Filomat 30:13 (2016), 3575–3585 DOI 10.2298/FIL1613575S

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Completeness of 3-Generalized Metric Spaces

Tomonari Suzuki^a

^aDepartment of Basic Sciences, Faculty of Engineering, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

Abstract. We discuss the completeness of 3-generalized metric spaces. Indeed, we give a sufficient and necessary condition on that a 3-generalized metric spaces is complete.

1. Introduction

We define the meaning of " $\{x_1, x_2, \dots, x_{\mu}\}^{\neq n}$ by that it is a set consisting of x_1, x_2, \dots, x_{μ} and x_1, x_2, \dots, x_{μ} are all different. Similarly we define the meaning of " $\{x_n\}_{n \in \mathbb{N}}^{\neq n}$ by that it is a sequence whose *n*-th element is x_n and x_1, x_2, \dots are all different. We sometimes write " $\{x_n\}_{n \in \mathbb{N}}^{\neq n}$ instead of " $\{x_n\}_{n \in \mathbb{N}}^{\neq n}$.

In 2000, Branciari in [3] introduced a very interesting concept whose name is 'v-generalized metric space'.

Definition 1.1 (Branciari [3]). Let X be a set, let d be a function from $X \times X$ into $[0, \infty)$ and let $v \in \mathbb{N}$. Then (X, d) is said to be a v-generalized metric space if the following hold:

- (N1) d(x, y) = 0 iff x = y for any $x, y \in X$.
- (N2) d(x, y) = d(y, x) for any $x, y \in X$.
- (N3) $d(x, y) \leq D(x, u_1, u_2, \dots, u_v, y)$ for any $\{x, u_1, u_2, \dots, u_v, y\}^{\neq} \subset X$, where $D(x, u_1, u_2, \dots, u_v, y) = d(x, u_1) + d(u_1, u_2) + \dots + d(u_v, y)$.

It is obvious that (X, d) is a metric space iff (X, d) is a 1-generalized metric space. It is also obvious that every metric space (X, d) is a *v*-generalized metric space for any $v \ge 2$. Indeed, if (X, d) be a *v*-generalized metric space, then (X, d) is a (k v)-generalized metric space for any $k \in \mathbb{N}$; see [14].

As above, the concept of 'generalized metric space' is very similar to that of 'metric space'. However, it is very difficult to treat this concept because *X* does not necessarily have the topology which is compatible with *d*. Indeed, for $v \in \{2, 4, 5, \dots\}$, there is an example of *v*-generalized metric space which does not have the compatible topology; see Example 7 in [12] and Example 4.2 in [17]. However, in [17], we proved that every 3-generalized metric space has the compatible topology. Moreover *X* under the compatible topology is metrizable; see Theorem 1.2 below. See [1, 7–9, 13, 15, 16, 18] and references therein for more information on this concept.

²⁰¹⁰ Mathematics Subject Classification. 54E99

Keywords. v-generalized metric space, completeness, Cauchy sequence, infinite Ramsey theorem, compactness

Received: 08 May 2016; Accepted: 05 August 2016

Communicated by Vladimir Rakočević

Research supported in part by JSPS KAKENHI Grant Number 16K05207 from Japan Society for the Promotion of Science. *Email address:* suzuki-t@mns.kyutech.ac.jp (Tomonari Suzuki)

Theorem 1.2 ([17]). Let (X, d) be a 3-generalized metric space. Define a function ρ from $X \times X$ into $[0, \infty)$ by

$$\rho(x, y) = \inf \{ D(x, u_1, \cdots, u_n, y) : n \in \mathbb{N} \cup \{0\}, u_1, \cdots, u_n \in X \}.$$
(1)

Then (X, ρ) is a metric space; and for any $x \in X$ and for any net $\{x_{\alpha}\}_{\alpha \in D}$ in X, $\lim_{\alpha} d(x, x_{\alpha}) = 0$ iff $\lim_{\alpha} \rho(x, x_{\alpha}) = 0$.

Remark 1.3. We proved in [17] that we can rewrite ρ as follows:

$$\rho(x, y) = \min \left\{ d(x, y), \inf \left\{ D(x, u, y) : \{x, u, y\}^{\neq} \subset X \right\},$$

$$\inf \left\{ D(x, u, v, y) : \{x, u, v, y\}^{\neq} \subset X \right\} \right\}.$$
(2)

In this paper, we discuss the completeness of 3-generalized metric spaces. Indeed, we give a sufficient and necessary condition on that a 3-generalized metric space is complete by using ρ defined by (1).

2. Preliminaries

In this section, we give some preliminaries. Throughout this paper we denote by \mathbb{N} the set of all positive integers and by \mathbb{R} the set of all real numbers.

The following theorem is referred to as the *infinite Ramsey theorem*, which plays a very important role in this paper.

Theorem 2.1 (Ramsey [10]). Let X be an infinite set and let $\lambda, \mu \in \mathbb{N}$. Let $X^{(\mu)}$ be the set of subsets consisting of exactly μ elements of X. Let f be a function from $X^{(\mu)}$ into $\Gamma := \{1, 2, \dots, \lambda\}$. Then there exist an infinite subset Y of X and $\gamma \in \Gamma$ such that $f(A) = \gamma$ for any $A \in X^{(\mu)}$ with $A \subset Y$.

