Moore-Penrose Inverse of Product Operators in Hilbert C*-Modules

Mehdi Mohammadzadeh Karizaki ${ }^{\text {a }}$, Mahmoud Hassani ${ }^{\text {a }}$, Maryam Amyari ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Abstract

Suppose S and T are adjointable linear operators between Hilbert C^{*}-modules. It is well known that an operator T has closed range if and only if its Moore-Penrose inverse T^{+}exists. In this paper, we show that $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$, where S and T have closed ranges and $(\operatorname{ker}(T))^{\perp}=\operatorname{ran}(S)$. Moreover, we investigate some results related to the polar decomposition of T. We also obtain the inverse of $1-T^{\dagger} T+T$, when T is a self-adjoint operator.

1. Introduction

Investigation of the closedness of ranges of operators and study of Moore-Penrose inverses are important in operator theory. We want to extend some ideas of Izumino [4] in the framework of Hilbert C^{*}-modules and obtain some characterizations of operators having closed ranges.

Xu and Sheng [9] showed that a bounded adjointable operator between two Hilbert \mathcal{A}-modules admits a bounded Moore-Penrose inverse if and only if it has closed range. In general, there is no relation between $(T S)^{\dagger}$ with T^{\dagger} and S^{\dagger} except in some especial cases. This problem was first studied by Bouldin and Izumino for bounded operators between Hilbert spaces, see [1, 2, 4]. Recently Sharifi [8] studied the Moore -Penrose inverse of product of the operators with closed range in Hilbert C^{*}-modules. In the present paper, we investigate the relation between $(T S)^{\dagger}, T^{\dagger}$ and S^{\dagger} in a special case and prove that $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$, when S and T have closed ranges and $(\operatorname{ker}(T))^{\perp}=\operatorname{ran}(S)$. Applying this relation, we state some results dealing with the polar decomposition. Moreover, we obtain the inverse of $1-T^{\dagger} T+T$, when T is a self-adjoint operator.

Throughout the paper \mathcal{A} is a C^{*}-algebra (not necessarily unital). A (right) pre-Hilbert module over a C^{*}-algebra \mathcal{A} is a complex linear space \mathcal{X}, which is an algebraic right \mathcal{A}-module equipped with an \mathcal{A}-valued inner product $\langle.,\rangle:. \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{A}$ satisfying
(i) $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ iff $x=0$,
(ii) $\langle x, y+\lambda z\rangle=\langle x, y\rangle+\lambda\langle x, z\rangle$,
(iii) $\langle x, y a\rangle=\langle x, y\rangle a$,
(iv) $\langle y, x\rangle=\langle x, y\rangle^{*}$,
for each $x, y, z \in \mathcal{X}, \lambda \in \mathbb{C}, a \in \mathcal{A}$. A pre-Hilbert \mathcal{A}-module \mathcal{X} is called a Hilbert \mathcal{A}-module if it is complete with respect to the norm $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$. Left Hilbert \mathcal{A}-modules are defined in a similar way. For example

[^0]every C^{*}-algebra \mathcal{A} is a Hilbert \mathcal{A}-module with respect to the inner product $\langle x, y\rangle=x^{*} y$, and every inner product space is a left Hilbert \mathbb{C}-module.

Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A}-modules. By $\mathcal{L}(X, y)$ we denote the set of all maps $T: \mathcal{X} \rightarrow \mathcal{Y}$ for which there is a map $T^{*}: y \rightarrow \mathcal{X}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for each $x \in \mathcal{X}, y \in \mathcal{Y}$. It is known that any element T of $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ must be a bounded linear operator, which is also \mathcal{A}-linear in the sense that $T(x a)=(T x) a$ for $x \in \mathcal{X}$ and $a \in \mathcal{A}[5$, Page 8]. We use the notations $\mathcal{L}(\mathcal{X})$ in place of $\mathcal{L}(\mathcal{X}, \mathcal{X})$, and $\operatorname{ker}(\cdot)$ and $\operatorname{ran}(\cdot)$ for the kernel and the range of operators, respectively.

Suppose that \mathcal{X} is a Hilbert \mathcal{A}-module and \mathcal{M} is a closed submodule of \mathcal{X}. We say that \mathcal{M} is orthogonally complemented if $\mathcal{X}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, where $\mathcal{M}^{\perp}:=\{x \in \mathcal{X}:\langle m, x\rangle=0$ for all $m \in \mathcal{M}\}$ denotes the orthogonal complement of \mathcal{M} in \mathcal{X}. The reader is referred to [5] for more details.

