂2, [β̂1, β̂3]]c10

+[α̂3, [β̂1, β̂2]]c10 + [α̂3, [β̂1, β̂3]]c10.

Thus the associativity holds if and only if

0 = [α̂2, [β̂1, β̂3]](−c10) + [α̂3, [β̂1, β̂2]](−c10).

We note that the above Whitehead products are basic products. Therefore, ϕ is associative if and only if
c10 = 0.

Definition 3.11. Let Q5 be the sum of the maps

Sp d1 // Sm+n−1 [β1,α2] // X ∨ X A∨A // Y ∨ Y ,

Sp d2 // S2m+n−2 [β1,[β1,α2]] // X ∨ X A∨A // Y ∨ Y ,

Sp d3 // Sm+2n−2 [α2,[β1,α2]] // X ∨ X A∨A // Y ∨ Y

and

Sp d4 // S2m+n−2 [β2,[β1,α2]] // X ∨ X A∨A // Y ∨ Y

for some d1, d2, d3 and d4; that is,

Q5 = [β̄1, ᾱ2]d1 + [β̄1, [β̄1, ᾱ2]]d2
+[ᾱ2, [β̄1, ᾱ2]]d3 + [β̄2, [β̄1, ᾱ2]]d4,

and define ϕ = ϕP,Q5 : Y→ Y ∨ Y by Definition 3.1.
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Proposition 3.12. Let m ≤ 2n−2 and n < m < p ≤ 8n−8. If the Hopf-Hilton invariants H1
1(d1),H2

1(d1),H1
1(d2),H1

1(d3)
and H1

1(d4) are trivial, then the comultiplication ϕ = ϕP,Q5 is associative if and only if d2 = d3 = d4 = 0.

Proof. We compute J12Q5:

J12Q5 = J12

(
[β̄1, ᾱ2]d1 + [β̄1, [β̄1, ᾱ2]]d2

+[ᾱ2, [β̄1, ᾱ2]]d3 + [β̄2, [β̄1, ᾱ2]]d4

)
= [β̂1, α̂2]d1 + [β̂1, [β̂1, α̂2]]d2 + [α̂2, [β̂1, α̂2]]d3

+[β̂2, [β̂1, α̂2]]d4.

Similarly,
J23Q5 = [β̂2, α̂3]d1 + [β̂2, [β̂2, α̂3]]d2 + [α̂3, [β̂2, α̂3]]d3

+[β̂3, [β̂2, α̂3]]d4.

We now compute (ϕ ∨ 1)Q5:

(ϕ ∨ 1)Q5 = [J12ϕs, α̂3]d1 + [J12ϕs, [J12ϕs, α̂3]]d2

+[α̂3, [J12ϕs, α̂3]]d3 + [β̂3, [J12ϕs, α̂3]]d4
= [J12(β̄1 + β̄2), α̂3]d1

+[J12(β̄1 + β̄2), [J12(β̄1 + β̄2), α̂3]]d2

+[α̂3, [J12(β̄1 + β̄2), α̂3]]d3 + [β̂3, [J12(β̄1 + β̄2), α̂3]]d4

= [β̂1 + β̂2, α̂3]d1 + [β̂1 + β̂2, [β̂1 + β̂2, α̂3]]d2

+[α̂3, [β̂1 + β̂2, α̂3]]d3 + [β̂3, [β̂1 + β̂2, α̂3]]d4

=
(
[β̂1, α̂3] + [β̂2, α̂3]

)
d1 +

(
[β̂1, [β̂1, α̂3]]

+[β̂1, [β̂2, α̂3]] + [β̂2, [β̂1, α̂3]] + [β̂2, [β̂2, α̂3]]
)
d2

+
(
[α̂3, [β̂1, α̂3]] + [α̂3, [β̂2, α̂3]]

)
d3

+
(
[β̂3, [β̂1, α̂3]] + [β̂3, [β̂2, α̂3]]

)
d4.

We need to change the non-basic product [β̂1, [β̂2, α̂3]] into basic products by using the Jacobi identity as
follows:

(−1)m(n−1)[β̂1, [β̂2, α̂3]] = −(−1)m(m−1)+mn[β̂2, [β̂1, α̂3]]
−(−1)n(m−1)[α̂3, [β̂1, β̂2]].

We note that the Whitehead products on the right-hand side in the above equation are both basic products.
Similarly,

(1 ∨ ϕ)Q5 = [β̂1, J23ϕr]d1 + [β̂1, [β̂1, J23ϕr]]d2

+[J23ϕr, [β̂1, J23ϕr]]d3 + [J23ϕs, [β̂1, J23ϕr]]d4

= [β̂1, J23(ᾱ1 + ᾱ2)]d1 + [β̂1, [β̂1, J23(ᾱ1 + ᾱ2)]]d2

+[J23(ᾱ1 + ᾱ2), [β̂1, J23(ᾱ1 + ᾱ2)]]d3

+[J23(β̄1 + β̄2), [β̂1, J23(ᾱ1 + ᾱ2)]]d4

= [β̂1, α̂2 + α̂3]d1 + [β̂1, [β̂1, α̂2 + α̂3]]d2

+[α̂2 + α̂3, [β̂1, α̂2 + α̂3]]d3

+[β̂2 + β̂3, [β̂1, α̂2 + α̂3]]d4

=
(
[β̂1, α̂2] + [β̂1, α̂3]

