Convex Sets in Proximal Relator Spaces

J. F. Peters ${ }^{\text {a }}$
${ }^{a}$ Department of Electrical \& Computer Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada and Department of Mathematics, Faculty of Arts and Sciences, Adryaman University, Adryaman, Turkey

Abstract

This article introduces convex sets in finite-dimensional normed linear spaces equipped with a proximal relator. A proximal relator is a nonvoid family of proximity relations \mathcal{R}_{δ} (called a proximal relator) on a nonempty set. A normed linear space endowed with \mathcal{R}_{δ} is an extension of the Száz relator space. This leads to a basis for the study of the nearness of convex sets in proximal linear spaces.

1. Introduction

This article introduces convex sets [9,13] in finite-dimensional normed linear spaces equipped with a proximal relator (briefly, proximal linear spaces). A proximal relator is a nonvoid family of proximity relations \mathcal{R}_{δ} (called a proximal relator) on a nonempty set. This form of relator is an extension of a Száz relator [10-12]. For simplicity, we consider only two proximity relations, namely, the Efremovic̆ proximity δ [4] and the proximity δ_{S} between convex sets in defining $\mathcal{R}_{\delta}[7,8]$. The assumption made here is that each proximal linear space is a topological space that provides the structure needed to define proximity relations. The proximity relation δ_{S} defines a nearness relation between convex sets useful in many applications.

2. Preliminaries

Let E be a finite-dimensional real normed linear space, $A \subset E$. The Hausdorff distance $D(x, A)$ is defined by $D(x, A)=\inf \{\|x-y\|: y \in A\}$ and $\|x-y\|$ is the distance between vectors x and y. The C̆ech closure [1] of A (denoted by $c A$) is defined by $c A=\{x \in V: D(x, A)=0\}$. The sets A and B are proximal (near) (denoted $A \delta B)$ if and only if $c A \cap c B \neq \emptyset$.

A subset S in E is convex, provided S is the set of all points in E that are nearest to a point z in $S[5,9]$. Let S_{z} (called Klee-Phelphs convex set) be the set of all points in E having $z \in S$ as the nearest point in S, defined by

$$
S_{z}=\left\{x \in E:\|x-z\|=\inf _{y \in S}\|x-y\|\right\} .
$$

[^0]In effect, S_{z} is a convex cone with vertex z. This leads to the following useful Lemma.
Lemma 2.1. (Phelps [9, §4]) If E is an inner product space and $z \in S \subset E$, then S_{z} is convex.
Let $S \subset E, x, y \in S$, and S_{x}, S_{y} are nonempty Klee-Phelps nearest point sets. From Lemma 2.1, S_{x}, S_{y} are convex sets. Next, consider the proximity relation δ_{S} between convex sets. Sets S_{x}, S_{y} are proximal (denoted by $S_{x} \delta_{S} S_{y}$) if and only if $\|a-b\|=0$ for some $a \in \operatorname{cl} S_{x}, b \in \operatorname{cl} S_{y}$. That is, convex sets S_{x}, S_{y} are near, provided the convex set S_{x} has at least one point a that matches some point b in S_{y}. In effect, S_{x}, S_{y} are proximal if and only if $c l\left(S_{x}\right) \cap \operatorname{cl}\left(S_{y}\right) \neq \emptyset$.

In general, a subset $K \subset E$ that contains every segment whose endpoints belong to K is convex [6]. Convex sets A, B are near, provided A and B have at least one common point. Convex sets A, B are remote (denoted by $A \underline{\delta}_{S} B$), provided $\|a-b\| \neq 0$ for all $a \in A, b \in B$.

3. Main Results

In a real normed linear space endowed with a proximal relator \mathcal{R}_{δ} (briefly, proximal linear space), we obtain the following results.

