Filomat 30:13 (2016), 3397–3402 DOI 10.2298/FIL1613397M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Moore-Penrose Inverse of Product Operators in Hilbert C*-Modules

Mehdi Mohammadzadeh Karizaki^a, Mahmoud Hassani^a, Maryam Amyari^a

^a Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Abstract. Suppose *S* and *T* are adjointable linear operators between Hilbert *C**-modules. It is well known that an operator *T* has closed range if and only if its Moore-Penrose inverse *T*⁺ exists. In this paper, we show that $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$, where *S* and *T* have closed ranges and $(\ker(T))^{\perp} = \operatorname{ran}(S)$. Moreover, we investigate some results related to the polar decomposition of *T*. We also obtain the inverse of $1 - T^{\dagger}T + T$, when *T* is a self-adjoint operator.

1. Introduction

Investigation of the closedness of ranges of operators and study of Moore-Penrose inverses are important in operator theory. We want to extend some ideas of Izumino [4] in the framework of Hilbert *C**-modules and obtain some characterizations of operators having closed ranges.

Xu and Sheng [9] showed that a bounded adjointable operator between two Hilbert \mathcal{A} -modules admits a bounded Moore-Penrose inverse if and only if it has closed range. In general, there is no relation between $(TS)^{\dagger}$ with T^{\dagger} and S^{\dagger} except in some especial cases. This problem was first studied by Bouldin and Izumino for bounded operators between Hilbert spaces, see [1, 2, 4]. Recently Sharifi [8] studied the Moore -Penrose inverse of product of the operators with closed range in Hilbert C*-modules. In the present paper, we investigate the relation between $(TS)^{\dagger}$, T^{\dagger} and S^{\dagger} in a special case and prove that $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$, when S and T have closed ranges and $(\ker(T))^{\perp} = \operatorname{ran}(S)$. Applying this relation, we state some results dealing with the polar decomposition. Moreover, we obtain the inverse of $1 - T^{\dagger}T + T$, when T is a self-adjoint operator.

Throughout the paper \mathcal{A} is a C*-algebra (not necessarily unital). A (right) pre-Hilbert module over a C*-algebra \mathcal{A} is a complex linear space \mathcal{X} , which is an algebraic right \mathcal{A} -module equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{X} \times \mathcal{X} \to \mathcal{A}$ satisfying

(i) $\langle x, \bar{x} \rangle \ge 0$, and $\langle x, \bar{x} \rangle = 0$ iff x = 0, (ii) $\langle x, \bar{y} + \lambda z \rangle = \langle x, \bar{y} \rangle + \lambda \langle x, z \rangle$,

(iii) $\langle x, ya \rangle = \langle x, y \rangle a$,

(iv) $\langle y, x \rangle = \langle x, y \rangle^*$,

for each $x, y, z \in X$, $\lambda \in \mathbb{C}$, $a \in \mathcal{A}$. A pre-Hilbert \mathcal{A} -module X is called a Hilbert \mathcal{A} -module if it is complete with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. Left Hilbert \mathcal{A} -modules are defined in a similar way. For example

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08; Secondary 47L60, 47B50, 46C05

Keywords. Moore-Penrose inverse; closed range; Hilbert C*-module.

Received: 25 September 2014; Accepted: 14 April 2015

Communicated by Dragan S. Djordjević

Corresponding author: Maryam Amyari

Email addresses: mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki), hassani@mshdiau.ac.ir (Mahmoud Hassani), amyari@mshdiau.ac.ir (Maryam Amyari)

every *C**-algebra \mathcal{A} is a Hilbert \mathcal{A} -module with respect to the inner product $\langle x, y \rangle = x^*y$, and every inner product space is a left Hilbert \mathbb{C} -module.

Suppose that X and \mathcal{Y} are Hilbert \mathcal{A} -modules. By $\mathcal{L}(X, \mathcal{Y})$ we denote the set of all maps $T : X \to \mathcal{Y}$ for which there is a map $T^* : \mathcal{Y} \to X$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for each $x \in X$, $y \in \mathcal{Y}$. It is known that any element T of $\mathcal{L}(X, \mathcal{Y})$ must be a bounded linear operator, which is also \mathcal{A} -linear in the sense that T(xa) = (Tx)a for $x \in X$ and $a \in \mathcal{A}$ [5, Page 8]. We use the notations $\mathcal{L}(X)$ in place of $\mathcal{L}(X, X)$, and ker(·) and ran(·) for the kernel and the range of operators, respectively.