)
d1

+
(
[β̂1, [β̂1, α̂2]] + [β̂1, [β̂1, α̂3]]

)
d2

+
(
[α̂2, [β̂1, α̂2]] + [α̂2, [β̂1, α̂3]] + [α̂3, [β̂1, α̂2]]

+[α̂3, [β̂1, α̂3]]
)
d3 +

(
[β̂2, [β̂1, α̂2]] + [β̂2, [β̂1, α̂3]]

+[β̂3, [β̂1, α̂2]] + [β̂3, [β̂1, α̂3]]
)
d4.
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We now find the conditions for the equation

J12Q5 + (ϕ ∨ 1)Q5 = J23Q5 + (1 ∨ ϕ)Q5

to be satisfied. We also note that the following Whitehead products in (1) and (2) are all basic products.
(1) If m is odd and n is even, then ϕP,Q5 is associative if and only if

0 = [β̂2, [β̂1, α̂3]]d2 + [α̂3, [β̂1, β̂2]]d2 + [β̂2, [β̂1, α̂3]]d2

−

(
[α̂2, [β̂1, α̂3]] + [α̂3, [β̂1, α̂2]]

)
d3

−

(
[β̂2, [β̂1, α̂3]] + [β̂3, [β̂1, α̂2]]

)
d4

= [α̂3, [β̂1, β̂2]]d2 + [α̂2, [β̂1, α̂3]](−d3) + [α̂3, [β̂1, α̂2]](−d3)
[β̂2, [β̂1, α̂3]](2d2 − d4) + [β̂3, [β̂1, α̂2]](−d4).

(2) If m and n are odd, then the associativity holds if and only if

0 = [β̂2, [β̂1, α̂3]]d2 + (−[α̂3, [β̂1, β̂2]])d2 + [β̂2, [β̂1, α̂3]]d2

−

(
[α̂2, [β̂1, α̂3]] + [α̂3, [β̂1, α̂2]]

)
d3

−

(
[β̂2, [β̂1, α̂3]] + [β̂3, [β̂1, α̂2]]

)
d4

= [α̂3, [β̂1, β̂2]](−d2) + [α̂2, [β̂1, α̂3]](−d3) + [α̂3, [β̂1, α̂2]](−d3)
[β̂2, [β̂1, α̂3]](2d2 − d4) + [β̂3, [β̂1, α̂2]](−d4).

Thus ϕ is associative if and only if d2 = d3 = d4 = 0. Similarly, the other cases could be proved by the same
way.

We now consider the sum of the perturbations Q j, j = 1, 2, . . . , 5 defined above in order to investigate all
the comultiplications on a wedge of three spheres completely in a certain range as follows:

Definition 3.13. Let Q be the sum of the perturbations Q1,Q2, . . . ,Q5; that is,

Q =
∑5

i=1 Qi = [β̄1, β̄2]a1 + [β̄1, [β̄1, β̄2]]a2 + [β̄2, [β̄1, β̄2]]a3
+[ᾱ1, ᾱ2]b1 + [ᾱ1, [ᾱ1, ᾱ2]]b2 + [ᾱ2, [ᾱ1, ᾱ2]]b3
+[ᾱ1, β̄2]c1 + [ᾱ1, [ᾱ1, β̄2]]c2 + [ᾱ2, [ᾱ1, β̄2]]c3
+[β̄1, [ᾱ1, β̄2]]c4 + [β̄2, [ᾱ1, β̄2]]c5 + [ᾱ2, [ᾱ1, β̄1]]c6

+[β̄2, [ᾱ1, β̄1]]c7 + [β̄1, [ᾱ1, ᾱ2]]c8 + [β̄2, [ᾱ1, ᾱ2]]c9
+[ᾱ2, [β̄1, β̄2]]c10 + [β̄1, ᾱ2]d1 + [β̄1, [β̄1, ᾱ2]]d2
+[ᾱ2, [β̄1, ᾱ2]]d3 + [β̄2, [β̄1, ᾱ2]]d4,

and define ϕ = ϕP,Q : Y→ Y ∨ Y by Definition 3.1.

The following is one of the technical results in this paper.

Theorem 3.14. Let m ≤ 2n − 2,n < m < p ≤ 8n − 8 and let the Hopf-Hilton invariants H1
1(x) and H2

1(y)
be trivial, where x = ai, bi, c j, dk for i = 1, 2, 3, j = 1, 2, . . . , 10, k = 1, 2, 3, 4 and y = a1, b1, c1, d1. Then the
comultiplication ϕ = ϕP,Q is associative if and only if (1) m and n are even, a2 = a3 = b2 = b3 = c3 = c6 = d4 = 0,
c4 = c5 = c7 = −c10 = d2 and −c2 = c8 = c9 = −d3, or (2) m is even and n is odd, a2 = a3 = d4 = 0,
c4 = c5 = c7 = c10 = d2, b2 = −b3, 3b2 = 0, c3 = c6 = 2d3 and c2 = c8 = c9 = d3, or (3) m is odd and n is even,
b2 = b3 = c3 = c6 = 0, a2 = −a3, 3a2 = 0, c2 = c8 = c9 = d3, c4 = c5 = c7 = c10 = d2 and d4 = 2c4, or (4) m and n
are odd, a2 = −a3, b2 = −b3, 3a2 = 0 = 3b2, c2 = −c8 = −c9 = −d3, 2c2 = c3 = c6, c4 = c5 = c7 = c10 = −d2 and
2d2 = d4.