Letting *X* = \mathbb{N} , λ = 3 and μ = 2, we obtain the following.

Lemma 2.2. Define a set $\mathbb{N}^{(2)}$ by $\mathbb{N}^{(2)} = \{\{i, j\} : i, j \in \mathbb{N}, i < j\}$. Let f be a function from $\mathbb{N}^{(2)}$ into $\Gamma := \{1, 2, 3\}$. Then there exist an infinite subset Y of \mathbb{N} and $\gamma \in \Gamma$ such that $f(A) = \gamma$ for any $A \in \mathbb{N}^{(2)}$ with $A \subset Y$.

Definition 2.3. *Let* (*X*, *d*) *be a v-generalized metric space.*

- A sequence $\{x_n\}$ in X is said to be Cauchy if $\lim_{m \to n} \sup_{m > n} d(x_m, x_n) = 0$ holds.
- A sequence $\{x_n\}$ in X is said to converge to x if $\lim_n d(x, x_n) = 0$ holds.
- *X* is said to be complete if every Cauchy sequence converges to some point in *X*.
- X is said to be compact if for any sequence $\{x_n\}$ in X, there exists a subsequence $\{x_{f(n)}\}$ of $\{x_n\}$ converging to some $z \in X$.

3. Completeness

Throughout this section, we let (*X*, *d*) be a 3-generalized metric space. Define a function ρ from *X* × *X* into $[0, \infty)$ by (1).

Let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is said to be *d*-*Cauchy* if $\lim_n \sup_{m>n} d(x_m, x_n) = 0$. $\{x_n\}$ is said to be ρ -*Cauchy* if $\lim_n \sup_{m>n} \rho(x_m, x_n) = 0$.

We begin with the following lemma.

Lemma 3.1. If a sequence $\{x_n\}$ in X is d-Cauchy, then $\{x_n\}$ is ρ -Cauchy.

Proof. The conclusion easily follows from $\rho \leq d$. \Box

The converse implication does not hold in general. See Example 4.3 below. So we need some additional assumption.

Lemma 3.2. Let $\{x_n\}$ be a sequence in X such that $\{x_n\}$ is ρ -Cauchy and $\{x_n\}$ does not converge in (X, ρ) . Define a function g from X into $(0, \infty)$ by

$$g(x) = \lim_{n \to \infty} \rho(x, x_n)$$

Then the following hold:

- (i) There exists a subsequence $\{x_{h(n)}\}^{\neq}$ of $\{x_n\}$ such that $\{x_{h(n)}\}$ is d-Cauchy.
- (ii) $g(x) = \lim_{n \to \infty} d(x, x_{h(n)})$ holds for any $x \in X$.
- (iii) $|g(x) g(y)| \le d(x, y) \le g(x) + g(y)$ holds for any $x, y \in X$.
- (iv) $\{x_n\}$ is *d*-Cauchy.
- (v) $g(x) = \lim_{n \to \infty} d(x, x_n)$ holds for any $x \in X$.

Proof. It is well known that $\{\rho(x, x_n)\}$ is a Cauchy sequence in \mathbb{R} . So we can define g(x) for any $x \in X$. It is obvious that

$$|g(x) - g(y)| \le \rho(x, y) \le g(x) + g(y)$$

holds for any $x, y \in X$. It is also obvious that g(x) > 0 for any $x \in X$ and $\lim_n g(x_n) = 0$. Taking subsequence, we may assume that $\{g(x_n)\}$ is a strictly decreasing sequence. Then $\{x_n\}_{n \in \mathbb{N}} \neq$ holds. We shall show (i). Let f be a function from $\mathbb{N}^{(2)}$ into $\Gamma := \{1, 2, 3\}$ satisfying the following:

- f(i, j) = 1 implies $d(x_i, x_j) \le 36 (g(x_i) + g(x_j))$.
- f(i, j) = 2 implies that $d(x_i, x_j) > 36(g(x_i) + g(x_j))$ holds and there exists $u \in X$ such that $\{x_i, u, x_j\}^{\neq}$ and $D(x_i, u, x_j) < 2\rho(x_i, x_j)$ holds.
- f(i, j) = 3 implies that $d(x_i, x_j) > 36(g(x_i) + g(x_j))$ holds and there exist $u, v \in X$ such that $\{x_i, u, v, x_j\}^{\neq}$ and $D(x_i, u, v, x_j) < 2\rho(x_i, x_j)$ holds.

