An Inequality for Similarity Condition Numbers of Unbounded Operators with Schatten - von Neumann Hermitian Components

Michael Gil ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Ben Gurion University of the Negev, P.0. Box 653, Beer-Sheva 84105, Israel

Abstract

Let H be a linear unbounded operator in a separable Hilbert space. It is assumed the resolvent of H is a compact operator and $H-H^{*}$ is a Schatten - von Neumann operator. Various integro-differential operators satisfy these conditions. Under certain assumptions it is shown that H is similar to a normal operator and a sharp bound for the condition number is suggested.

We also discuss applications of that bound to spectrum perturbations and operator functions.

1. Introduction and Statement of the Main Result

Let \mathfrak{G} be a separable Hilbert space with a scalar product (.,.), the norm $\|\|=.\sqrt{(., .)}$ and unit operator I. Two operators A and \tilde{A} acting in \mathfrak{H} are said to be similar if there exists a boundedly invertible bounded operator T such that $\tilde{A}=T^{-1} A T$. The constant $\kappa_{T}=\left\|T^{-1}\right\|\|T\|$ is called the condition number. The condition number is important in applications. We refer the reader to [5], where condition number estimates are suggested for combined potential boundary integral operators in acoustic scattering and [23], where condition numbers are estimated for second-order elliptic operators. Conditions that provide the similarity of various operators to normal and selfadjoint ones were considered by many mathematicians, cf. [1, 4, 7], [14, 15], [17]-[21], and references given therein. In many cases, the condition number must be numerically calculated, e.g. [2, 20]. The interesting generalizations of condition numbers of bounded linear operators in Banach spaces were explored in the paper [13].

In the present paper we consider a class of unbounded operators in a Hilbert space with Schatten von Neumann Hermitian components. Numerous integro-differential operators belong to that class. We suggest a sharp bound for the condition numbers of the considered operators. It generalizes and improves the bound for the condition numbers of operators with Hilbert-Schmidt Hermitian components from [11]. We also discuss applications of the obtained bound to spectrum perturbations and norm estimates for operator functions.

Introduce the notations. For a linear operator A in $\mathfrak{G}, \operatorname{Dom}(A)$ is the domain, A^{*} is the adjoint of A; $\sigma(A)$ denotes the spectrum of A and A^{-1} is the inverse to $A ; R_{\lambda}(A)=(A-I \lambda)^{-1}(\lambda \notin \sigma(A))$ is the resolvent; $A_{I}:=\left(A-A^{*}\right) / 2 i ; \lambda_{k}(A)(k=1,2, \ldots)$ are the eigenvalues of A taken with their multiplicities and enumerated as $\left|\lambda_{j}(A)\right| \leq\left|\lambda_{j+1}(A)\right|$, and $\rho(A, \lambda)=\inf _{k}\left|\lambda-\lambda_{k}(A)\right|$. By $S N_{r}(1 \leq r<\infty)$ we denote the Schatten - von Neumann ideal of compact operators K with the finite norm $N_{r}(K):=\left[\operatorname{Trace}\left(K K^{*}\right)^{r / 2}\right]^{1 / r}$.

[^0]Everywhere below H is an invertible operator in \mathfrak{H}, with the following properties: $\operatorname{Dom}(H)=\operatorname{Dom}\left(H^{*}\right)$, and there are an $r \in[1, \infty)$ and an integer $p \geq 1$, such that

$$
\begin{equation*}
H^{-1} \in S N_{r} \text { and } H_{I} \in S N_{2 p} . \tag{1.1}
\end{equation*}
$$

Note that instead of the condition $H^{-1} \in S N_{r}$, in our reasonings below, one can require the condition $(H-a I)^{-1} \in S N_{r}$ for some point $a \notin \sigma(H)$. Since H^{-1} is compact, $\sigma(H)$ is purely discrete. It is assumed that all the eigenvalues $\lambda_{j}(H)$ of H are different. For a fixed integer m put

$$
\delta_{m}(H)=\inf _{j=1,2, \ldots ; j \neq m}\left|\lambda_{j}(H)-\lambda_{m}(H)\right| .
$$

It is further supposed that

$$
\begin{equation*}
\zeta_{q}(H):=\left[\sum_{j=1}^{\infty} \frac{1}{\delta_{j}^{q}(H)}\right]^{1 / q}<\infty\left(\frac{1}{q}+\frac{1}{2 p}=1\right) \tag{1.2}
\end{equation*}
$$

for an integer $p \geq 1$. Hence it follows that

$$
\begin{equation*}
\hat{\delta}(H):=\inf _{m} \delta_{m}(H)=\inf _{j \neq k ; j, k=1,2, \ldots}\left|\lambda_{j}(H)-\lambda_{k}(H)\right|>0 \tag{1.3}
\end{equation*}
$$