Proof. To prove this theorem, we will make use of the previous results from Propositions 3.3, 3.6, 3.8, 3.10
and 3.12. We also note that following Whitehead products in (1), (2), (3) and (4) are all the basic products.
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(1) If m and n are even, then the equality J12Q + (ϕ ∨ 1)Q = J23Q + (1 ∨ ϕ)Q holds if and only if

0 = [β̂3, [β̂1, β̂2]](−a2 − a3) + [β̂2, [β̂1, β̂3]](−a3)
+[α̂3, [α̂1, α̂2]](−b2 − b3) + [α̂2, [α̂1, α̂3]](−b3)
+[β̂3, [α̂1, α̂2]](−c2 − c9) + [α̂2, [α̂1, β̂3]](−c3)
+[α̂3, [α̂1, β̂2]](−c3 + c6) + [α̂2, [β̂1, β̂3]](−c4 − c10)
+[β̂3, [β̂1, α̂2]](−c4 + c7 − d4) + [β̂2, [α̂1, β̂3]](c4 − c5)
+[β̂3, [α̂1, β̂2]](−c5 + c7) + [α̂3, [β̂1, α̂2]](c6 − c8 − d3)
+[α̂2, [β̂1, α̂3]](−c8 − d3) + [β̂2, [α̂1, α̂3]](c8 − c9)
+[α̂3, [β̂1, β̂2]](−d2 − c10) + [β̂2, [β̂1, α̂3]](−d4).

Thus ϕ is associative if and only if a2 = a3 = b2 = b3 = c3 = c6 = d4 = 0, c4 = c5 = c7 = −c10 = d2 and
−c2 = c8 = c9 = −d3.

(2) If m is even and n is odd, then the associativity of the comultiplication ϕ = ϕP,Q : Y→ Y ∨ Y holds if
and only if

0 = [β̂3, [β̂1, β̂2]](−a2 − a3) + [β̂2, [β̂1, β̂3]](−a3)
+[α̂3, [α̂1, α̂2]](−b2 − b3) + [α̂2, [α̂1, α̂3]](2b2 − b3)
+[α̂2, [α̂1, β̂3]](2c2 − c3) + [β̂3, [α̂1, α̂2](c2 − c9)
+[α̂3, [α̂1, β̂2]](−c3 + c6) + [α̂2, [β̂1, β̂3]](c4 − c10)
+[β̂3, [β̂1, α̂2]](−c4 + c7 − d4) + [β̂2, [α̂1, β̂3]](c4 − c5)
+[β̂3, [α̂1, β̂2]](−c5 + c7) + [α̂3, [β̂1, α̂2]](c6 − c8 − d3)
+[α̂2, [β̂1, α̂3]](c8 − d3) + [β̂2, [α̂1, α̂3]](c8 − c9)
+[α̂3, [β̂1, β̂2]](d2 − c10) + [β̂2, [β̂1, α̂3]](−d4).

Thus ϕ is associative if and only if a2 = a3 = d4 = 0, c4 = c5 = c7 = c10 = d2, b2 = −b3, 3b2 = 0, c3 = c6 = 2d3
and c2 = c8 = c9 = d3.

(3) If m is odd and n is even, then the comultiplication ϕ = ϕP,Q is associative if and only if

0 = [β̂3, [β̂1, β̂2]](−a2 − a3) + [β̂2, [β̂1, β̂3]](2a2 − a3)
+[α̂3, [α̂1, α̂2]](−b2 − b3) + [α̂2, [α̂1, α̂3]](−b3)
+[α̂2, [α̂1, β̂3]](−c3) + [β̂3, [α̂1, α̂2]](c2 − c9)
+[α̂3, [α̂1, β̂2]](−c3 + c6) + [α̂2, [β̂1, β̂3]](c4 − c10)
+[β̂3, [β̂1, α̂2]](c4 + c7 − d4) + [β̂2, [α̂1, β̂3]](c4 − c5)
+[β̂3, [α̂1, β̂2]](−c5 + c7) + [α̂3, [β̂1, α̂2]](c6 + c8 − d3)
+[α̂2, [β̂1, α̂3]](c8 − d3) + [β̂2, [α̂1, α̂3]](c8 − c9)
+[β̂2, [β̂1, α̂3]](2d2 − d4) + [α̂3, [β̂1, β̂2]](d2 − c10).

Thus ϕ is associative if and only if b2 = b3 = c3 = c6 = 0, a2 = −a3, 3a2 = 0, c2 = c8 = c9 = d3, c4 = c5 = c7 =
c10 = d2 and d4 = 2c4.

(4) If m and n are odd, then the given comultiplication is associative if and only if

0 = [β̂3, [β̂1, β̂2]](−a2 − a3) + [β̂2, [β̂1, β̂3]](2a2 − a3)
+[α̂3, [α̂1, α̂2]](−b2 − b3) + [α̂2, [α̂1, α̂3]](2b2 − b3)
+[α̂2, [α̂1, β̂3]](2c2 − c3) + [β̂3, [α̂1, α̂2]](−c2 − c9)
+[α̂3, [α̂1, β̂2]](−c3 + c6) + [α̂2, [β̂1, β̂3]](c4 − c10)
+[β̂3, [β̂1, α̂2]](−c4 − c7 − d4) + [β̂2, [α̂1, β̂3]](c4 − c5)
+[β̂3, [α̂1, β̂2]](−c5 + c7) + [α̂3, [β̂1, α̂2]](−c6 − c8 − d3)
+[α̂2, [β̂1, α̂3]](c8 − d3) + [β̂2, [α̂1, α̂3]](c8 − c9)
+[β̂2, [β̂1, α̂3]](2d2 − d4) + [α̂3, [β̂1, β̂2]](−d2 − c10).