Suppose that *X* is a Hilbert \mathcal{A} -module and \mathcal{M} is a closed submodule of *X*. We say that \mathcal{M} is orthogonally complemented if $\mathcal{X} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, where $\mathcal{M}^{\perp} := \{x \in \mathcal{X} : \langle m, x \rangle = 0 \text{ for all } m \in \mathcal{M} \}$ denotes the orthogonal complement of \mathcal{M} in \mathcal{X} . The reader is referred to [5] for more details.

Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented, however, Lance [5] proved that certain submodules are orthogonally complemented as follows.

Theorem 1.1. (see [5, Theorem 3.2]) Let X, \mathcal{Y} be Hilbert \mathcal{A} -modules and $T \in \mathcal{L}(X, \mathcal{Y})$ have closed range. Then

- ker(*T*) is orthogonally complemented in X, with complement ran(T^*).
- ran(T) is orthogonally complemented in \mathcal{Y} , with complement ker(T^*).
- The map $T^* \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Definition 1.2. Suppose that X and Y are Hilbert A-modules and $T \in \mathcal{L}(X, \mathcal{Y})$. The Moore-Penrose inverse of T (if it exists) is an element T^{\dagger} of $\mathcal{L}(\mathcal{Y}, X)$ satisfying

$$TT^{\dagger}T = T, \quad T^{\dagger}TT^{\dagger} = T^{\dagger}, \quad (TT^{\dagger})^* = TT^{\dagger}, \quad (T^{\dagger}T)^* = T^{\dagger}T.$$
 (1)

Under these conditions T^{\dagger} is unique and $T^{\dagger}T$ and TT^{\dagger} are orthogonal projections. (Recall that an orthogonal projection is a selfadjoint idempotent operator, that its range is closed.) Clearly, T is Moore-Penrose invertible if and only if T^{*} is Moore-Penrose invertible, and in this case $(T^{*})^{\dagger} = (T^{\dagger})^{*}$.

Example 1.3. The standard Hilbert C*-module over \mathcal{A} , denoted by $\mathcal{H}_{\mathcal{A}} := \ell^2(\mathcal{A})$, is the space of all sequences $\{a_n\}_{n \in I}$ in \mathcal{A} such that $\sum_{n \in I} a_n^* a_n$ converges in norm to an element of \mathcal{A} and endowed with the natural linear structure and right \mathcal{A} -multiplication and with the \mathcal{A} -valued inner product defined by $\langle \{a_n\}, \{b_n\} \rangle = \sum_{n \in I} a_n^* b_n$, where the sum converges in norm.

Let $T \in \mathcal{L}(\mathcal{H}_{\mathcal{A}}, \mathcal{H}_{\mathcal{A}})$ be the left shift, i.e. $T(a_1, a_2, ...) = (a_2, a_3, ...)$. Then $\langle T(a_1, a_2, ...), (b_1, b_2, ...) \rangle = \langle (a_2, a_3, ...), (b_1, b_2, ...) \rangle$ $= a_2^* b_1 + a_3^* b_2 + a_4^* b_3 +$ $= a_1^* 0 + a_2^* b_1 + a_3^* b_2 + a_4^* b_3 +$ $= \langle (a_1, a_2, ...), (0, b_1, b_2, ...) \rangle.$

This implies that $T^*(b_1, b_2, ...) = (0, b_1, b_2, ...)$. We know that TT^* and T^*T are projections. Also, $TT^*T(a_1, a_2, ...) = T(0, a_2, a_3, ...) = (a_2, a_3, ...) = T(a_1, a_2, ...)$ and $T^*TT^*(a_1, a_2, ...) = T^*T(0, a_1, a_2, a_3, ...) = T^*(a_1, a_2, a_3, ...)$. By uniqueness of Moore-Penrose inverse, we have $T^+ = T^*$.

Theorem 1.4. (see [9, Theorem 2.2]) Let X, Y be Hilbert \mathcal{A} -modules and $T \in \mathcal{L}(X, Y)$. Then the Moore-Penrose inverse T^{\dagger} of T exists if and only if T has closed range.