We note that (2) assures the existence of f. Since $\rho(x_i, x_j) \leq g(x_i) + g(x_j)$, we note that $d(x_i, x_j) = \rho(x_i, x_j)$ implies f(i, j) = 1. By Lemma 2.2, there exist an infinite subset Y of \mathbb{N} and $\gamma \in \Gamma$ such that $f(A) = \gamma$ for any $A \in \mathbb{N}^{(2)}$ with $A \subset Y$. Since Y is infinite, we can choose a subsequence $\{x_{h(n)}\}$ of $\{x_n\}$ satisfying $\{h(n) : n \in \mathbb{N}\} \subset Y$. Fix $\varepsilon > 0$. Then there exists $\mu \in \mathbb{N}$ such that $\rho(x_{h(m)}, x_{h(n)}) < \varepsilon$ for any $m > n \ge \mu$. Fix $n \in \mathbb{N}$ with $n \ge \mu$. We consider the following three cases:

- (a) $\gamma = 1$
- (b) $\gamma = 2$
- (c) $\gamma = 3$

In the case of (a), since

$$\limsup_{m,n\to\infty} d(x_{h(m)}, x_{h(n)}) \le \limsup_{m,n\to\infty} 36 \left(g(x_{h(m)}) + g(x_{h(n)}) \right)$$
$$\le 36 \lim_{m\to\infty} g(x_{h(m)}) + 36 \lim_{n\to\infty} g(x_{h(n)}) = 0$$

 $\{x_{h(n)}\}$ is *d*-Cauchy. In the case of (b), there exists $u_1 \in X$ such that $\{x_{h(n)}, u_1, x_{h(n+1)}\}^{\neq}$ and

$$D(x_{h(n)}, u_1, x_{h(n+1)}) < 2 \rho(x_{h(n)}, x_{h(n+1)}).$$

Arguing by contradiction, we assume $u_1 = x_{h(\ell)}$ for some $\ell \in \mathbb{N}$. Then we have

$$\begin{aligned} d(x_{h(n)}, x_{h(\ell)}) &= d(x_{h(n)}, u_1) \le D(x_{h(n)}, u_1, x_{h(n+1)}) \\ &< 2 \,\rho(x_{h(n)}, x_{h(n+1)}) \le 2 \,g(x_{h(n)}) + 2 \,g(x_{h(n+1)}) \\ &< 4 \,g(x_{h(n)}) < 36 \,g(x_{h(n)}) + 36 \,g(x_{h(\ell)}), \end{aligned}$$

which contradicts $f(h(n), h(\ell)) = 2$. Therefore we obtain $u_1 \neq x_{h(\ell)}$ for any $\ell \in \mathbb{N}$. Choose m > n+1 satisfying $3 g(x_{h(m)}) < g(u_1)$. Then there exist $u_2, u_3 \in X$ such that $\{x_{h(n+1)}, u_2, x_{h(m)}\}^{\neq}$, $\{x_{h(m)}, u_3, x_{h(m+1)}\}^{\neq}$,

 $D(x_{h(n+1)}, u_2, x_{h(m)}) < 2 \rho(x_{h(n+1)}, x_{h(m)})$

and

 $D(x_{h(m)}, u_3, x_{h(m+1)}) < 2 \rho(x_{h(m)}, x_{h(m+1)}).$

As above, we can show $u_2, u_3 \in X \setminus \{x_{h(\ell)} : \ell \in \mathbb{N}\}$. We have

$$2 g(u_3) \le \rho(x_{h(m)}, u_3) + \rho(u_3, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)}) \le D(x_{h(m)}, u_3, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)}) < 2 \rho(x_{h(m)}, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)}) \le 3 g(x_{h(m)}) + 3 g(x_{h(m+1)}) < 6 g(x_{h(m)}) < 2 g(u_1)$$

and hence $u_1 \neq u_3$. We further consider the following two cases:

(b-1)
$$u_1 \neq u_2$$

(b-2) $u_1 = u_2$

In the case of (b-1), we have by (N3)

 $\begin{aligned} d(x_{h(n)}, x_{h(m)}) &\leq D(x_{h(n)}, u_1, x_{h(n+1)}, u_2, x_{h(m)}) \\ &< 2\rho(x_{h(n)}, x_{h(n+1)}) + 2\rho(x_{h(n+1)}, x_{h(m)}) \\ &\leq 2g(x_{h(n)}) + 4g(x_{h(n+1)}) + 2g(x_{h(m)}) \\ &< 6g(x_{h(n)}) + 2g(x_{h(m)}) \\ &< 36\left(g(x_{h(n)}) + g(x_{h(m)})\right), \end{aligned}$

which contradicts f(h(n), h(m)) = 2. In the case of (b-2), since $u_1 \neq u_3$, we have

 $\begin{aligned} d(x_{h(n)}, x_{h(m+1)}) &\leq D(x_{h(n)}, u_1 = u_2, x_{h(m)}, u_3, x_{h(m+1)}) \\ &< D(x_{h(n)}, u_1, x_{h(n+1)}, u_2, x_{h(m)}, u_3, x_{h(m+1)}) \\ &< 2\rho(x_{h(n)}, x_{h(n+1)}) + 2\rho(x_{h(n+1)}, x_{h(m)}) + 2\rho(x_{h(m)}, x_{h(m+1)}) \\ &< 10 g(x_{h(n)}) + 2 g(x_{h(m+1)}) \\ &< 36 \left(g(x_{h(n)}) + g(x_{h(m+1)}) \right), \end{aligned}$

which contradicts f(h(n), h(m + 1)) = 2. So, the case of (b) cannot be possible. In the case of (c), there exist $u_4, v_4 \in X$ such that $\{x_{h(n)}, u_4, v_4, x_{h(n+1)}\}^{\neq}$ and