Thus ϕ is associative if and only if a2 = −a3, 3a2 = 0, b2 = −b3, 3b2 = 0, c2 = −c8 = −c9 = −d3, 2c2 = c3 = c6,
c4 = c5 = c7 = c10 = −d2 and 2d2 = d4.
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LetA(Y) be the set of homotopy classes of associative comultiplications on a co-H-space Y and let |S| be
the number of elements in a set S. Then we have the one of the main theorems in this paper as follows:

Theorem 3.15. Let m ≤ 2n − 2,n < m < p ≤ 4n − 4 and let Y = Sn
∨ Sm

∨ Sp. (1) If m and n are even, then

|A(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × |πp(Sm+n−1)|2 × |πp(S2m+n−2)|
×|πp(Sm+2n−2)|.

(2) If m is even and n is odd, then

|A(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × | {b2 ∈ πp(S3n−2)| 3b2 = 0} |
×|πp(Sm+n−1)|2 × |πp(Sm+2n−2)| × |πp(S2m+n−2)|.

(3) If m is odd and n is even, then

|A(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × | {a2 ∈ πp(S3m−2)| 3a2 = 0} |
×|πp(Sm+n−1)|2 × |πp(Sm+2n−2)| × |πp(S2m+n−2)|.

(4) If m and n are odd, then

|A(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × | {a2 ∈ πp(S3m−2)| 3a2 = 0} |
×| {b2 ∈ πp(S3n−2)| 3b2 = 0} | × |πp(Sm+n−1)|2

×|πp(Sm+2n−2)| × |πp(S2m+n−2)|.

Proof. Since every comultiplication has the form in Definition 3.13, by Theorem 3.14, the result follows.

Example 3.16. The setA(S4
∨ S5

∨ S12) is infinite, and |A(S8
∨ S12

∨ S27)| = 32. Indeed, |A(S8
∨ S12

∨ S27)| =
|π27(S23)| × |π27(S15)| × |π27(S19)|2 × |π27(S30)| × |π27(S26)| = 1 × 1 × 16 × 1 × 2 = 32, and similarly for the other
case.

4. Commutativity

We recall that ϕ = ϕP,Q : Y→ Y ∨ Y in Definition 3.1 is commutative if and only if TP = P and TQ = Q.
We also note that Tι1 = ι2 and Tι2 = ι1, where T : Y ∨ Y→ Y ∨ Y is the switching map.

Proposition 4.1. Let ϕ = ϕP,Q1 : Y → Y ∨ Y be the comultiplication in Definition 3.2. Then, under the same
hypotheses of Proposition 3.3, ϕ is commutative if and only if (1) m and n are even, a2 = a3, b2 = b3 and ci = 0
for i = 1, 2, . . . , 5, or (2) m is even and n is odd, a2 = a3, b2 = −b3, 2b1 = 0 and ci = 0 for i = 1, 2, . . . , 5, or
(3) m is odd and n is even, a2 = −a3, b2 = b3, 2a1 = 0 and ci = 0 for i = 1, 2, . . . , 5, or (4) m and n are odd,
a2 = −a3, b2 = −b3, 2a1 = 0 = 2b1 and ci = 0 for i = 1, 2, . . . , 5.

Proof. Since
Q1 = [β̄1, β̄2]a1 + [β̄1, [β̄1, β̄2]]a2 + [β̄2, [β̄1, β̄2]]a3

+[ᾱ1, ᾱ2]b1 + [ᾱ1, [ᾱ1, ᾱ2]]b2 + [ᾱ2, [ᾱ1, ᾱ2]]b3
+[ᾱ1, β̄2]c1 + [ᾱ1, [ᾱ1, β̄2]]c2 + [ᾱ2, [ᾱ1, β̄2]]c3
+[β̄1, [ᾱ1, β̄2]]c4 + [β̄2, [ᾱ1, β̄2]]c5,

we have
TQ1 = [β̄2, β̄1]a1 + [β̄2, [β̄2, β̄1]]a2 + [β̄1, [β̄2, β̄1]]a3

+[ᾱ2, ᾱ1]b1 + [ᾱ2, [ᾱ2, ᾱ1]]b2 + [ᾱ1, [ᾱ2, ᾱ1]]b3
+[ᾱ2, β̄1]c1 + [ᾱ2, [ᾱ2, β̄1]]c2 + [ᾱ1, [ᾱ2, β̄1]]c3
+[β̄2, [ᾱ2, β̄1]]c4 + [β̄1, [ᾱ2, β̄1]]c5

= (−1)m2
[β̄1, β̄2]a1 + (−1)m2

[β̄2, [β̄1, β̄2]]a2

+(−1)m2
[β̄1, [β̄1, β̄2]]a3 + (−1)n2

[ᾱ1, ᾱ2]b1

+(−1)n2
[ᾱ2, [ᾱ1, ᾱ2]]b2 + (−1)n2

[ᾱ1, [ᾱ1, ᾱ2]]b3
+(−1)mn[β̄1, ᾱ2]c1 + (−1)mn[ᾱ2, [β̄1, ᾱ2]]c2
+(−1)mn[ᾱ1, [β̄1, ᾱ2]]c3 + (−1)mn[β̄2, [β̄1, ᾱ2]]c4
+(−1)mn[β̄1, [β̄1, ᾱ2]]c5.
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We note that the Whitehead product [ᾱ1, [β̄1, ᾱ2] in the above equations is still not a basic product. We need
to change it into the basic product by using the Jacobi identity as follows:

(−1)n(n−1)[ᾱ1, [β̄1, ᾱ2] = −(−1)m(n−1)+n2
[β̄1, [ᾱ1, ᾱ2]]

−(−1)n(m−1)[ᾱ2, [ᾱ1, β̄1]].