By (1), we have

$\operatorname{ran}(\mathrm{T}) = \operatorname{ran}(\mathrm{T}\mathrm{T}^{\dagger})$	$ran(T^{\dagger}) = ran(T^{\dagger}T)$
$\ker(T) = \ker(T^{\dagger}T)$	$\ker(T^{\dagger}) = \ker(T T^{\dagger})$

and by Theorem 1.1, we know that

 $\mathcal{X} = \ker(T) \oplus \operatorname{ran}(T^{\dagger}) = \ker(T^{\dagger}T) \oplus \operatorname{ran}(T^{\dagger}T)$ $\mathcal{Y} = \ker(T^{\dagger}) \oplus \operatorname{ran}(T) = \ker(TT^{\dagger}) \oplus \operatorname{ran}(TT^{\dagger}).$

Throught the paper we assume that X, \mathcal{Y} and \mathcal{Z} are Hilbert \mathcal{A} -modules.

2. Moore-Penrose Inverse

In this section, we state some properties of Moore-penrose inverses of operators.

Proposition 2.1. (see [6, Corollary 2.4]) Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range. Then $(TT^*)^{\dagger} = (T^*)^{\dagger}T^{\dagger}$.

Theorem 2.2. Suppose that $T \in \mathcal{L}(X, \mathcal{Y})$ has closed range and $U \in \mathcal{L}(X)$ is an orthogonal projection commuting with $T^{\dagger}T$. Then TUT^* has closed range. Furthermore if TUT^{\dagger} is self-adjoint, then $(TUT^*)^{\dagger} = (T^*)^{\dagger}UT^{\dagger}$.

Proof. By the assumption, $T^{\dagger}T$ commutes with U and $T^{\dagger}T = (T^{\dagger}T)^* = T^*(T^*)^{\dagger}$. The operator $(T^*)^{\dagger}UT^{\dagger}$ is a generalized inverse of TUT^* , since

$$TUT^*(T^*)^\dagger UT^\dagger TUT^* = TUT$$

and $(T^*)^{\dagger}UT^{\dagger}TUT^*(T^*)^{\dagger}U^{\dagger}T^{\dagger} = (T^*)^{\dagger}UT^{\dagger}$. Hence TUT^* has closed range. If TUT^{\dagger} is self-adjoint, then

$$((T^*)^{\dagger}UT^{\dagger}TUT^*)^* = ((T^*)^{\dagger}U^2T^{\dagger}TT^*)^* = ((T^*)^{\dagger}UT^*)^* = TUT^{\dagger}.$$

Also

$$(TUT^{*}(T^{*})^{\dagger}UT^{\dagger})^{*} = (TUT^{\dagger}TUT^{\dagger})^{*} = (TU^{2}T^{\dagger}TT^{\dagger})^{*} = (TUT^{\dagger})^{*} = TUT^{\dagger}$$

By the uniqueness of Moore-Penrose inverse, $(TUT^*)^{\dagger} = (T^*)^{\dagger}UT^{\dagger}$. \Box

Theorem 2.3. Suppose that P, Q are orthogonal projections in $\mathcal{L}(X)$ such that ranP \subseteq ranQ. Then PQ and 1 - Q - P have closed ranges.

Proof. Since *P* and *Q* are orthogonal projections with ranP \subseteq ranQ, it holds that QP = P, which means that PQ = P by taking *-operation. Thus *PQ* is actually an orthogonal projection and so it has closed range. Also by [8, Lemma 3.2], 1 - Q - P has closed range. \Box

3. The Relation Between $(TS)^{\dagger}$ with S^{\dagger} and T^{\dagger}

In this section we will show that $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$, when $(\ker(T))^{\perp} = \operatorname{ranS}$.