 $D(x_{h(n)}, u_4, v_4, x_{h(n+1)}) < 2 \rho(x_{h(n)}, x_{h(n+1)}).$

Choose m > n + 1 satisfying

 $3 g(x_{h(m)}) < \min\{g(x_{h(n)}), g(u_4), g(v_4), g(x_{h(n+1)})\}.$

Then there exist $u_5, v_5, u_6, v_6 \in X$ such that $\{x_{h(n+1)}, u_5, v_5, x_{h(m)}\}^{\neq}, \{x_{h(m)}, u_6, v_6, x_{h(m+1)}\}^{\neq}, \{x_{h(m)}, u_{h(m+1)}\}^{\neq}, \{x_{h(m)}, u_{h(m+1)}\}^{\neq}, \{x_{h(m)}, u_{h(m+1)}\}^{\neq}, \{x_{h(m)}, u_{h(m)}, u_{h(m+1)}\}^{\neq}, \{x_{h(m)}, u_{h(m)}, u_{h(m)}\}^{\neq}, \{x_{h(m)}, u_{h(m)}\}^{\neq}, \{x_{h(m)}, u_{h(m)}, u_{h(m)}\}^{\neq}, \{x_{h(m)}, u_{h(m)}\}^{\neq}, u_{h(m)}\}^{\neq}, \{x_{h(m)}, u_{h(m)}\}^{\neq}, u_$

 $D(x_{h(n+1)}, u_5, v_5, x_{h(m)}) < 2 \rho(x_{h(n+1)}, x_{h(m)})$

and

 $D(x_{h(m)}, u_6, v_6, x_{h(m+1)}) < 2 \rho(x_{h(m)}, x_{h(m+1)}).$

We have

 $2 g(u_{6}) \leq \rho(x_{h(m)}, u_{6}) + \rho(u_{6}, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)})$ $\leq \rho(x_{h(m)}, u_{6}) + \rho(u_{6}, v_{6}) + \rho(v_{6}, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)})$ $\leq D(x_{h(m)}, u_{6}, v_{6}, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)})$ $< 2 \rho(x_{h(m)}, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)})$ $< 2 \min\{g(x_{h(n)}), g(u_{4}), g(v_{4}), g(x_{h(n+1)})\}$

and hence $u_6 \notin \{x_{h(n)}, u_4, v_4, x_{h(n+1)}\}$. Similarly we have

 $2 g(v_6) \le \rho(x_{h(m)}, v_6) + \rho(v_6, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)})$ $\le \rho(x_{h(m)}, u_6) + \rho(u_6, v_6) + \rho(v_6, x_{h(m+1)}) + g(x_{h(m)}) + g(x_{h(m+1)})$ $< 2 \min\{g(x_{h(n)}), g(u_4), g(v_4), g(x_{h(n+1)})\}$

and hence $v_6 \notin \{x_{h(n)}, u_4, v_4, x_{h(n+1)}\}$. We also have

 $2 g(x_{h(m+1)}) < 2 g(x_{h(m)}) < 6 g(x_{h(m)})$ $< 2 \min\{g(x_{h(n)}), g(u_4), g(v_4), g(x_{h(n+1)})\}\}$

and hence $x_{h(m)}, x_{h(m+1)} \notin \{u_4, v_4\}$. Arguing by contradiction, we assume $u_5 = x_{h(n)}$. Then we have

 $d(x_{h(n)}, x_{h(n+1)}) = d(x_{h(n+1)}, u_5) < D(x_{h(n+1)}, u_5, v_5, x_{h(m)})$ $< 2 \rho(x_{h(n+1)}, x_{h(m)}) \le 2 g(x_{h(n+1)}) + 2 g(x_{h(m)})$ $< 2 g(x_{h(n)}) + 2 g(x_{h(n+1)}),$

which contradicts f(h(n), h(n+1)) = 3. Therefore we obtain $u_5 \neq x_{h(n)}$. Arguing by contradiction, we assume $v_5 = x_{h(n)}$. Then we have

$$d(x_{h(n)}, x_{h(m)}) = d(v_5, x_{h(m)}) < D(x_{h(n+1)}, u_5, v_5, x_{h(m)})$$

$$< 2\rho(x_{h(n+1)}, x_{h(m)}) \le 2g(x_{h(n+1)}) + 2g(x_{h(m)})$$

$$< 2g(x_{h(n)}) + 2g(x_{h(m)}),$$

which contradicts f(h(n), h(m)) = 3. Therefore we obtain $v_5 \neq x_{h(n)}$. We have shown

 $\{x_{h(n)}, x_{h(n+1)}, x_{h(m)}\} \cap \{u_4, v_4, u_5, v_5, u_6, v_6\} = \emptyset$

and

 $\{u_4, v_4\} \cap \{x_{h(m+1)}, u_6, v_6\} = \varnothing.$

We put

 $r_n = D(x_{h(n)}, u_4, v_4, x_{h(n+1)})$ $r_{n+1} = D(x_{h(n+1)}, u_5, v_5, x_{h(m)})$ $r_m = D(x_{h(m)}, u_6, v_6, x_{h(m+1)})$ and

$$s = r_n + r_{n+1} + r_m$$

We have

$$<2\rho(x_{h(n)}, x_{h(n+1)}) + 2\rho(x_{h(n+1)}, x_{h(m)}) + 2\rho(x_{h(m)}, x_{h(m+1)}) < 12g(x_{h(n)})$$