Denote also

$$
u_{p}(H):=\sqrt{2} \zeta_{q}(H) \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{\beta_{p}^{k p+m} N_{2 p}^{k p+m+1}\left(H_{I}\right)}{\hat{\delta}^{k p+m}(H) \sqrt{k!}}
$$

where

$$
\begin{equation*}
\beta_{p}:=2\left(1+\frac{2 p}{e^{2 / 3} \ln 2}\right) . \tag{1.4}
\end{equation*}
$$

Now we are in a position to formulate our main result.
Theorem 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible operator T and a normal operator D acting in \mathfrak{H}, such that

$$
\begin{equation*}
T H x=D T x \quad(x \in \operatorname{Dom}(H)) . \tag{1.5}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\kappa_{T}:=\left\|T ^ { - 1 } \left|\|\mid T\| \leq e^{2 u_{p}(H)}\right.\right. \tag{1.6}
\end{equation*}
$$

The proof of this theorem is divided into a series of lemmas which are presented in the next three sections. The theorem is sharp: if H is selfadjoint, then $u_{p}(H)=0$ and we obtain $\kappa_{T}=1$.

As it is shown below, one can replace (1.6) by the inequality

$$
\begin{equation*}
\mathcal{K}_{T} \leq e^{2 \hat{u}_{p}(H)} \tag{1.7}
\end{equation*}
$$

where

$$
\hat{u}_{p}(H):=\sqrt{2 e} \zeta_{q}(H) \sum_{m=0}^{p-1} \frac{\beta_{p}^{m} N_{2 p}^{m+1}\left(H_{I}\right)}{\hat{\delta}^{m}(A)} \exp \left[\frac{\left(\beta_{p} N_{2 p}\left(H_{I}\right)\right)^{2 p}}{2 \hat{\delta}^{2 p}(A)}\right] .
$$

In addition, below we show that in our considerations instead of β_{p} defined by (1.4) in the case

$$
\begin{equation*}
p=2^{m-1}, m=2,3, \ldots, \text { one can take } \hat{\beta}_{p}=2\left(1+\operatorname{ctg}\left(\frac{\pi}{4 p}\right)\right) \text { and } \hat{\beta}_{1}=\sqrt{2} \tag{1.8}
\end{equation*}
$$

instead of β_{1}.
To illustrate Theorem 1.1, consider the operator $H=S+K$, where $K \in S N_{2 p}$ and S is a positive definite selfadjoint operator with a discrete spectrum, whose eigenvalues are different and

$$
\begin{equation*}
\lambda_{j+1}(S)-\lambda_{j}(S) \geq b_{0} j^{\alpha} \quad\left(b_{0}=\text { const }>0 ; \alpha>1 / q=(2 p-1) /(2 p) ; j=1,2, \ldots\right) \tag{1.9}
\end{equation*}
$$

Since S is selfadjoint we have

$$
\sup _{k} \inf _{j}\left|\lambda_{k}(H)-\lambda_{j}(S)\right| \leq\|K\|
$$

cf. [16]. Thus, if

$$
\begin{equation*}
2\|K\|<\inf _{j}\left(\lambda_{j+1}(S)-\lambda_{j}(S)\right) \tag{1.10}
\end{equation*}
$$

then $\hat{\delta}(H) \geq \inf _{j}\left(\lambda_{j+1}(S)-\lambda_{j}(S)-2\|K\|\right)$ and (1.2) holds with

$$
\zeta_{q}(H) \leq \zeta_{q}(S, K), \text { where } \zeta_{q}(S, K):=\left[\sum_{j=1}^{\infty}\left(\lambda_{j+1}(S)-\lambda_{j}(S)-2\|K\|\right)^{-q}\right]^{1 / q}<\infty
$$

Example 1.2. Consider in $L^{2}(0,1)$ the spectral problem

$$
u^{(4)}(x)+(K u)(x)=\lambda u(x) \quad(\lambda \in \mathbb{C}, 0<x<1) ; u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
$$

where $K \in S N_{2 p}, p \geq 1$ for an arbitrary $p \geq 1$. So H is defined by $H=d^{4} / d x^{4}+K$ with

$$
\operatorname{Dom}(H)=\left\{v \in L^{2}(0,1): v^{(4)} \in L^{2}(0,1), v(0)=v(1)=v^{\prime \prime}(0)=v^{\prime \prime}(1)=0\right\} .
$$

Take $S=d^{4} / d x^{4}$ with $\operatorname{Dom}(S)=\operatorname{Dom}(H)$. Then $\lambda_{j}(S)=\pi^{4} j^{4}(j=1,2, \ldots)$ and $\lambda_{j+1}(S)-\lambda_{j}(S) \geq 4 \pi^{4} j^{3}$. If $\|K\|<2 \pi^{4}$, then $\hat{\delta}(H) \geq 4 \pi^{4}-2\|K\|$ and

$$
\zeta_{q}^{q}(H) \leq \sum_{j=1}^{\infty}\left(4 \pi^{4} j^{3}-2\|K\|\right)^{-q}<\infty
$$

Now one can directly apply Theorem 1.1.