By using the basic products on the right-hand side of the above equation, we see that the following
Whitehead products in (1) and (2) are all basic products. We recall that

(−[β̄1, β̄2])a1 = [β̄1, β̄2](−1)a1 = [β̄1, β̄2](−a1 + [1, 1]H1
1(a1))

by the Hilton’s formula.
(1) If m is even and n is odd, then

Q1 − TQ1 = [β̄1, [β̄1, β̄2]](a2 − a3) + [β̄2, [β̄1, β̄2]](a3 − a2)
+[ᾱ1, ᾱ2](2b1 − [1, 1]H1

1(b1))
+[ᾱ1, [ᾱ1, ᾱ2]](b2 + b3) + [ᾱ2, [ᾱ1, ᾱ2]](b3 + b2)
+[ᾱ1, β̄2]c1 + [ᾱ1, [ᾱ1, β̄2]]c2 + [ᾱ2, [ᾱ1, β̄2]]c3
+[β̄1, [ᾱ1, β̄2]]c4 + [β̄2, [ᾱ1, β̄2]]c5
+[β̄1, ᾱ2](−c1) + [ᾱ2, [β̄1, ᾱ2]](−c2)
+[β̄1, [ᾱ1, ᾱ2]](−c3) + [ᾱ2, [ᾱ1, β̄1]](−c3)
+[β̄2, [β̄1, ᾱ2]](−c4) + [β̄1, [β̄1, ᾱ2]](−c5).

Since the Hopf-Hilton invariant H1
1(b1) is trivial, ϕ is commutative if and only if a2 = a3, b2 = −b3, 2b1 = 0

and ci = 0 for i = 1, 2, . . . , 5.
(2) If m and n are odd, then

Q1 − TQ1 = [β̄1, β̄2](2a1 − [1, 1]H1
1(a1)) + [ᾱ1, ᾱ2](2b1 − [1, 1]H1

1(b1))
+[β̄1, [β̄1, β̄2]](a2 + a3) + [β̄2, [β̄1, β̄2]](a3 + a2)
+[ᾱ1, [ᾱ1, ᾱ2]](b2 + b3) + [ᾱ2, [ᾱ1, ᾱ2]](b3 + b2)
+[ᾱ1, β̄2]c1 + [ᾱ1, [ᾱ1, β̄2]]c2 + [ᾱ2, [ᾱ1, β̄2]]c3
+[β̄1, [ᾱ1, β̄2]]c4 + [β̄2, [ᾱ1, β̄2]]c5
+[β̄1, ᾱ2]c1 + [ᾱ2, [β̄1, ᾱ2]]c2
+[β̄1, [ᾱ1, ᾱ2]]c3 + [ᾱ2, [ᾱ1, β̄1]](−c3)
+[β̄2, [β̄1, ᾱ2]]c4 + [β̄1, [β̄1, ᾱ2]]c5.

Since the Hopf-Hilton invariants H1
1(a1) and H1

1(b1) are trivial, ϕ is commutative if and only if a2 = −a3, b2 =
−b3, 2a1 = 0, 2b1 = 0 and ci = 0 for i = 1, 2, . . . , 5. Similarly, the other cases could be proved by the same
method.

Proposition 4.2. Let ϕ = ϕP,Q2 : Y → Y ∨ Y be the comultiplication in Definition 3.5. Then, under the same
hypotheses of Proposition 3.6, ϕ is commutative if and only if c6 = c7 = 0.

Proof. From Q2 = [ᾱ2, [ᾱ1, β̄1]]c6 + [β̄2, [ᾱ1, β̄1]]c7, we have

TQ2 = [ᾱ1, [ᾱ2, β̄2]]c6 + [β̄1, [ᾱ2, β̄2]]c7.

Since TQ2 consists of two non-basic Whitehead products, we need to change them into the basic product
by using the Jacobi identity as follows:

(−1)n(m−1)[ᾱ1, [ᾱ2, β̄2]] = −(−1)n(n−1)+mn[ᾱ2, [ᾱ1, β̄2]]
−(−1)m(n−1)[β̄2, [ᾱ1, ᾱ2]]

and
(−1)m(m−1)[β̄1, [ᾱ2, β̄2]] = −(−1)n(m−1)+m2

[ᾱ2, [β̄1, β̄2]]
−(−1)m(n−1)[β̄2, [β̄1, ᾱ2]].
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We recall that (−1)c j = −c j + [1, 1]H1
1(c j) = −c j, for j = 6, 7.