We further consider the following seven cases:

S

(c-1) $u_4 = u_5$ and $v_4 = v_5$ (c-2) $u_4 = u_5$ and $v_4 \neq v_5$ (c-3) $u_4 = v_5$ and $v_4 = u_5$ (c-4) $u_4 = v_5$ and $v_4 \neq u_5$ (c-5) $v_4 = u_5$ and $u_4 \neq v_5$ (c-6) $v_4 = v_5$ and $u_4 \neq u_5$ (c-7) $\{u_4, v_4\} \cap \{u_5, v_5\} = \emptyset$

In the case of (c-1), we have by (N3)

 $\begin{aligned} d(x_{h(n)}, x_{h(m)}) &\leq D(x_{h(n)}, u_4 = u_5, x_{h(n+1)}, v_4 = v_5, x_{h(m)}) \\ &< D(x_{h(n)}, u_4 = u_5, x_{h(n+1)}, v_4 = v_5, x_{h(m)}) + d(u_4, v_4) + d(u_5, v_5) \\ &= r_n + r_{n+1} < s < 12 \, g(x_{h(n)}), \end{aligned}$

which contradicts f(h(n), h(m)) = 3. In the case of (c-2), we have

$$d(x_{h(n+1)}, x_{h(m)}) \le D(x_{h(n+1)}, v_4, u_4 = u_5, v_5, x_{h(m)})$$

< $r_n + r_{n+1} < s$

and hence

 $d(x_{h(n)}, x_{h(m)}) \le D(x_{h(n)}, u_4, v_4, x_{h(n+1)}, x_{h(m)}) < r_n + s < 2s,$

which contradicts f(h(n), h(m)) = 3. In the case of (c-3), noting

 $\{u_5, v_5\} \cap \{x_{h(m+1)}, u_6, v_6\} = \{u_4, v_4\} \cap \{x_{h(m+1)}, u_6, v_6\} = \emptyset,$

we have

 $d(x_{h(n)}, v_6) \le D(x_{h(n)}, u_4 = v_5, x_{h(m)}, u_6, v_6)$ < $r_n + r_{n+1} + r_m = s$

and

$$d(v_6, u_5) \le D(v_6, u_6, x_{h(m)}, v_5 = u_4, u_5 = v_4)$$

< $r_m + r_{n+1} < s.$

Hence

$$d(x_{h(n)}, x_{h(m)}) \le D(x_{h(n)}, v_6, u_5 = v_4, v_5 = u_4, x_{h(m)})$$

< $d(x_{h(n)}, v_6) + d(v_6, u_5) + r_{n+1} < 3s < 36 g(x_{h(n)}),$

which contradicts f(h(n), h(m)) = 3. In the case of (c-4), we have

 $d(x_{h(n)}, v_4) \le D(x_{h(n)}, u_4 = v_5, u_5, x_{h(n+1)}, v_4)$ < $r_n + r_{n+1} < s$ and hence

$$d(x_{h(n)}, x_{h(n+1)}) \le D(x_{h(n)}, v_4, u_4 = v_5, u_5, x_{h(n+1)})$$

< $d(x_{h(n)}, v_4) + r_n + r_{n+1} < 2s,$

which contradicts f(h(n), h(n + 1)) = 3. In the case of (c-5), we have

$$d(x_{h(n)}, x_{h(m)}) \le D(x_{h(n)}, u_4, v_4 = u_5, v_5, x_{h(n+1)})$$

< $r_n + r_{n+1} < s_r$

which contradicts f(h(n), h(m)) = 3. In the case of (c-6), we have

 $d(x_{h(n)}, u_5) \le D(x_{h(n)}, u_4, v_4, x_{h(n+1)}, u_5) < r_n + r_{n+1} < s$

and hence

$$d(x_{h(n)}, x_{h(m)}) \leq D(x_{h(n)}, u_5, x_{h(n+1)}, v_4 = v_5, x_{h(m)})$$

$$< d(x_{h(n)}, u_5) + r_n + r_{n+1} < 2s,$$

which contradicts f(h(n), h(m)) = 3. In the case of (c-7), we have

 $d(u_4, v_5) \le D(u_4, v_4, x_{h(n+1)}, u_5, v_5) < r_n + r_{n+1} < s$

and hence

$$d(x_{h(n)}, x_{h(n+1)}) \le D(x_{h(n)}, u_4, v_5, u_5, x_{h(n+1)})$$

< $r_n + d(u_4, v_5) + r_{n+1} < 2s_n$

which contradicts f(h(n), h(n + 1)) = 3. So, the case of (c) cannot be possible. We have shown (i). In order to show (ii), we assume that $\{x_{h(n)}\}^{\neq}$ is a subsequence of $\{x_n\}$ such that $\{x_{h(n)}\}$ is *d*-Cauchy. Fix $x \in X$. Since $\rho \leq d$, $g(x) \leq \liminf_n h(x_{h(n)})$ holds. Fix $\varepsilon > 0$. Then there exists $\mu \in \mathbb{N}$ such that $x \neq x_{h(n)}$,