Recall that a closed submodule in a Hilbert module is not necessarily orthogonally complemented, however, Lance [5] proved that certain submodules are orthogonally complemented as follows.
Theorem 1.1. (see [5, Theorem 3.2]) Let $\mathcal{X}, \boldsymbol{y}$ be Hilbert \mathcal{A}-modules and $T \in \mathcal{L}(\boldsymbol{X}, \boldsymbol{y})$ have closed range. Then

- $\operatorname{ker}(T)$ is orthogonally complemented in \mathcal{X}, with complement $\operatorname{ran}\left(\mathrm{T}^{*}\right)$.
- $\operatorname{ran}(\mathrm{T})$ is orthogonally complemented in \mathcal{Y}, with complement $\operatorname{ker}\left(T^{*}\right)$.
- The map $T^{*} \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ has closed range.

Definition 1.2. Suppose that \mathcal{X} and \mathcal{Y} are Hilbert \mathcal{A}-modules and $T \in \mathcal{L}(X, y)$. The Moore-Penrose inverse of T (if it exists) is an element T^{\dagger} of $\mathcal{L}(\mathcal{Y}, \mathcal{X})$ satisfying

$$
\begin{equation*}
T T^{\dagger} T=T, \quad T^{\dagger} T T^{\dagger}=T^{\dagger}, \quad\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \quad\left(T^{\dagger} T\right)^{*}=T^{\dagger} T . \tag{1}
\end{equation*}
$$

Under these conditions T^{\dagger} is unique and $T^{\dagger} T$ and $T T^{\dagger}$ are orthogonal projections. (Recall that an orthogonal projection is a selfadjoint idempotent operator, that its range is closed.) Clearly, T is Moore-Penrose invertible if and only if T^{*} is Moore-Penrose invertible, and in this case $\left(T^{*}\right)^{\dagger}=\left(T^{\dagger}\right)^{*}$.
Example 1.3. The standard Hilbert C^{*}-module over \mathcal{A}, denoted by $\mathcal{H}_{\mathcal{A}}:=\ell^{2}(\mathcal{A})$, is the space of all sequences $\left\{a_{n}\right\}_{n \in I}$ in \mathcal{A} such that $\sum_{n \in I} a_{n}^{*} a_{n}$ converges in norm to an element of \mathcal{A} and endowed with the natural linear structure and right \mathcal{A}-multiplication and with the \mathcal{A}-valued inner product defined by $\left\langle\left\{a_{n}\right\},\left\{b_{n}\right\}\right\rangle=\sum_{n \in I} a_{n}^{*} b_{n}$, where the sum converges in norm.

Let $T \in \mathcal{L}\left(\mathcal{H}_{\mathcal{F}}, \mathcal{H}_{\mathcal{A}}\right)$ be the left shift, i.e. $T\left(a_{1}, a_{2}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)$. Then

$$
\begin{aligned}
\left\langle T\left(a_{1}, a_{2}, \ldots\right),\left(b_{1}, b_{2}, \ldots\right)\right\rangle & =\left\langle\left(a_{2}, a_{3}, \ldots\right),\left(b_{1}, b_{2}, \ldots\right)\right\rangle \\
& =a_{2}^{*} b_{1}+a_{3}^{*} b_{2}+a_{4}^{*} b_{3}+\ldots \\
& =a_{1}^{*} 0+a_{2}^{*} b_{1}+a_{3}^{*} b_{2}+a_{4}^{*} b_{3}+\ldots . \\
& =\left\langle\left(a_{1}, a_{2}, \ldots\right),\left(0, b_{1}, b_{2}, \ldots\right)\right\rangle .
\end{aligned}
$$

This implies that $T^{*}\left(b_{1}, b_{2}, \ldots\right)=\left(0, b_{1}, b_{2}, \ldots\right)$. We know that $T T^{*}$ and $T^{*} T$ are projections. Also, $T T^{*} T\left(a_{1}, a_{2}, \ldots\right)=$ $T\left(0, a_{2}, a_{3}, \ldots\right)=\left(a_{2}, a_{3}, \ldots\right)=T\left(a_{1}, a_{2}, \ldots\right)$ and $T^{*} T T^{*}\left(a_{1}, a_{2}, \ldots\right)=T^{*} T\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)=T^{*}\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. By uniqueness of Moore-Penrose inverse, we have $T^{+}=T^{*}$.
Theorem 1.4. (see [9, Theorem 2.2]) Let $\mathcal{X}, \boldsymbol{Y}$ be Hilbert \mathcal{A}-modules and $T \in \mathcal{L}(X, y)$. Then the MoorePenrose inverse T^{+}of T exists if and only if T has closed range.