Lemma 3.1. Suppose *P* and *Q* are orthogonal projections on a Hilbert \mathcal{A} -module *X* and $\overline{\ker(Q) + \operatorname{ran}(P)}$ and $\overline{\ker(P) + \operatorname{ran}(Q)}$ are orthogonally complemented in *X*. If *PQ* has closed range and *R* and *U* are the orthogonal projections onto the closed submodules $\overline{\ker(Q) + \operatorname{ran}(P)}$ and $\overline{\ker(P) + \operatorname{ran}(Q)}$, respectively, then

$$(PQ)^{\dagger}(PQ) = QR \quad and \quad (PQ)(PQ)^{\dagger} = PU.$$
⁽²⁾

Proof. Since 1 - Q and R are the orthogonal projections onto ker(Q) and ker(Q) + ran(P), respectively, and ker(Q) \subseteq ker(Q) + ran(P), by a reasoning as in the proof of [3, Theorem 3. Page 42], (1 - Q)R = R(1 - Q) = 1 - Q. Hence RQ = QR. Consequently, QR is a orthogonal projection with closed range, and ran(QR) is orthogonally complemented in X. Since PQ has closed range, by Theorem 1.1, $(PQ)^* = QP$ has closed range. Since

$$ran(QP) \subseteq ran(QR) \subseteq ran(QP) = ran(QP),$$

we have ran(QP) = ran(QR). Then $ran(PQ)^* = ran(QP) = ran(QR)$. Since *QP* has closed range, $(QP)^+$ exist. Hence $QP(QP)^+$ is a projection and

$$(QP)(QP)^{\dagger} = ((QP)(QP)^{\dagger})^{*} = ((QP)^{\dagger})^{*}(QP)^{*} = (PQ)^{\dagger}(PQ).$$

Now, $ran((PQ)^{\dagger}(PQ)) = ran((QP)(QP)^{\dagger}) = ran(QP) = ran(QR)$. Therefore $ran((PQ)^{\dagger}PQ) = ran(QR)$. So that $(PQ)^{\dagger}PQ = QR$, since $(PQ)^{\dagger}PQ$ and QR are orthogonal projections.

By a similar discussion for 1 - P and U instead of 1 - Q and R, respectively, we can conclude that $(PQ)(PQ)^{\dagger} = PU$. \Box

Theorem 3.2. Suppose that $S \in \mathcal{L}(X, \mathcal{Y}), T \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ and TS have closed ranges and $(\ker(T))^{\perp} = \operatorname{ran}(S)$. Then

$$(TS)^{\dagger} = S^{\dagger}T^{\dagger}.$$

Proof. Let $P = T^{\dagger}T$ and $Q = SS^{\dagger}$. Since ranS = $(\ker(T))^{\perp} = \operatorname{ranT}^*$, we have $\operatorname{ran}(SS^{\dagger}) = \operatorname{ran}(T^*(T^*)^{\dagger}) = \operatorname{ran}((T^{\dagger}T)^*) = \operatorname{ran}(T^{\dagger}T)$, or equivalently, $Q = SS^{\dagger} = T^{\dagger}T = P$. Therefore PQ has closed range and $(PQ)^{\dagger}$ exists. Also *TS* has closed range, so $(TS)^{\dagger}$ exists. We have

$$TSS^{\dagger}T^{\dagger}TS = TT^{\dagger}TT^{\dagger}TS = TT^{\dagger}TS = TS$$
$$S^{\dagger}T^{\dagger}TSS^{\dagger}T^{\dagger} = S^{\dagger}T^{\dagger}TT^{\dagger}TT^{\dagger} = S^{\dagger}T^{\dagger},$$

and

$$(TSS^{\dagger}T^{\dagger})^{*} = (TT^{\dagger}TT^{\dagger})^{*} = (TT^{\dagger})^{*} = TT^{\dagger} = TT^{\dagger}TT^{\dagger} = TSS^{\dagger}T^{\dagger}$$

Similarly, $(S^{\dagger}T^{\dagger}TS)^{*} = S^{\dagger}T^{\dagger}TS$. Hence by the uniqueness of Moore-Penrose inverse, $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Definition 3.3. An operator $V \in \mathcal{L}(X, \mathcal{Y})$ is a partial isometry if for each $x \in (\ker V)^{\perp}$, it holds that ||Vx|| = ||x||.

Similar to [7, Theorem 2.3.4], each $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has a polar decomposition T = V|T|, where $V \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is a partial isometry, $|T| = (T^*T)^{\frac{1}{2}}$ ker(V) = ker(T), ran $(V) = \overline{\text{ran}(T)}$, ker $(V^*) = \text{ker}(T^*)$, ran $(V^*) = \overline{\text{ran}(|T|)}$ and $V^*T = |T|$.