 $|g(x) - \rho(x, x_{h(n)})| < \varepsilon$ and $\sup\{d(x_{h(m)}, x_{h(n)}) : m > n\} < \varepsilon$

for any $n \ge \mu$. Fix $n \in \mathbb{N}$ with $n \ge \mu$. We consider the following three cases:

- $d(x, x_{h(n)}) = \rho(x, x_{h(n)}).$
- There exists $u \in X$ such that $\{x, u, x_{h(n)}\}^{\neq}$ and $D(x, u, x_{h(n)}) < \rho(x, x_{h(n)}) + \varepsilon$ hold.
- There exist $u, v \in X$ such that $\{x, u, v, x_{h(n)}\}^{\neq}$ and $D(x, u, v, x_{h(n)}) < \rho(x, x_{h(n)}) + \varepsilon$ hold.

In the first case, we have

$$d(x, x_{h(n)}) = \rho(x, x_{h(n)}) \le g(x) + \varepsilon.$$

In the second case, for sufficiently large $m \in \mathbb{N}$, we have

$$\begin{aligned} d(x, x_{h(n)}) &\leq D(x, x_{h(m+1)}, x_{h(m+2)}, x_{h(m+3)}, x_{h(n)}) \\ &< d(x, x_{h(m+1)}) + 3 \varepsilon \\ &\leq D(x, u, x_{h(n)}, x_{h(m)}, x_{h(m+1)}) + 3 \varepsilon \\ &< \rho(x, x_{h(n)}) + 6 \varepsilon \\ &< g(x) + 7 \varepsilon. \end{aligned}$$

In the third case, for sufficiently large $m \in \mathbb{N}$, we have

$$d(x, x_{h(n)}) \le D(x, x_{h(m)}, x_{h(m+1)}, x_{h(m+2)}, x_{h(n)}) < d(x, x_{h(m)}) + 3 \varepsilon \le D(x, u, v, x_{h(n)}, x_{h(m)}) + 3 \varepsilon < \rho(x, x_{h(n)}) + 5 \varepsilon < g(x) + 6 \varepsilon.$$

Therefore we obtain

$$\limsup_{n \to \infty} d(x, x_{h(n)}) \le g(x) + 7 \varepsilon$$

Since $\varepsilon > 0$ is arbitrary, we have shown (ii). For any $x, y \in X$, we have by (ii)

$$\begin{aligned} |g(x) - g(y)| &\leq \rho(x, y) \\ &\leq d(x, y) \\ &\leq \limsup_{n \to \infty} D(x, x_{h(n)}, x_{h(n+1)}, x_{h(n+2)}, y) \\ &= g(x) + g(y). \end{aligned}$$

Therefore we have shown (iii). We have by (iii)

$$\limsup_{m,n\to\infty} d(x_m, x_n) \le \limsup_{m,n\to\infty} \left(g(x_m) + g(x_n) \right)$$
$$= \lim_{m\to\infty} g(x_m) + \lim_{n\to\infty} g(x_n) = 0$$

Therefore we have shown (iv). Noting $\{n \in \mathbb{N} : x_n = x\}$ is a finite set for any $x \in X$, as in (ii), we can prove (v). \Box

Now we can prove our main result.

Theorem 3.3. Let (X, d) be a 3-generalized metric space and define ρ by (1). Then the following are equivalent:

- (i) (X, d) is complete.
- (ii) (X, ρ) is complete.

Proof. We first show (ii) \Rightarrow (i). We assume that (X, ρ) is complete. Let $\{x_n\}$ be a *d*-Cauchy sequence in *X*. Then by Lemma 3.1, $\{x_n\}$ is ρ -Cauchy. Since (X, ρ) is complete, $\{x_n\}$ converges to some $z \in X$ in (X, ρ) . So by Theorem 1.2, $\{x_n\}$ converges to *z* in (X, d). Therefore (X, d) is complete. In order to prove the converse implication, we assume that (X, ρ) is not complete. Then there exists a ρ -Cauchy sequence $\{x_n\}$ in *X* which does not converge in (X, ρ) . Then by Lemma 3.2 (iv), $\{x_n\}$ is *d*-Cauchy. Since $\{x_n\}$ does not converge in (X, d), we obtain that (X, d) is not complete. We have shown (i) \Rightarrow (ii). \Box

4. Counterexample

In this section, we give a counterexample which tells that the converse implication of Lemma 3.1 does not hold in general.

Lemma 4.1 ([12, 14]). Let $v \in \mathbb{N}$. Let (X, ρ) be a metric space and let A and B be two subsets of X with $A \cap B = \emptyset$. Assume that if v is odd, then A consists of at most (v - 1)/2 elements. Let M be a positive real number satisfying

 $\rho(x,y) \leq M$

for any $x \in A$ and $y \in B$. Define a function d from $X \times X$ into $[0, \infty)$ by

$$\begin{aligned} &d(x,x) = 0 \\ &d(x,y) = d(y,x) = \rho(x,y) & if \ x \in A \ and \ y \in B \\ &d(x,y) = M & otherwise. \end{aligned}$$

Then (X, d) is a v-generalized metric space.