$$
\begin{array}{ll}
\text { By }(1) \text {, we have } & \\
\operatorname{ran}(\mathrm{T})=\operatorname{ran}\left(\mathrm{T} \mathrm{~T}^{\dagger}\right) & \operatorname{ran}\left(\mathrm{T}^{\dagger}\right)=\operatorname{ran}\left(\mathrm{T}^{\dagger} \mathrm{T}\right) \\
\operatorname{ker}(T)=\operatorname{ker}\left(T^{\dagger} T\right) & \operatorname{ker}\left(T^{\dagger}\right)=\operatorname{ker}\left(T T^{\dagger}\right)
\end{array}
$$

and by Theorem 1.1, we know that

$$
\begin{array}{r}
\mathcal{X}=\operatorname{ker}(T) \oplus \operatorname{ran}\left(\mathrm{T}^{\dagger}\right)=\operatorname{ker}\left(\mathrm{T}^{\dagger} \mathrm{T}\right) \oplus \operatorname{ran}\left(\mathrm{T}^{\dagger} \mathrm{T}\right) \\
y=\operatorname{ker}\left(T^{\dagger}\right) \oplus \operatorname{ran}(\mathrm{T})=\operatorname{ker}\left(\mathrm{T}^{\dagger}\right) \oplus \operatorname{ran}\left(\mathrm{T}^{\dagger}\right) .
\end{array}
$$

Throught the paper we assume that $\mathcal{X}, \boldsymbol{y}$ and \mathcal{Z} are Hilbert \mathcal{A}-modules.

2. Moore-Penrose Inverse

In this section, we state some properties of Moore-penrose inverses of operators.
Proposition 2.1. (see [6, Corollary 2.4]) Suppose that $T \in \mathcal{L}(X, y)$ has closed range. Then $\left(T T^{*}\right)^{\dagger}=\left(T^{*}\right)^{\dagger} T^{\dagger}$.
Theorem 2.2. Suppose that $T \in \mathcal{L}(X, y)$ has closed range and $U \in \mathcal{L}(X)$ is an orthogonal projection commuting with $T^{\dagger} T$. Then $T U T^{*}$ has closed range. Furthermore if $T U T^{\dagger}$ is self-adjoint, then $\left(T U T^{*}\right)^{\dagger}=\left(T^{*}\right)^{\dagger} U T^{\dagger}$.

Proof. By the assumption, $T^{\dagger} T$ commutes with U and $T^{\dagger} T=\left(T^{\dagger} T\right)^{*}=T^{*}\left(T^{*}\right)^{\dagger}$. The operator $\left(T^{*}\right)^{\dagger} U T^{\dagger}$ is a generalized inverse of $T U T^{*}$, since

$$
T U T^{*}\left(T^{*}\right)^{\dagger} U T^{\dagger} T U T^{*}=T U T^{*}
$$

and $\left(T^{*}\right)^{\dagger} U T^{\dagger} T U T^{*}\left(T^{*}\right)^{\dagger} U^{\dagger} T^{\dagger}=\left(T^{*}\right)^{\dagger} U T^{\dagger}$. Hence $T U T^{*}$ has closed range. If $T U T^{+}$is self-adjoint, then

$$
\left(\left(T^{*}\right)^{\dagger} U T^{\dagger} T U T^{*}\right)^{*}=\left(\left(T^{*}\right)^{\dagger} U^{2} T^{\dagger} T T^{*}\right)^{*}=\left(\left(T^{*}\right)^{\dagger} U T^{*}\right)^{*}=T U T^{\dagger} .
$$

Also

$$
\left(T U T^{*}\left(T^{*}\right)^{\dagger} U T^{\dagger}\right)^{*}=\left(T U T^{\dagger} T U T^{\dagger}\right)^{*}=\left(T U^{2} T^{\dagger} T T^{\dagger}\right)^{*}=\left(T U T^{\dagger}\right)^{*}=T U T^{\dagger}
$$

By the uniqueness of Moore-Penrose inverse, $\left(T U T^{*}\right)^{\dagger}=\left(T^{*}\right)^{\dagger} U T^{\dagger}$.
Theorem 2.3. Suppose that P, Q are orthogonal projections in $\mathcal{L}(X)$ such that $\operatorname{ran} P \subseteq \operatorname{ran} Q$. Then $P Q$ and $1-Q-P$ have closed ranges.