Theorem 3.1. Let $\left(E,\|\cdot\|, \mathcal{R}_{\delta}\right)$ be a proximal linear space, $S_{x}, S_{y} \subset E$. Then
$1^{0} z \in S_{x} \cap S_{y}$ implies $S_{x} \delta_{S} S_{y}$.
2^{0} Let S_{x}, S_{y} be convex sets in $E . S_{x} \delta S_{y}$, if and only if, $S_{x} \delta_{S} S_{y}$.
3° Let A, B be convex sets in $E . A \delta B$, if and only if, $A \delta_{S} B$.
4^{0} Let A, B, C be convex sets in $E .(A \cup B) \delta C$ implies $(A \cup B) \delta_{S} C$.
$5^{\circ} \mathrm{cl} A \delta \mathrm{clB}$ implies $\mathrm{cl} A \delta_{S} \mathrm{clB}$.
Proof.
$2^{\circ}: A \delta_{S} B$, i.e., $\|a-b\|=0$ for some $a \in A, b \in B \Leftrightarrow a \in \operatorname{cl} A \cap \operatorname{cl} B \Leftrightarrow A \delta B$.
$2^{\circ} \Rightarrow 1^{\circ}$.
$3^{\circ}:(A \cup B) \delta C$ provided $\operatorname{cl}(A \cup B) \cap \operatorname{clC} \neq \emptyset$. Consequently, there is at least one point $z \in \operatorname{cl}(A \cup B) \cap \operatorname{clC}$ such that $\|z-y\|=0$ for some $z \in \operatorname{cl}(A \cup B), y \in \operatorname{clC}$. Hence, $(A \cup B) \delta_{S} C$.
$3^{o} \Rightarrow 4^{0}$.
Let $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in S \subset E, x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$ (dot product), $\|x\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$ (norm of x). The angle θ between x and y is defined by

$$
\theta=\cos ^{-1}\left[\frac{x \cdot y}{\|x\|\|y\|}\right]
$$

Each $\theta \in \mathbb{R}$. Let S_{θ} be the set of angles between points in E that are nearest to the angle $\theta \in S$, i.e.,

$$
S_{\theta}=\left\{\theta^{\prime} \in \mathbb{R}:\left\|\theta^{\prime}-\theta\right\|=\inf _{y \in S_{\theta}}\left\|\theta^{\prime}-y\right\|\right\} .
$$

Theorem 3.2. Let U, V be finite-dimensional proximal linear spaces, $A \subset U, B \subset V$. Let $A_{\theta}, B_{\theta^{2}}$ be sets of angles nearest θ, θ^{\perp} between points in U, V, respectively. Then

$$
\|x-y\|=0 \text { for some } x \in A_{\theta}, y \in B_{\theta^{<}} \text {if and only if } A_{\theta} \delta_{S} B_{\theta^{\star}} .
$$

Proof. From Lemma 2.1, $A_{\theta}, B_{\theta^{\llcorner }}$are convex sets. $A_{\theta} \delta B_{\theta^{\llcorner }} \Leftrightarrow A_{\theta} \delta_{S} B_{\theta^{\llcorner }}$(from Theorem 3.1) if and only if $\|x-y\|=0$ for some $x \in A_{\theta}, y \in B_{\theta^{\iota}}$.

Remark 3.3. Since no assumption is made about the dimensions of the proximal linear spaces in Theorem 3.2, this means that subsets in spaces with unequal dimensions can be compared. Let $x, y \in U, x^{\prime}, y^{\prime} \in V$ and let $\theta(x, y), \theta\left(x^{\prime}, y^{\prime}\right)$ be angles between points in U, V, respectively. Further, let $A \subset U, B \subset V$. By adding the condition that $0<\|x-y\|<\varepsilon$ and $0<\left\|x^{\prime}-y^{\prime}\right\|<\varepsilon$ and finding $A_{\theta(x, y)} \delta_{S} B_{\theta\left(x^{\prime}, y^{\prime}\right)}$, it is then possible to identify subsets with similar shapes in proximal linear spaces. In effect, we thereby obtain a means of classifying shapes in such spaces.
In a proximal real linear space E, the neighbourhood of a point $x \in X$ (denoted by $N_{x, \varepsilon}$), for $\varepsilon>0$, is defined by

$$
N_{x, \varepsilon}=\{y \in X:\|x-y\|<\varepsilon\}
$$

Let $A \subset E$ be a convex set. The interior of a set A (denoted by $\operatorname{int}(A)$) and boundary of A (denoted by $\operatorname{bdy}(A))$ in E are defined by

$$
\begin{aligned}
\operatorname{int}(A) & =\left\{x \in X: N_{x, \varepsilon} \subseteq A\right\} . \\
\operatorname{bdy}(A) & =\operatorname{cl}(A) \backslash \operatorname{int}(A) .
\end{aligned}
$$

A set A has a natural strong inclusion in a set B associated with $\delta[2,3]$ (denoted by $A<_{\delta} B$), provided $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int} B))$, i.e., $A \underline{\delta}(X \backslash \operatorname{cl}(\operatorname{int} B))(A$ is far from the complement of $\operatorname{cl}(\operatorname{int} B))$. This leads to the following results.