(1) If m and n are even, then

Q2 − TQ2 = [ᾱ2, [ᾱ1, β̄1]]c6 + [β̄2, [ᾱ1, β̄1]]c7
+[ᾱ2, [ᾱ1, β̄2]]c6 + [β̄2, [ᾱ1, ᾱ2]]c6
+[ᾱ2, [β̄1, β̄2]]c7 + [β̄2, [β̄1, ᾱ2]]c7.

(2) If m is odd and n is even, then

Q2 − TQ2 = [ᾱ2, [ᾱ1, β̄1]]c6 + [β̄2, [ᾱ1, β̄1]]c7
+[ᾱ2, [ᾱ1, β̄2]]c6 + [β̄2, [ᾱ1, ᾱ2]](−c6)
+[ᾱ2, [β̄1, β̄2]](−c7) + [β̄2, [β̄1, ᾱ2]](−c7).

Since the above Whitehead products in (1) and (2) are all the basic products, ϕ is commutative if and only
if c6 = c7 = 0 in any case. Similarly, we obtain the same result for the other cases.

Proposition 4.3. Let ϕ = ϕP,Q3 : Y → Y ∨ Y be the comultiplication in Definition 3.7. Then, under the same
hypotheses of Proposition 3.8, ϕ is commutative if and only if (1) n is even and c8 = c9, or (2) n is odd and c8 = −c9.

Proof. Since Q3 = [β̄1, [ᾱ1, ᾱ2]]c8 + [β̄2, [ᾱ1, ᾱ2]]c9, we have

TQ3 = [β̄2, [ᾱ2, ᾱ1]]c8 + [β̄1, [ᾱ2, ᾱ1]]c9

= (−1)n2
[β̄2, [ᾱ1, ᾱ2]]c8 + (−1)n2

[β̄1, [ᾱ1, ᾱ2]]c9.

If n is even, then
Q3 − TQ3 = [β̄1, [ᾱ1, ᾱ2]](c8 − c9) + [β̄2, [ᾱ1, ᾱ2]](c9 − c8).

In case that n is odd, we obtain

Q3 − TQ3 = [β̄1, [ᾱ1, ᾱ2]](c8 + c9) + [β̄2, [ᾱ1, ᾱ2]](c9 + c8).

Since the right-hand side of the above equations are basic products, we complete the proof.

Proposition 4.4. Let ϕ = ϕP,Q4 : Y → Y ∨ Y be the comultiplication in Definition 3.9. Then, under the same
hypotheses of Proposition 3.10, ϕ is commutative if and only if c10 = 0.

Proof. We note that Q4 = [ᾱ2, [β̄1, β̄2]]c10 and

TQ4 = [ᾱ1, [β̄2, β̄1]]c10 = (−1)m2
[ᾱ1, [β̄1, β̄2]]c10.

Since the last term is not a basic Whitehead product, we change it into the basic products as follows:

(−1)n(m−1)[ᾱ1, [β̄1, β̄2]] = −(−1)m(n−1)+mn[β̄1, [ᾱ1, β̄2]]
−(−1)m(m−1)[β̄2, [ᾱ1, β̄1]].

Therefore, by considering the equation Q4 − TQ4 = 0, we complete the proof.

Proposition 4.5. Let ϕ = ϕP,Q5 : Y → Y ∨ Y be the comultiplication in Definition 3.11. Then, under the same
hypotheses of Proposition 3.12, ϕ is commutative if and only if d1 = d2 = d3 = d4 = 0.

Proof. We compute Q5 and TQ5 as follows:

Q5 = [β̄1, ᾱ2]d1 + [β̄1, [β̄1, ᾱ2]]d2 + [ᾱ2, [β̄1, ᾱ2]]d3 + [β̄2, [β̄1, ᾱ2]]d4

and
TQ5 = [β̄2, ᾱ1]d1 + [β̄2, [β̄2, ᾱ1]]d2 + [ᾱ1, [β̄2, ᾱ1]]d3

+[β̄1, [β̄2, ᾱ1]]d4
= (−1)mn[ᾱ1, β̄2]d1 + (−1)mn[β̄2, [ᾱ1, β̄2]]d2

+(−1)mn[ᾱ1, [ᾱ1, β̄2]]d3 + (−1)mn[β̄1, [ᾱ1, β̄2]]d4.

By considering the equation Q5 − TQ5 = 0 again whose terms consist of basic Whitehead products, we
complete the proof.
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The following is the technical result in this section.

Theorem 4.6. Let ϕ = ϕP,Q : Y → Y ∨ Y be the comultiplication in Definition 3.13 and let m,n and p have
the range as in Theorem 3.14 with the same hypotheses on Hopf-Hilton invariants. Then the comultiplication
ϕ = ϕP,Q is commutative if and only if (1) m and n are even, a2 = a3, b2 = b3, c3 = c6 = 0, c1 = d1, c2 =
d3, c5 = d2, c7 = −c10, c8 = c9 and d4 = c4 − c7, or (2) m is even and n is odd, a2 = a3, b2 = −b3, 2b1 = 0,
c3 = c6 = 0, c1 = d1, c2 = d3, c5 = d2, c7 = c10, c8 = −c9 and d4 = c4 − c7, or (3) m is odd and n is even,
a2 = −a3, b2 = b3, 2a1 = 0, c3 = c6 = 0, c1 = d1, c2 = d3, c5 = d2, c8 = c9, c7 = c10 and c4 + c7 = d4, or (4) m and
n are odd, a2 = −a3, b2 = −b3, 2a1 = 0 = 2b1, c3 = c6 = 0, c1 = −d1, c2 = −d3, c5 = −d2, c8 = −c9, c7 = c10 and
−c4 − c7 = d4.