Proof. Since P and Q are orthogonal projections with $\operatorname{ranP} \subseteq$ ranQ, it holds that $Q P=P$, which means that $P Q=P$ by taking *-operation. Thus $P Q$ is actually an orthogonal projection and so it has closed range. Also by [8, Lemma 3.2], $1-Q-P$ has closed range.

3. The Relation Between $(T S)^{\dagger}$ with S^{\dagger} and T^{\dagger}

In this section we will show that $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$, when $(\operatorname{ker}(T))^{\perp}=\operatorname{ranS}$.
Lemma 3.1. Suppose P and Q are orthogonal projections on a Hilbert \mathcal{A}-module \mathcal{X} and $\overline{\operatorname{ker}(Q)+\operatorname{ran}(\mathrm{P})}$ and $\overline{\operatorname{ker}(P)+\operatorname{ran}(\mathrm{Q})}$ are orthogonally complemented in \mathcal{X}. If $P Q$ has closed range and R and U are the orthogonal projections onto the closed submodules $\overline{\operatorname{ker}(Q)+\operatorname{ran}(\mathrm{P})}$ and $\overline{\operatorname{ker}(P)+\operatorname{ran}(\mathrm{Q})}$, respectively, then

$$
\begin{equation*}
(P Q)^{\dagger}(P Q)=Q R \text { and }(P Q)(P Q)^{\dagger}=P U \tag{2}
\end{equation*}
$$

Proof. Since $1-Q$ and R are the orthogonal projections onto $\operatorname{ker}(Q)$ and $\overline{\operatorname{ker}(Q)+\operatorname{ran}(P)}$, respectively, and $\operatorname{ker}(Q) \subseteq \overline{\operatorname{ker}(Q)+\operatorname{ran}(\mathrm{P})}$, by a reasoning as in the proof of [3, Theorem 3. Page 42], $(1-Q) R=R(1-Q)=$ $1-Q$. Hence $R Q=Q R$. Consequently, $Q R$ is a orthogonal projection with closed range, and $\operatorname{ran}(Q R)$ is orthogonally complemented in \mathcal{X}. Since $P Q$ has closed range, by Theorem 1.1, $(P Q)^{*}=Q P$ has closed range. Since

$$
\operatorname{ran}(\mathrm{QP}) \subseteq \operatorname{ran}(\mathrm{QR}) \subseteq \overline{\operatorname{ran}(\mathrm{QP})}=\operatorname{ran}(\mathrm{QP})
$$

we have $\operatorname{ran}(\mathrm{QP})=\operatorname{ran}(\mathrm{QR})$. Then $\operatorname{ran}(\mathrm{PQ})^{*}=\operatorname{ran}(\mathrm{QP})=\operatorname{ran}(\mathrm{QR})$. Since $Q P$ has closed range, $(Q P)^{\dagger}$ exist. Hence $Q P(Q P)^{\dagger}$ is a projection and

$$
(Q P)(Q P)^{\dagger}=\left((Q P)(Q P)^{\dagger}\right)^{*}=\left((Q P)^{\dagger}\right)^{*}(Q P)^{*}=(P Q)^{\dagger}(P Q)
$$

Now, $\operatorname{ran}\left((\mathrm{PQ})^{\dagger}(\mathrm{PQ})\right)=\operatorname{ran}\left((\mathrm{QP})(\mathrm{QP})^{\dagger}\right)=\operatorname{ran}(\mathrm{QP})=\operatorname{ran}(\mathrm{QR})$. Therefore $\operatorname{ran}\left((\mathrm{PQ})^{\dagger} \mathrm{PQ}\right)=\operatorname{ran}(\mathrm{QR})$. So that $(P Q)^{\dagger} P Q=Q R$, since $(P Q)^{\dagger} P Q$ and $Q R$ are orthogonal projections.

By a similar discussion for $1-P$ and U instead of $1-Q$ and R, respectively, we can conclude that $(P Q)(P Q)^{\dagger}=P U$.