Theorem 3.4. Let E be a proximal linear space and let $A, B \subset E$ be convex sets. Then
$1^{0} A<_{\delta} B \Rightarrow A \delta_{S} B$.
2° Let S_{x}, S_{y} be convex sets in $E . S_{x} \ll_{\delta} S_{y} \Rightarrow S_{x} \delta_{S} S_{y}$.
$3^{\circ} \mathrm{clA}<_{\delta} c l B \Leftrightarrow c l A \delta_{S} c l B$.
4^{0} Let S_{x}, S_{y} be convex sets in $E . c l S_{x}<_{\delta} \mathrm{clS}_{y} \Leftrightarrow \operatorname{clS}_{x} \delta_{S} c l S_{y}$.
Proof.
$1^{o}: A \ll_{\delta} B \Leftrightarrow x \in \operatorname{int}(\mathrm{cl}(\operatorname{int} B))$ for each $x \in A \Leftrightarrow A \delta_{S} B$.
$1^{0} \Rightarrow 2^{\circ}$.
3° : Symmetric with the proof of 1^{0}.
$3^{\circ} \Rightarrow 4^{0}$.
Theorem 3.5. Let E be a proximal linear space, $A \subset X$. Then $A \subseteq c l(A)$.
Proof. Let $x \in(X \backslash A)$ such that $x=a$ for some $a \in \operatorname{cl} A$. Consequently, $x \in \operatorname{cl} A$. Hence, $A \subseteq \operatorname{cl} A$.
Theorem 3.6. Let E be a proximal linear space, $A \subset X$. Then
$1^{0} A \subseteq \operatorname{int}(A) \subset \operatorname{cl}(A)$.
$2^{0} b d y(A) \subseteq c l(A)$.
Proof. Immediate from the definition of $\operatorname{int}(A), \operatorname{bdy}(A), \mathrm{cl}(A)$.
Theorem 3.7. Let E be a proximal linear space, $A \subset X$. Then $\operatorname{int}(A) \cup b d y(A) \subseteq c l(A)$.
Proof. Immediate Theorem 3.6.
Theorem 3.8. Let E be a proximal linear space, $A \subset E$. Then $c l(A)=\operatorname{int}(A) \cup b d y(A)$.
Proof.

$$
\begin{aligned}
A \subseteq \operatorname{cl}(A)[\text { Theorem 3.5] } & \Rightarrow \operatorname{int}(A) \cup \operatorname{bdy}(A) \subseteq \operatorname{cl}(A)[\text { Theorem 3.7] } \\
& \Rightarrow \operatorname{bdy}(A) \subset \operatorname{cl}(A) \text {, from Theorem 3.6, and } \\
& \operatorname{int}(A) \subset \operatorname{cl}(A), \text { from Theorem 3.6 } \\
& \Rightarrow \operatorname{cl}(A) \subseteq \operatorname{int}(A) \cup \operatorname{bdy}(A) .
\end{aligned}
$$

If E be a proximal linear space, members of the families

$$
\begin{aligned}
& \mathcal{E}=\{A \subset E: \operatorname{int}(A) \neq \emptyset\} \text { and } \\
& \mathcal{D}=\{A \subset E: \operatorname{cl}(A)=E\}
\end{aligned}
$$

are called fat and dense collections of subsets of E, respectively. Let $c x \mathcal{E}, c x \mathcal{D}$ denote fat and dense collections of convex subsets of E. Extensions of \mathcal{E}, \mathcal{D} (denoted by ext \mathcal{E}, ext \mathcal{D}) are introduced in Theorem 3.9.