Proof. By using the results of Propositions 4.1, 4.2, 4.3, 4.4 and 4.5, especially concentrating on the basic
products, we prove the theorem. We can see that the following Whitehead products in (1), (2), (3) and (4)
are all the basic products.

(1) If m and n are even, then ϕP,Q is commutative if and only if

0 = [β̄1, [β̄1, β̄2]](a2 − a3) + [β̄2, [β̄1, β̄2]](a3 − a2)
+[ᾱ1, [ᾱ1, ᾱ2]](b2 − b3) + [ᾱ2, [ᾱ1, ᾱ2]](b3 − b2)
+[ᾱ1, β̄2](c1 − d1) + [ᾱ1, [ᾱ1, β̄2]](c2 − d3) + [ᾱ2, [ᾱ1, β̄2]](c3 + c6)
+[β̄1, [ᾱ1, β̄2]](c4 − d4 + c10) + [β̄2, [ᾱ1, β̄2]](c5 − d2)
+[β̄1, ᾱ2](−c1 + d1) + [ᾱ2, [β̄1, ᾱ2]](−c2 + d3)
+[β̄1, [ᾱ1, ᾱ2]](c3 + c8 − c9) + [ᾱ2, [ᾱ1, β̄1]](c3 + c6)
+[β̄2, [β̄1, ᾱ2]](−c4 + d4 + c7) + [β̄1, [β̄1, ᾱ2]](−c5 + d2)
+[β̄2, [ᾱ1, β̄1]](c7 + c10) + [β̄2, [ᾱ1, ᾱ2]]c6
+[ᾱ2, [β̄1, β̄2]](c7 + c10) + [β̄2, [ᾱ1, ᾱ2]](c9 − c8).

Thus ϕ is commutative if and only if a2 = a3, b2 = b3, c3 = c6 = 0, c1 = d1, c2 = d3, c5 = d2, c7 = −c10, c8 = c9,
and d4 = c4 − c7.

(2) If m is even and n is odd, then the equality Q = TQ holds if and only if

0 = [β̄1, [β̄1, β̄2]](a2 − a3) + [β̄2, [β̄1, β̄2]](a3 − a2)
+[ᾱ1, ᾱ2](2b1 − [1, 1]H1

1(b1))
+[ᾱ1, [ᾱ1, ᾱ2]](b2 + b3) + [ᾱ2, [ᾱ1, ᾱ2]](b3 + b2)
+[ᾱ1, β̄2](c1 − d1) + [ᾱ1, [ᾱ1, β̄2]](c2 − d3) + [ᾱ2, [ᾱ1, β̄2]](c3 − c6)
+[β̄1, [ᾱ1, β̄2]](c4 − d4 − c10) + [β̄2, [ᾱ1, β̄2]](c5 − d2)
+[β̄1, ᾱ2](−c1 + d1) + [ᾱ2, [β̄1, ᾱ2]](−c2 + d3)
+[β̄1, [ᾱ1, ᾱ2]](−c3 + c8 + c9) + [ᾱ2, [ᾱ1, β̄1]](−c3 + c6)
+[β̄2, [β̄1, ᾱ2]](−c4 + d4 + c7) + [β̄1, [β̄1, ᾱ2]](−c5 + d2)
+[β̄2, [ᾱ1, β̄1]](c7 − c10) + [β̄2, [ᾱ1, ᾱ2]](−c6)
+[ᾱ2, [β̄1, β̄2]](−c7 + c10) + [β̄2, [ᾱ1, ᾱ2]](c8 + c9).

Thus ϕ is commutative if and only if a2 = a3, b2 = −b3, 2b1 = 0, c3 = c6 = 0, c1 = d1, c2 = d3, c5 = d2, c7 =
c10, c8 = −c9, and d4 = c4 − c7.

(3) If m is odd and n is even, then the commutativity of ϕP,Q holds if and only if

0 = [β̄1, β̄2](2a1 − [1, 1]H1
1(a1))

+[β̄1, [β̄1, β̄2]](a2 + a3) + [β̄2, [β̄1, β̄2]](a3 + a2)
+[ᾱ1, [ᾱ1, ᾱ2]](b2 − b3) + [ᾱ2, [ᾱ1, ᾱ2]](b3 − b2)
+[ᾱ1, β̄2](c1 − d1) + [ᾱ1, [ᾱ1, β̄2]](c2 − d3) + [ᾱ2, [ᾱ1, β̄2]](c3 + c6)
+[β̄1, [ᾱ1, β̄2]](c4 − d4 + c10) + [β̄2, [ᾱ1, β̄2]](c5 − d2)
+[β̄1, ᾱ2](−c1 + d1) + [ᾱ2, [β̄1, ᾱ2]](−c2 + d3)
+[β̄1, [ᾱ1, ᾱ2]](−c3 + c8 − c9) + [ᾱ2, [ᾱ1, β̄1]](c3 + c6)
+[β̄2, [β̄1, ᾱ2]](−c4 + d4 − c7) + [β̄1, [β̄1, ᾱ2]](−c5 + d2)
+[β̄2, [ᾱ1, β̄1]](c7 − c10) + [β̄2, [ᾱ1, ᾱ2]](−c6)
+[ᾱ2, [β̄1, β̄2]](−c7 + c10) + [β̄2, [ᾱ1, ᾱ2]](c9 − c8).
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Thus ϕ is commutative if and only if a2 = −a3, b2 = b3, 2a1 = 0, c3 = c6 = 0, c1 = d1, c2 = d3, c5 = d2, c8 =
c9, c7 = c10, and c4 + c7 = d4.