Theorem 3.2. Suppose that $S \in \mathcal{L}(X, \boldsymbol{y}), T \in \mathcal{L}(\boldsymbol{y}, \mathcal{Z})$ and $T S$ have closed ranges and $(\operatorname{ker}(T))^{\perp}=\operatorname{ran}(\mathrm{S})$. Then

$$
(T S)^{+}=S^{\dagger} T^{\dagger} .
$$

Proof. Let $P=T^{\dagger} T$ and $Q=S S^{\dagger}$. Since ranS $=(\operatorname{ker}(T))^{\perp}=\operatorname{ranT}^{*}$, we have $\operatorname{ran}\left(S S^{\dagger}\right)=\operatorname{ran}\left(T^{*}\left(T^{*}\right)^{\dagger}\right)=$ $\operatorname{ran}\left(\left(\mathrm{T}^{\dagger} \mathrm{T}\right)^{*}\right)=\operatorname{ran}\left(\mathrm{T}^{\dagger} \mathrm{T}\right)$, or equivalently, $Q=S S^{+}=T^{\dagger} T=P$. Therefore $P Q$ has closed range and $(P Q)^{+}$exists. Also $T S$ has closed range, so $(T S)^{\dagger}$ exists. We have

$$
\begin{gathered}
T S S^{\dagger} T^{\dagger} T S=T T^{\dagger} T T^{\dagger} T S=T T^{\dagger} T S=T S, \\
S^{\dagger} T^{\dagger} T S S^{\dagger} T^{\dagger}=S^{\dagger} T^{\dagger} T T^{\dagger} T T^{\dagger}=S^{\dagger} T^{\dagger},
\end{gathered}
$$

and

$$
\left(T S S^{\dagger} T^{\dagger}\right)^{*}=\left(T T^{\dagger} T T^{\dagger}\right)^{*}=\left(T T^{\dagger}\right)^{*}=T T^{\dagger}=T T^{\dagger} T T^{\dagger}=T S S^{\dagger} T^{\dagger} .
$$

Similarly, $\left(S^{\dagger} T^{\dagger} T S\right)^{*}=S^{\dagger} T^{\dagger} T S$. Hence by the uniqueness of Moore-Penrose inverse, $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$.
Definition 3.3. An operator $V \in \mathcal{L}(X, y)$ is a partial isometry if for each $x \in(\operatorname{ker} V)^{\perp}$, it holds that $\|V x\|=\|x\|$.
Similar to [7, Theorem 2.3.4], each $T \in \mathcal{L}(X, \mathcal{Y})$ has a polar decomposition $T=V|T|$, where $V \in \mathcal{L}(X, \mathcal{Y})$ is a partial isometry, $|T|=\left(T^{*} T\right)^{\frac{1}{2}} \quad \operatorname{ker}(V)=\operatorname{ker}(T), \quad \operatorname{ran}(\mathrm{V})=\overline{\operatorname{ran}(\mathrm{T})}$, $\operatorname{ker}\left(\mathrm{V}^{*}\right)=\operatorname{ker}\left(\mathrm{T}^{*}\right), \quad \operatorname{ran}\left(\mathrm{V}^{*}\right)=\overline{\operatorname{ran}(|\mathrm{T}|)}$ and $V^{*} T=|T|$.

Remark 3.4. As an application of Theorem 3.2, suppose that $T \in \mathcal{L}(X, Y)$ is an operator with a polar decomposition $T=V|T|$. Since $V \in \mathcal{L}(X, Y)$ is a partial isometry, $\operatorname{ran}(V)=\overline{\operatorname{ran}(T)}=\operatorname{ranT}$. Then V has a closed range and V^{\dagger} exists. By [5, Page 30] and the uniqueness of Moore-Penrose inverse, $V^{*}=V^{\dagger}$. Utilizing the polar decomposition, we have $\operatorname{ran}(|\mathrm{T}|)=\operatorname{ran}\left(\mathrm{T}^{*}\right)$, so $\operatorname{ran}(|\mathrm{T}|)$ is closed. By Theorem 1.1, since V has closed range, $(\operatorname{ker} V)^{\perp}=\operatorname{ran}\left(V^{*}\right)=\overline{\operatorname{ran}(|T|)}=\operatorname{ran}(|T|)$. Theorem 3.2 implies that $T^{+}=(V|T|)^{\dagger}=|T|^{\dagger} V^{\dagger}=|T|^{\dagger} V^{*}$.

Theorem 3.5. Let $T \in \mathcal{L}(X, Y)$ be an operator with closed range and $T=V|T|$, be the polar decomposition of T. Then $V=T|T|^{\dagger}$.

Proof. By remark 3.4, $V^{*}=V^{+}$, so $\operatorname{ran}\left(V^{+}\right)=\operatorname{ran}\left(V^{*}\right)=\operatorname{ran}(|T|)$. Therefore $\operatorname{ran}\left(V^{+} \mathrm{V}\right)=\operatorname{ran}\left(|\mathrm{T}||\mathrm{T}|^{+}\right)$or equivalently $V^{\dagger} V=|T \| T|^{\dagger}$. Multiplying on the left by V we reach $V=V V^{\dagger} V=V|T \| T|^{+}=T|T|^{\dagger}$.