Remark 3.4. As an application of Theorem 3.2, suppose that $T \in \mathcal{L}(X, \mathcal{Y})$ is an operator with a polar decomposition T = V|T|. Since $V \in \mathcal{L}(X, \mathcal{Y})$ is a partial isometry, $\operatorname{ran}(V) = \operatorname{ran}(T) = \operatorname{ran}T$. Then V has a closed range and V^{\dagger} exists. By [5, Page 30] and the uniqueness of Moore-Penrose inverse, $V^* = V^{\dagger}$. Utilizing the polar decomposition, we have $\operatorname{ran}(|T|) = \operatorname{ran}(T^*)$, so $\operatorname{ran}(|T|)$ is closed. By Theorem 1.1, since V has closed range, $(\ker V)^{\perp} = \operatorname{ran}(V^*) = \operatorname{ran}(|T|)$. Theorem 3.2 implies that $T^{\dagger} = (V|T|)^{\dagger} = |T|^{\dagger}V^{\dagger} = |T|^{\dagger}V^*$.

Theorem 3.5. Let $T \in \mathcal{L}(X, \mathcal{Y})$ be an operator with closed range and T = V|T|, be the polar decomposition of T. Then $V = T|T|^{\dagger}$.

Proof. By remark 3.4, $V^* = V^+$, so $ran(V^+) = ran(V^*) = ran(|T|)$. Therefore $ran(V^+V) = ran(|T||T|^+)$ or equivalently $V^+V = |T||T|^+$. Multiplying on the left by V we reach $V = VV^+V = V|T||T|^+ = T|T|^+$.

The following theorem gives the conditions under which, $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Theorem 3.6. Suppose that operators $S \in \mathcal{L}(X, \mathcal{Y})$, $T \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ and $TS \in \mathcal{L}(X, \mathcal{Z})$ have closed ranges. If $\operatorname{ran}(T^*TS) \subseteq \operatorname{ran}(S)$ and $\operatorname{ran}(SS^*T^*) \subseteq \operatorname{ran}(T^*)$, then $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$.

Proof. Suppose $y \in ran(S)$. Then y = S(x) for some $x \in X$ and $SS^{\dagger}(Sx) = Sx$. If $y \in ran(T^*)$, then $y = T^*(z)$ for some $z \in \mathbb{Z}$ and $T^{\dagger}T(T^*(z)) = T^*(z)$.

Therefore SS^{\dagger} and $T^{\dagger}T$ are projections on ran(S) and ran(T^{*}), respectively. By the assumption, we have

$$SS^{\dagger}T^{*}TS = T^{*}TS$$
 and $T^{\dagger}TSS^{*}T^{*} = SS^{*}T^{*}$.

From the first equation of (3), we have $S^*T^*TSS^{\dagger} = S^*T^*T$. By multiplying on the right by T^{\dagger} and on the left by $((TS)^*)^{\dagger}$, we get $((TS)^*)^{\dagger}S^*T^*TSS^{\dagger}T^{\dagger} = ((TS)^*)^{\dagger}S^*T^*TT^{\dagger}$, whence

 $(TS)S^{\dagger}T^{\dagger} = (TS)(TS)^{\dagger}TSS^{\dagger}T^{\dagger}$

 $= ((TS)^*)^{\dagger} (TS)^* TSS^{\dagger} T^{\dagger}$

 $= ((TS)^{*})^{\dagger}S^{*}T^{*}TSS^{\dagger}T^{\dagger}$

- $= ((TS)^*)^{\dagger}S^*T^*TT^{\dagger}$
- $= ((TS)^*)^{\dagger}S^*(TT^{\dagger}T)^*$
- $= ((TS)^*)^{\dagger}S^*T^*$
- $= TS(TS)^{\dagger}.$

(3)

From the second equation of (3), we have $T^{\dagger}TSS^{*}T^{*} = SS^{*}T^{*}$. By multiplying on the left by S^{\dagger} and on the right by $((TS)^{*})^{\dagger}$, we reach $S^{\dagger}T^{\dagger}TSS^{*}T^{*}((TS)^{*})^{\dagger} = S^{\dagger}SS^{*}T^{*}((TS)^{*})^{\dagger}$, from which we get