Remark 4.2. In the case where v = 1, $A = \emptyset$ holds. In the case where v = 3, A consists of at most one element.

Proof. (N1) and (N2) are obvious. Let us prove (N3). Let $\{x, u_1, u_2, \dots, u_{\nu}, y\}^{\neq} \subset X$. We consider the following three cases:

- v is odd.
- v is even and $M \leq D(x, u_1, u_2, \cdots, u_v, y)$.
- v is even and $D(x, u_1, u_2, \cdots, u_v, y) < M$.

In the first and second cases, we have

$$d(x, y) \le M \le D(x, u_1, \cdots, u_\nu, y),$$

thus, (N3) holds. In the third case, $x \in A \cup B$ holds. Without loss of generality, we may assume $x \in A$. Then from the definition of *d*, we have

$$u_1 \in B$$
, $u_2 \in A$, $u_3 \in B$, \cdots , $u_{\nu} \in A$, $y \in B$.

Hence

$$d(x, y) = \rho(x, y) \le \rho(x, u_1) + \rho(u_1, u_2) + \dots + \rho(u_{\nu-1}, u_{\nu}) + \rho(u_{\nu}, y)$$

= $D(x, u_1, u_2, \dots, u_{\nu}, y).$

Thus (N3) holds. \Box

Using Lemma 4.1, we give the following counterexample.

Example 4.3. Define a complete subset X of $\ell^1(\mathbb{N})$ by $X = \{0\} \cup \{x_n : n \in \mathbb{N}\}$, where $x_n = (1/n)e_n$ and $\{e_n\}$ is the canonical basis of $\ell^1(\mathbb{N})$. Define a metric ρ on X by $\rho(x, y) = ||x - y||$, that is

$$\rho(x, y) = \begin{cases} 1/m + 1/n & \text{if } x = x_m, y = x_n, m < n \\ 1/n & \text{if } x = 0, y = x_n \\ 0 & \text{if } x = y \\ \rho(y, x) & \text{otherwise.} \end{cases}$$

Define two subsets A and B of X by $A = \{0\}$ and $B = \{x_n : n \in \mathbb{N}\}$. Define a function d from $X \times X$ into [0, 1] as in Lemma 4.1 with M = 2, that is,

$$d(x, y) = \begin{cases} 2 & \text{if } x = x_m, y = x_n, m < n \\ 1/n & \text{if } x = 0, y = x_n \\ 0 & \text{if } x = y \\ d(y, x) & \text{otherwise.} \end{cases}$$

Then the following hold:

3583

- (i) (X, d) is a v-generalized metric space for any $v \ge 2$. In particular, (X, d) is a 3-generalized metric space.
- (ii) ρ coincides with the ρ defined by d and (1).
- (iii) There does not exist $L \in \mathbb{R}$ such that $d(x, y) \leq L \rho(x, y)$ for any $x, y \in X$.
- (iv) $\{x_n\}$ converges to 0 in (X, d) and (X, ρ) .
- (v) $\{x_n\}$ is ρ -Cauchy, however, $\{x_n\}$ is not d-Cauchy.

Proof. (i) follows from Lemma 4.1. (ii) follows from (2). (iii) follows from the following fact:

$$m \rho(x_m, x_n) = m (1/m + 1/n) < 2 = d(x_m, x_n)$$

for any *m*, *n* with m < n. (iv) and (v) are obvious.

Remark 4.4. Since $\rho \leq d$ always holds, we can tell that there exists $L \in \mathbb{R}$ such that $\rho(x, y) \leq L d(x, y)$ for any $x, y \in X$. (iii) shows that something converse does not hold in general.

5. Application

As application, we give an alternative proof of the following theorem, which is a generalization of the Banach contraction principle [2, 4].

Theorem 5.1 (See [3, 9, 11, 12, 16]). *Let* (*X*, *d*) *be a complete* 3-*generalized metric space and let T be a contraction on X*, *that is, there exists* $r \in [0, 1)$ *such that*

$$d(Tx, Ty) \le r \, d(x, y)$$

for any $x, y \in X$. Then T has a unique fixed point z of T. Moreover, for any $x \in X$, $\{T^n x\}$ converges to z.

Proof. Define a function ρ from $X \times X$ into $[0, \infty)$ by (1). Then by Theorem 1.2, (X, ρ) is a metric space. By Theorem 3.3, (X, ρ) is complete. We will show that *T* is also a contraction as a mapping on (X, ρ) . Let $\{x, y\}^{\neq} \subset X$ and $\varepsilon > 0$. We consider the following three cases:

- $d(x, y) = \rho(x, y)$.
- There exists $u \in X$ such that $\{x, u, y\}^{\neq}$ and $D(x, u, y) < \rho(x, y) + \varepsilon$ hold.
- There exist $u, v \in X$ such that $\{x, u, v, y\}^{\neq}$ and $D(x, u, v, y) < \rho(x, y) + \varepsilon$ hold.