The following theorem gives the conditions under which, $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$.
Theorem 3.6. Suppose that operators $S \in \mathcal{L}(X, \mathcal{Y}), T \in \mathcal{L}(\mathcal{Y}, \mathcal{Z})$ and $T S \in \mathcal{L}(X, \mathcal{Z})$ have closed ranges. If $\operatorname{ran}\left(\mathrm{T}^{*} \mathrm{TS}\right) \subseteq \operatorname{ran}(\mathrm{S})$ and $\operatorname{ran}\left(\mathrm{SS}^{*} \mathrm{~T}^{*}\right) \subseteq \operatorname{ran}\left(\mathrm{T}^{*}\right)$, then $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$.
Proof. Suppose $y \in \operatorname{ran}(\mathrm{~S})$. Then $y=S(x)$ for some $x \in \mathcal{X}$ and $S S^{+}(S x)=S x$. If $y \in \operatorname{ran}\left(\mathrm{~T}^{*}\right)$, then $y=T^{*}(z)$ for some $z \in \mathcal{Z}$ and $T^{+} T\left(T^{*}(z)\right)=T^{*}(z)$.

Therefore $S S^{+}$and $T^{\dagger} T$ are projections on $\operatorname{ran}(\mathrm{S})$ and $\operatorname{ran}\left(\mathrm{T}^{*}\right)$, respectively. By the assumption, we have

$$
\begin{equation*}
S S^{\dagger} T^{*} T S=T^{*} T S \text { and } T^{\dagger} T S S^{*} T^{*}=S S^{*} T^{*} \tag{3}
\end{equation*}
$$

From the first equation of (3), we have $S^{*} T^{*} T S S^{+}=S^{*} T^{*} T$. By multiplying on the right by T^{\dagger} and on the left by $\left((T S)^{*}\right)^{\dagger}$, we get $\left((T S)^{*}\right)^{+} S^{*} T^{*} T S S^{\dagger} T^{\dagger}=\left((T S)^{*}\right)^{*} S^{*} T^{*} T T^{\dagger}$, whence

$$
\begin{aligned}
(T S) S^{\dagger} T^{\dagger} & =(T S)(T S)^{\dagger} T S S^{\dagger} T^{\dagger} \\
& =\left((T S)^{*}\right)^{\dagger}(T S)^{*} T S S^{\dagger} T^{\dagger} \\
& =\left((T S)^{*}\right)^{\dagger} S^{*} T^{*} T S S^{\dagger} T^{\dagger} \\
& =\left((T S)^{*}\right)^{\dagger} S^{*} T^{*} T T^{\dagger} \\
& =\left((T S)^{*}\right)^{\dagger} S^{*}\left(T T^{\dagger} T\right)^{*} \\
& =\left((T S)^{*}\right)^{\dagger} S^{*} T^{*} \\
& =T S(T S)^{\dagger} .
\end{aligned}
$$

From the second equation of (3), we have $T^{\dagger} T S S^{*} T^{*}=S S^{*} T^{*}$. By multiplying on the left by S^{\dagger} and on the right by $\left((T S)^{*}\right)^{\dagger}$, we reach $S^{\dagger} T^{\dagger} T S S^{*} T^{*}\left((T S)^{*}\right)^{\dagger}=S^{\dagger} S S^{*} T^{*}\left((T S)^{*}\right)^{\dagger}$, from which we get

$$
\begin{aligned}
S^{\dagger} T^{\dagger}(T S) & =S^{\dagger} T^{\dagger} T S(T S)^{\dagger}(T S) \\
& =S^{\dagger} T^{\dagger} T S(T S)^{*}\left((T S)^{*}\right)^{\dagger} \\
& =S^{\dagger} T^{\dagger} T S S^{*} T^{*}\left((T S)^{*}\right)^{\dagger} \\
& =S^{\dagger} S S^{*} T^{*}\left((T S)^{*}\right)^{\dagger} \\
& =\left(S S^{\dagger} S\right)^{*} T^{*}\left((T S)^{*}\right)^{\dagger} \\
& =S^{*} T^{*}\left((T S)^{*}\right)^{\dagger} \\
& =(T S)^{*}\left((T S)^{*}\right)^{\dagger} \\
& =\left((T S)^{\dagger}(T S)\right)^{*} \\
& =(T S)^{\dagger} T S .
\end{aligned}
$$

$T S S^{\dagger} T^{\dagger}$ and $S^{\dagger} T^{\dagger} T S$ are orthogonal projections, since $T S(T S)^{\dagger}$ and $(T S)^{\dagger} T S$ are orthogonal projections. Hence by the uniqueness of Moore-Penrose inverse, $(T S)^{\dagger}=S^{\dagger} T^{\dagger}$.