Theorem 3.9. Let E be a proximal linear space. Let $S_{x}, S_{y} \subset E$ be convex sets. Then
1^{0} ext $\mathcal{E}=\{A \subset E: \forall B \in \mathcal{D}, \operatorname{int}(A) \delta \operatorname{cl}(B)\}$.
2^{0} extD $=\{A \subset E: \forall B \in \operatorname{ext} \mathcal{E}, c l A \delta c l B\}$.
$3^{0} c x \mathcal{E}=\left\{S_{x} \subset E: \forall S_{y} \in \mathcal{D}, \operatorname{int}\left(S_{x}\right) \delta \operatorname{cl}\left(S_{y}\right)\right\}$.
$4^{0} \operatorname{cxD}=\left\{S_{x} \subset E: \forall S_{y} \in \operatorname{ext} \mathcal{E}, \operatorname{cl}\left(S_{x}\right) \delta \operatorname{cl}\left(S_{y}\right)\right\}$.
Proof.
1^{0} : Let $A \in \operatorname{ext} \mathcal{E}, B \in \mathcal{D}$. Then $\operatorname{cl} B=E$. Consequently, $\operatorname{int}(A) \cap \operatorname{cl} B \neq \emptyset$. Hence, $\operatorname{int}(A) \delta \operatorname{int}(B)$.
2° : Symmetric with the proof of 1^{0}.
$1^{\circ} \Rightarrow 3^{0}$.
$2^{o} \Rightarrow 4^{0}$.
Theorem 3.10. Let E be a proximal linear space. Then
$1^{0} A \in \operatorname{cx} \mathcal{E}, B \in \mathcal{D} \Rightarrow \operatorname{int}(A) \delta_{S} c l(B)$.
$2^{0} A \in \operatorname{cxD}, B \in \operatorname{ext} \mathcal{E} \Rightarrow \operatorname{cl}(A) \delta_{S} \operatorname{cl}(B)$.
Proof.
1^{0} : Let $A \in \operatorname{ext} \mathcal{E}, B \in \mathcal{D}$. Consequently, $\operatorname{int}(A) \delta \operatorname{cl}(B)$ from Theorem 3.9. Hence, $\operatorname{int}(A) \delta_{S} \operatorname{cl}(B)$ from Theorem 3.1.
2° : Symmetric with the proof of 1^{0}.

References

[1] E. Čech, Topological Spaces, revised Ed. by Z. Frolik and M. Katĕtov, John Wiley \& Sons, London, 1966, MR0104205.
[2] A. Di Concilio, Action, uniformity and proximity, Theory and Applications of Proximity, Nearness and Uniformity (S.A. Naimpally, G. Di Maio, ed.), Seconda Università di Napoli, 2008, pp. 71-88.
[3] A. Di Concilio, Proximity: A powerful tool in extension theory, function spaces, hyper- spaces, Boolean algebras and point-free geometry, Contemporary Math. 486 (2009), 89-114, MR2521943.
[4] V.A. Efremovic̆, The geometry of proximity I (in Russian), Mat. Sb. (N.S.) 31 (1952), no. 1, 189-200.
[5] V.L. KLee, A characterization of convex sets, The Amer. Math. Monthly 56 (1949), no. 4, 247249, MR0029519.
[6] V.L. KLee, What is a convex set?, The Amer. Math. Monthly 78 (1971), no. 6, 616-631.
[7] J.F. Peters, Proximal relator spaces, FILOMAT (2014), 1-5.
[8] J.F. Peters and S.A. Naimpally, Applications of near sets, Notices of the Amer. Math. Soc. 59 (2012), no. 4, 536-542, MR2951956.
[9] R.R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc. 8 (1957), no. 4, 790-797, MR0087897.
[10] Á Száz, Basic tools and mild continuities in relator spaces, Acta Math. Hungar. 50 (1987), 177-201.
[11] Á Száz, An extension of Kelley's closed relation theorem to relator spaces, FILOMAT 14 (2000), 49-71.
[12] Á Száz, Applications of relations and relators in the extensions of stability theorems for homogeneous and additive functions, The Australian J. of Math. Anal. and Appl. 6 (2009), no. 1, 1-66.
[13] J.-F. Vial, Strong and weak convexity of sets and functions, Math. of Operations Research 8 (1983), no. 2, 231-259.

[^0]: 2010 Mathematics Subject Classification. Primary 54E15; Secondary 54E17, 03E15, 03E75
 Keywords. Closure of a set; Proximity relation; relator
 Received: 28 September 2014; Accepted: 30 November 2014
 Communicated by Hari M. Srivastava
 Research supported by Scientific and Technological Research Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BIDEB) under grants: 2221-1059B211301223, 2221-1059B211402463 and Natural Sciences \& Engineering Research Council of Canada (NSERC) discovery grant 185986.

 Email address: James.Peters3@ad.umanitoba.ca (J. F. Peters)