 $S^{\dagger}T^{\dagger}(TS) = S^{\dagger}T^{\dagger}TS(TS)^{\dagger}(TS)$ = $S^{\dagger}T^{\dagger}TS(TS)^{*}((TS)^{*})^{\dagger}$ = $S^{\dagger}T^{\dagger}TSS^{*}T^{*}((TS)^{*})^{\dagger}$ = $(SS^{\dagger}S)^{*}T^{*}((TS)^{*})^{\dagger}$ = $(SS^{\dagger}S)^{*}T^{*}((TS)^{*})^{\dagger}$ = $(TS)^{*}((TS)^{*})^{\dagger}$ = $((TS)^{\dagger}(TS))^{*}$ = $(TS)^{\dagger}TS.$

 $TSS^{\dagger}T^{\dagger}$ and $S^{\dagger}T^{\dagger}TS$ are orthogonal projections, since $TS(TS)^{\dagger}$ and $(TS)^{\dagger}TS$ are orthogonal projections. Hence by the uniqueness of Moore-Penrose inverse, $(TS)^{\dagger} = S^{\dagger}T^{\dagger}$. \Box

4. Invertibility via Moore-Penrose Inverse

The purpose of this section is to find the inverse of some special operators by using Moore-Penrose inverse.

Theorem 4.1. Suppose that X is a Hilbert \mathcal{A} -module and $T \in \mathcal{L}(X)$ is a self-adjoint operator with closed range. Then $1 - T^{\dagger}T + T$ is invertible.

Proof. If $T \in \mathcal{L}(X)$ is a self-adjointable operator with closed range, then $TT^{\dagger} = (TT^{\dagger})^* = (T^{\dagger})^*T^* = (T^*)^{\dagger}T^* = T^{\dagger}T$.

Put $C = 1 - T^{\dagger}T + T$ and $K = 1 - T^{\dagger}T + T^{\dagger}$. Then

$$CK = (1 - T^{\dagger}T + T)(1 - T^{\dagger}T + T^{\dagger})$$

= 1 - T^{\dagger}T + T^{\dagger} - T^{\dagger}T + T^{\dagger}TT^{\dagger}T - T^{\dagger}TT^{\dagger} + T - TT^{\dagger}T + TT^{\dagger}
= 1 - T^{\dagger}T + T^{\dagger} - T^{\dagger}T + T^{\dagger}T - T^{\dagger} + T - TT^{\dagger}T + TT^{\dagger}
= 1 - T^{\dagger}T + TT^{\dagger}
= 1.

and

$$\begin{aligned} KC &= (1 - T^{\dagger}T + T^{\dagger})(1 - T^{\dagger}T + T) \\ &= 1 - T^{\dagger}T + T - T^{\dagger}T + T^{\dagger}TT^{\dagger}T - T^{\dagger}TT + T^{\dagger} - T^{\dagger}T^{\dagger}T + T^{\dagger}T \\ &= 1 - T^{\dagger}T + T - T^{\dagger}T + T^{\dagger}T - T + T^{\dagger} - T^{\dagger} + T^{\dagger}T \\ &= 1. \end{aligned}$$

Hence $1 - T^{\dagger}T + T$ is invertible. \Box

Corollary 4.2. Suppose that $T \in \mathcal{L}(X, \mathcal{Y})$ has closed range. Then $1 - TT^{\dagger} + TT^{*}$ is an invertible operator.

Proof. Since TT^* is a self-adjoint operator, Theorem 4.1 and Proposition 2.1 imply that $1 - (TT^*)^{\dagger}TT^* + TT^* = 1 - (T^*)^{\dagger}T^{\dagger}TT^* + TT^* = 1 - TT^{\dagger} + TT^*$ is invertible. Moreover, its inverse is $1 - TT^{\dagger} + (TT^*)^{\dagger}$.

Theorem 4.3. Suppose that $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has closed range and operators U, TUT^{\dagger} are projections and U commutes with $T^{\dagger}T$. Then $1 - TUT^{\dagger} + TUT^{*}$ is injective. Furthermore, if both TT^{*} and $(TT^{*})^{\dagger}$ commute with U, then $1 - TUT^{\dagger} + TUT^{*}$ is invertible.