In the first case, we have

$$\rho(Tx, Ty) \le d(Tx, Ty) \le r d(x, y) = r \rho(x, y).$$

In the second case, we have

$$\rho(Tx, Ty) \le \rho(Tx, Tu) + \rho(Tu, Ty) \le d(Tx, Tu) + d(Tu, Ty)$$
$$\le r \left(d(x, u) + d(u, y) \right) \le r \left(\rho(x, y) + \varepsilon \right).$$

In the third case, we have

$$\rho(Tx, Ty) \le \rho(Tx, Tu) + \rho(Tu, Tv) + \rho(Tv, Ty)$$

$$\le d(Tx, Tu) + d(Tu, Tv) + d(Tv, Ty)$$

$$\le r D(x, u, v, y) \le r(\rho(x, y) + \varepsilon).$$

Since $\varepsilon > 0$ is arbitrary, we obtain

$$\rho(Tx, Ty) \le r \rho(x, y),$$

thus, *T* is a contraction on (X, ρ) . So, the Banach contraction principle yields that *T* has a unique fixed point *z* of *T*. Moreover, for any $x \in X$, $\{T^n x\}$ converges to *z* in (X, ρ) . By Theorem 1.2, $\{T^n x\}$ converges to *z* in (X, d). \Box

We next give an alternative proof of the following theorem, which is a generalization of Caristi's fixed point theorem [5, 6].

Theorem 5.2 ([1, 7]). Let (X, d) be a complete 3-generalized metric space and let T be a mapping on X. Let f be a proper, sequentially lower semicontinuous function from X into $(-\infty, +\infty]$ bounded from below. Assume that

$$f(Tx) + d(x, Tx) \le f(x)$$

for any $x \in X$. Then T has a fixed point.

Proof. Define a function ρ from $X \times X$ into $[0, \infty)$ by (1). Then by Theorems 1.2 and 3.3, (X, ρ) is a complete metric space. We note by Theorem 1.2 that f is lower semicontinuous as a function from (X, ρ) into $(-\infty, +\infty]$. Since $\rho \leq d$, we have

$$f(Tx) + \rho(x, Tx) \le f(x)$$

for any $x \in X$. So, Caristi's fixed point theorem yields that there exists a fixed point of *T*.

6. Compactness

We finally discuss the compactness of 3-generalized metric spaces.

Theorem 6.1. Let (X, d) be a 3-generalized metric space and define ρ by (1). Then the following are equivalent:

- (i) (X, d) is compact.
- (ii) (X, ρ) is compact.

Proof. Since (X, ρ) is a metric space, it is well known that (X, ρ) is compact iff (X, ρ) is sequentially compact, that is, every sequence $\{x_n\}$ in X has a subsequence converging to some point in (X, ρ) . By Theorem 1.2, we obtain the desired result. \Box

References

- B. Alamri, T. Suzuki and L. A. Khan, Caristi's fixed point theorem and Subrahmanyam's fixed point theorem in v-generalized metric spaces, J. Funct. Spaces, 2015, Art. ID 709391, 6 pp.
- [2] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- [3] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37.
- [4] R. Caccioppoli, Un teorema generale sull'esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794–799.
- [5] J. Caristi, *Fixed point theorems for mappings satisfying inwardness conditions*, Trans. Amer. Math. Soc., 215 (1976), 241–251.
- [6] J. Caristi and W. A. Kirk, Geometric fixed point theory and inwardness conditions, Lecture Notes in Math., Vol. 490, pp. 74–83, Springer, Berlin, 1975.
- [7] W. A. Kirk and N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2013, 2013:129.
- [8] W. A. Kirk and N. Shahzad, Correction: Generalized metrics and Caristi's theorem, Fixed Point Theory Appl., 2014, 2014:177.
- [9] I. Ramabhadra Sarma, J. Madhusudana Rao and S. S. Rao, *Contractions over generalized metric spaces*, J. Nonlinear Sci. Appl., 2 (2009), 180–182.
- [10] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc., 30 (1930), 264–286.
- [11] S. Samet, Discussion on "A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces" by A. Branciari, Publ. Math. Debrecen, 76 (2010), 493–494.
- [12] T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014, Art. ID 458098, 5 pp.
- [13] T. Suzuki, Numbers on diameter in v-generalized metric spaces, Bull. Kyushu Inst. Technol., 63 (2016), 1–13.
- [14] T. Suzuki, Another generalization of Edelstein's fixed point theorem in generalized metric spaces, to appear in Linear Nonlinear Anal.
- [15] T. Suzuki, Every generalized metric space has a sequentially compatible topology, submitted.
- [16] T. Suzuki, B. Alamri and L. A. Khan, Some notes on fixed point theorems in v-generalized metric spaces, Bull. Kyushu Inst. Technol., 62 (2015), 15–23.
- [17] T. Suzuki, B. Alamri and M. Kikkawa, Only 3-generalized metric spaces have a compatible symmetric topology, Open Math., 13 (2015), 510–517.
- [18] T. Suzuki, B. Alamri and M. Kikkawa, Edelstein's fixed point theorem in generalized metric spaces, J. Nonlinear Convex Anal., 16 (2015), 2301–2309.