4. Invertibility via Moore-Penrose Inverse

The purpose of this section is to find the inverse of some special operators by using Moore-Penrose inverse.

Theorem 4.1. Suppose that \mathcal{X} is a Hilbert \mathcal{A}-module and $T \in \mathcal{L}(\mathcal{X})$ is a self-adjoint operator with closed range. Then $1-T^{\dagger} T+T$ is invertible.

Proof. If $T \in \mathcal{L}(X)$ is a self-adjointable operator with closed range, then $T T^{\dagger}=\left(T T^{\dagger}\right)^{*}=\left(T^{\dagger}\right)^{*} T^{*}=\left(T^{*}\right)^{\dagger} T^{*}=$ $T^{\dagger} T$.
Put $C=1-T^{\dagger} T+T$ and $K=1-T^{\dagger} T+T^{\dagger}$. Then

$$
\begin{aligned}
C K & =\left(1-T^{\dagger} T+T\right)\left(1-T^{\dagger} T+T^{\dagger}\right) \\
& =1-T^{\dagger} T+T^{\dagger}-T^{\dagger} T+T^{\dagger} T T^{\dagger} T-T^{\dagger} T T^{\dagger}+T-T T^{\dagger} T+T T^{\dagger} \\
& =1-T^{\dagger} T+T^{\dagger}-T^{\dagger} T+T^{\dagger} T-T^{\dagger}+T-T T^{\dagger} T+T T^{\dagger} \\
& =1-T^{\dagger} T+T T^{\dagger} \\
& =1,
\end{aligned}
$$

and

$$
\begin{aligned}
K C & =\left(1-T^{\dagger} T+T^{\dagger}\right)\left(1-T^{\dagger} T+T\right) \\
& =1-T^{\dagger} T+T-T^{\dagger} T+T^{\dagger} T T^{\dagger} T-T^{\dagger} T T+T^{\dagger}-T^{\dagger} T^{\dagger} T+T^{\dagger} T \\
& =1-T^{\dagger} T+T-T^{\dagger} T+T^{\dagger} T-T+T^{\dagger}-T^{\dagger}+T^{\dagger} T \\
& =1 .
\end{aligned}
$$

Hence $1-T^{\dagger} T+T$ is invertible.
Corollary 4.2. Suppose that $T \in \mathcal{L}(\mathcal{X}, \boldsymbol{y})$ has closed range. Then $1-T T^{+}+T T^{*}$ is an invertible operator.
Proof. Since $T T^{*}$ is a self-adjoint operator, Theorem 4.1 and Proposition 2.1 imply that $1-\left(T T^{*}\right)^{+} T T^{*}+T T^{*}=$ $1-\left(T^{*}\right)^{\dagger} T^{\dagger} T T^{*}+T T^{*}=1-T T^{\dagger}+T T^{*}$ is invertible. Moreover, its inverse is $1-T T^{\dagger}+\left(T T^{*}\right)^{\dagger}$.

Theorem 4.3. Suppose that $T \in \mathcal{L}(X, \mathcal{Y})$ has closed range and operators $U, T U T^{\dagger}$ are projections and U commutes with $T^{+} T$. Then $1-T U T^{+}+T U T^{*}$ is injective. Furthermore, if both $T T^{*}$ and $\left(T T^{*}\right)^{\dagger}$ commute with U, then $1-$ TUT $^{\dagger}+$ TUT * is invertible.

Proof. Theorem 2.2 ensures that $T U T^{*}$ has closed range and $\left(T U T^{*}\right)^{\dagger}=\left(T^{*}\right)^{\dagger} U T^{\dagger}$. Put $C=1-T_{U T}+T U T^{*}$ and $K=1-T U T^{\dagger}+\left(T U T^{*}\right)^{\dagger}$. We observe that