(4) If m and n are odd, then the given comultiplication ϕP,Q is commutative if and only if

0 = [β̄1, β̄2](2a1 − [1, 1]H1
1(a1)) + [ᾱ1, ᾱ2](2b1 − [1, 1]H1

1(b1))
+[β̄1, [β̄1, β̄2]](a2 + a3) + [β̄2, [β̄1, β̄2]](a3 + a2)
+[ᾱ1, [ᾱ1, ᾱ2]](b2 + b3) + [ᾱ2, [ᾱ1, ᾱ2]](b3 + b2)
+[ᾱ1, β̄2](c1 + d1) + [ᾱ1, [ᾱ1, β̄2]](c2 + d3) + [ᾱ2, [ᾱ1, β̄2]](c3 − c6)
+[β̄1, [ᾱ1, β̄2]](c4 + d4 + c10) + [β̄2, [ᾱ1, β̄2]](c5 + d2)
+[β̄1, ᾱ2](c1 + d1) + [ᾱ2, [β̄1, ᾱ2]](c2 + d3)
+[β̄1, [ᾱ1, ᾱ2]](c3 + c8 + c9) + [ᾱ2, [ᾱ1, β̄1]](−c3 + c6)
+[β̄2, [β̄1, ᾱ2]](c4 + d4 + c7) + [β̄1, [β̄1, ᾱ2]](c5 + d2)
+[β̄2, [ᾱ1, β̄1]](c7 − c10) + [β̄2, [ᾱ1, ᾱ2]]c6
+[ᾱ2, [β̄1, β̄2]](−c7 + c10) + [β̄2, [ᾱ1, ᾱ2]](c9 + c8).

Thus ϕ is commutative if and only if a2 = −a3, b2 = −b3, 2a1 = 0 = 2b1, c3 = c6 = 0, c1 = −d1, c2 = −d3, c5 =
−d2, c8 = −c9, c7 = c10, and −c4 − c7 = d4.

Let CO(Y) be the set of homotopy classes of commutative comultiplications on a co-H-space Y =
Sn
∨ Sm

∨ Sp. Then we have the following main theorem in this section.

Theorem 4.7. Let m ≤ 2n − 2 and n < m < p ≤ 4n − 4. (1) If m and n are even, then

|CO(Y)| = |πp(S2m−1)| × |πp(S2n−1)| × |πp(S3m−2)| × |πp(S3n−2)|
×|πp(Sm+n−1)| × |πp(S2m+n−2)|3 × |πp(Sm+2n−2)|2.

(2) If m is even and n is odd, then

|CO(Y)| = |πp(S2m−1)| × | {b1 ∈ πp(S2n−1)| 2b1 = 0} | × |πp(S3m−2)|
×|πp(S3n−2)| × |πp(Sm+n−1)| × |πp(S2m+n−2)|3

×|πp(Sm+2n−2)|2.

(3) If m is odd and n is even, then

|CO(Y)| = | {a1 ∈ πp(S2m−1)| 2a1 = 0} | × |πp(S2n−1)| × |πp(S3m−2)|
×|πp(S3n−2)| × |πp(Sm+n−1)| × |πp(S2m+n−2)|3

×|πp(Sm+2n−2)|2.

(4) If m and n are odd, then

|CO(Y)| = | {a1 ∈ πp(S2m−1)| 2a1 = 0} | × | {b1 ∈ πp(S2n−1)| 2b1 = 0} |
×|πp(S3m−2)| × |πp(S3n−2)| × |πp(Sm+n−1)|
×|πp(S2m+n−2)|3 × |πp(Sm+2n−2)|2.

Proof. Since every comultiplication has the form in Definition 3.13 in this range, by Theorem 4.6, we have
the result.

Example 4.8. CO(S4
∨ S5
∨ S12) is an infinite set, and |CO(S8

∨ S12
∨ S27)| = 16. Indeed, |CO(S8

∨ S12
∨ S27)| =

|π27(S23)| × |π27(S15)| × |π27(S34)| × |π27(S22)| × |π27(S19)| × |π27(S26)|2 × |π27(S30)|3 = 1× 1× 1× 1× 4× 4× 1 = 16,
and similarly for the other case.

Example 4.9. The setACO(S8
∨S12

∨S27) of associative and commutative comultiplications of the wedge of
spheres S8

∨ S12
∨ S27 consists of 8-homotopy classes. Indeed, |ACO(S8

∨ S12
∨ S27)| = |π27(S23)| × |π27(S15)| ×

|π27(S19)| × |π27(S26)| × |π27(S30)| = 1 × 1 × 4 × 2 × 1 = 8.
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Remark 4.10. It is possible for us to weaken the inequality in this paper; that is, we can give a larger
upper bound for n and require more Hopf-Hilton invariants to be zero. We still conclude that the above
comultiplications ϕ : Y→ Y∨Y in this paper have the desirable properties. On the other hand, we are able
to restrict our range to m ≤ 2n − 2 and p ≤ 4n − 4 so that we can handle the corresponding results more
easily.
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