Proof. Theorem 2.2 ensures that TUT^* has closed range and $(TUT^*)^{\dagger} = (T^*)^{\dagger}UT^{\dagger}$. Put $C = 1 - TUT^{\dagger} + TUT^*$ and $K = 1 - TUT^{\dagger} + (TUT^*)^{\dagger}$. We observe that

$$\begin{aligned} KC &= (1 - TUT^{\dagger} + (TUT^{*})^{\dagger})(1 - TUT^{\dagger} + TUT^{*}) \\ &= 1 - TUT^{\dagger} + TUT^{*} - TUT^{\dagger}TUT^{*} + (TUT^{*})^{\dagger} - (TUT^{*})^{\dagger}TUT^{\dagger} + (TUT^{*})^{\dagger}TUT^{*} \\ &= 1 - TUT^{\dagger} + TUT^{*} - TUUT^{\dagger}TT^{*} + (TUT^{*})^{\dagger} - (TUT^{*})^{\dagger}TUT^{\dagger} + (TUT^{*})^{\dagger}TUT^{*} \\ &= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - (T^{*})^{\dagger}UT^{\dagger}TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger}TUT^{*} \\ &= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - (T^{*})^{\dagger}UUT^{\dagger}TT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger}TUT^{*} \\ &= 1 - TUT^{\dagger} + (TUT^{\dagger}TUT^{\dagger})^{*} \\ &= 1 - TUT^{\dagger} + (TUT^{\dagger}TUT^{\dagger})^{*} \\ &= 1. \end{aligned}$$

Therefore *K* is a left inverse for *C*, and $1 - TUT^{\dagger} + TUT^{\ast}$ is injective. Moreover, if TT^{\ast} and $(TT^{\ast})^{\dagger}$ commute with *U*, then we see that

$$CK = (1 - TUT^{\dagger} + TUT^{*})(1 - TUT^{\dagger} + (TUT^{*})^{\dagger})$$

$$= 1 - TUT^{\dagger} + (TUT^{*})^{\dagger} - TUT^{\dagger}(TUT^{*})^{\dagger} + TUT^{*} - TUT^{*}TUT^{\dagger} + TYT^{*}(TUT^{*})^{\dagger}$$

$$= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - TUT^{\dagger}(T^{*})^{\dagger}UT^{\dagger} + TUT^{*} - TUT^{*}TUT^{\dagger} + TUT^{*}(T^{*})^{\dagger}UT^{\dagger}$$

$$= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - T(T^{*}T)^{\dagger}UT^{\dagger} + TUT^{*} - TUT^{*}TTT^{\dagger} + TUT^{\dagger}TTT^{\dagger}$$

$$= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - T(T^{*}T)^{\dagger}UT^{\dagger} + TUT^{*} - TUT^{*}TT^{\dagger} + TUT^{\dagger}TT^{\dagger}$$

$$= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - (T^{*})^{\dagger}UT^{\dagger} + TUT^{*} - TUT^{*}TT^{\dagger} + TUT^{\dagger}$$

$$= 1 - TUT^{\dagger} + (T^{*})^{\dagger}UT^{\dagger} - (T^{*})^{\dagger}UT^{\dagger} + TUT^{*} - TUT^{*} + TUT^{\dagger}$$

This shows that *K* is a right inverse for *C*. Hence $1 - TUT^{\dagger} + TUT^{\ast}$ is invertible. \Box

References

- [1] R. Bouldin, Closed range and relative regularity for products, J. Math. Anal. Appl. 61 (1977) 397-403.
- [2] R. Bouldin, The product of operators with closed range, Tôhoku Math. J. (2) 25 (1973) 359-363.
- [3] T. Furuta, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001.
- [4] S. Izumino, The product of operators with closed range and an extension of the revers order law, Tôhoku Math. J. (2) 34 (1982) 43–52.
- [5] E. C. Lance, Hilbert C*-modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [6] M. S. Moslehian, K. Sharifi, M. Forough and M. Chakoshi, Moore-Penrose inverse of Gram operator on Hilbert C*-modules, Studia Math. 210 (2012), no. 2, 189–196.
- [7] G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990.
- [8] K. Sharifi, The product of operators with closed range in Hilbert C*-modules, Linear Algebra Appl. 435 (2011) 1122–1130.
- [9] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl. 428 (2008) 992–1000.