$$
\begin{aligned}
K C & =\left(1-T_{U T}+\left(T U T^{*}\right)^{\dagger}\right)\left(1-T U T^{\dagger}+T U T^{*}\right) \\
& =1-T U T^{\dagger}+T U T^{*}-T U T^{\dagger} T U T^{*}+\left(T U T^{*}\right)^{\dagger}-\left(T U T^{*}\right)^{\dagger} T U T^{\dagger}+\left(T U T^{*}\right)^{\dagger} T U T^{*} \\
& =1-T U T^{\dagger}+T U T^{*}-T_{U} U^{\dagger} T T^{*}+\left(T U T^{*}\right)^{\dagger}-\left(T U T^{*}\right)^{\dagger} T U T^{\dagger}+\left(T U T^{*}\right)^{\dagger} T U T^{*} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-\left(T^{*}\right)^{\dagger} U T^{\dagger} T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger} T U T^{*} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-\left(T^{*}\right)^{\dagger} U U T^{\dagger} T T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger} T U T^{*} \\
& =1-T U T^{\dagger}+\left(T U T^{\dagger} T U T^{\dagger}\right)^{*} \\
& =1-T U T^{\dagger}+\left(T U T^{\dagger}\right)^{*} \\
& =1
\end{aligned}
$$

Therefore K is a left inverse for C, and $1-T U T^{\dagger}+T U T^{*}$ is injective. Moreover, if $T T^{*}$ and $\left(T T^{*}\right)^{\dagger}$ commute with U, then we see that

$$
\begin{aligned}
C K & =\left(1-T_{U} T^{\dagger}+T U T^{*}\right)\left(1-T U T^{\dagger}+\left(T U T^{*}\right)^{\dagger}\right) \\
& =1-T U T^{\dagger}+\left(T U T^{*}\right)^{\dagger}-T U T^{\dagger}\left(T U T^{*}\right)^{\dagger}+T U T^{*}-T U T^{*} T U T^{\dagger}+T Y T^{*}\left(T U T^{*}\right)^{\dagger} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-T U T^{\dagger}\left(T^{*}\right)^{\dagger} U T^{\dagger}+T U T^{*}-T U T^{*} T U T^{\dagger}+T U T^{*}\left(T^{*}\right)^{\dagger} U T^{\dagger} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-T U\left(T^{*} T\right)^{\dagger} U T^{\dagger}+T U T^{*}-T U T^{*} T U T^{\dagger}+T U T^{\dagger} T U T^{\dagger} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-T\left(T^{*} T\right)^{\dagger} U U T^{\dagger}+T U T^{*}-T U U T^{*} T T^{\dagger}+T U U T^{\dagger} T T^{\dagger} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-T T^{\dagger}\left(T^{*}\right)^{\dagger} U T^{\dagger}+T U T^{*}-T U T^{*} T T^{\dagger}+T U T^{\dagger} \\
& =1-T U T^{\dagger}+\left(T^{*}\right)^{\dagger} U T^{\dagger}-\left(T^{*}\right)^{\dagger} U T^{\dagger}+T U T^{*}-T U T^{*}+T U T^{\dagger} \\
& =1
\end{aligned}
$$

This shows that K is a right inverse for C. Hence $1-T U T^{\dagger}+T U T^{*}$ is invertible.

References

[1] R. Bouldin, Closed range and relative regularity for products, J. Math. Anal. Appl. 61 (1977) 397-403.
[2] R. Bouldin, The product of operators with closed range, Tôhoku Math. J. (2) 25 (1973) 359-363.
[3] T. Furuta, Invitation to linear operators, Taylor \& Francis, Ltd., London, 2001.
[4] S. Izumino, The product of operators with closed range and an extension of the revers order law, Tôhoku Math. J. (2) 34 (1982) 43-52.
[5] E. C. Lance, Hilbert C*-modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
[6] M. S. Moslehian, K. Sharifi, M. Forough and M. Chakoshi, Moore-Penrose inverse of Gram operator on Hilbert C*-modules, Studia Math. 210 (2012), no. 2, 189-196.
[7] G. J. Murphy, C*-algebras and operator theory, Academic Press, London, 1990.
[8] K. Sharifi, The product of operators with closed range in Hilbert C*-modules, Linear Algebra Appl. 435 (2011) 1122-1130.
[9] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C*-modules, Linear Algebra Appl. 428 (2008) 992-1000.

[^0]: 2010 Mathematics Subject Classification. Primary 46L08; Secondary 47L60, 47B50, 46C05
 Keywords. Moore-Penrose inverse; closed range; Hilbert C*-module.
 Received: 25 September 2014; Accepted: 14 April 2015
 Communicated by Dragan S. Djordjević
 Corresponding author: Maryam Amyari
 Email addresses: mohammadzadehkarizaki@gmail.com (Mehdi Mohammadzadeh Karizaki), hassani@mshdiau.ac.ir (Mahmoud Hassani), amyari@mshdiau.ac.ir (Maryam Amyari)