2. Auxiliary Results

Let B_{0} be a bounded linear operator in \mathfrak{H} having a finite chain of invariant projections $P_{k}(k=1, \ldots, n$; $n<\infty)$:

$$
\begin{equation*}
0 \subset P_{1} \mathfrak{H} \subset P_{2} \mathfrak{G} \subset \ldots \subset P_{n} \mathfrak{H}=\mathfrak{H} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{k} B_{0} P_{k}=B_{0} P_{k}(k=1, \ldots, n) \tag{2.2}
\end{equation*}
$$

That is, B_{0} maps $P_{k} \mathfrak{G}$ into $P_{k} \mathfrak{H}$ for each k. Put

$$
\Delta P_{k}=P_{k}-P_{k-1} \quad\left(P_{0}=0\right) \text { and } A_{k}=\Delta P_{k} B_{0} \Delta P_{k}
$$

It is assumed that the spectra $\sigma\left(A_{k}\right)$ of A_{k} in $\Delta P_{k} \mathfrak{H}$ satisfy the condition

$$
\begin{equation*}
\sigma\left(A_{k}\right) \cap \sigma\left(A_{j}\right)=\emptyset(j \neq k ; j, k=1, \ldots, n) \tag{2.3}
\end{equation*}
$$

Lemma 2.1. One has

$$
\sigma\left(B_{0}\right)=\cup_{k=1}^{n} \sigma\left(A_{k}\right)
$$

For the proof see [11].
Under conditions (2.1), (2.2) put

$$
Q_{k}=I-P_{k}, B_{k}=Q_{k} B_{0} Q_{k} \text { and } C_{k}=\Delta P_{k} B_{0} Q_{k} .
$$

Since B_{j} is a a block triangular operator matrix, according to the previous lemma we have

$$
\sigma\left(B_{j}\right)=\cup_{k=j+1}^{n} \sigma\left(A_{k}\right) \quad(j=0, \ldots, n)
$$

Under this condition, according to the Rosenblum theorem from [22], the equation

$$
\begin{equation*}
A_{j} X_{j}-X_{j} B_{j}=-C_{j}(j=1, \ldots, n-1) \tag{2.4}
\end{equation*}
$$

has a unique solution (see also [6, Section I.3] and [3]). We need also the following result proved in [11].

Lemma 2.2. Let condition (2.3) hold and X_{j} be a solution to (2.4). Then

$$
\begin{align*}
&\left(I-X_{n-1}\right)\left(I-X_{n-2}\right) \cdots\left(I-X_{1}\right) B_{0}\left(I+X_{1}\right)\left(I+X_{2}\right) \cdots\left(I+X_{n-1}\right)= \\
& A_{1}+A_{2}+\ldots+A_{n} \tag{2.5}
\end{align*}
$$

Take

$$
\begin{equation*}
\hat{T}_{n}=\left(I+X_{1}\right)\left(I+X_{2}\right) \cdots\left(I+X_{n-1}\right) \tag{2.6}
\end{equation*}
$$

It is simple to see that the inverse to $I+X_{j}$ is the operator $I-X_{j}$. Thus,

$$
\begin{equation*}
\hat{T}_{n}^{-1}=\left(I-X_{n-1}\right)\left(I-X_{n-2}\right) \cdots\left(I-X_{1}\right) \tag{2.7}
\end{equation*}
$$

and (2.5) can be written as

$$
\begin{equation*}
\hat{T}_{n}^{-1} B_{0} \hat{T}_{n}=\operatorname{diag}\left(A_{k}\right)_{k=1}^{n} \tag{2.8}
\end{equation*}
$$

By the inequalities between the arithmetic and geometric means we get

$$
\begin{equation*}
\left\|\hat{T}_{n}\right\| \leq \prod_{k=1}^{n-1}\left(1+\left\|X_{k}\right\|\right) \leq\left(1+\frac{1}{n-1} \sum_{k=1}^{n-1}\left\|X_{k}\right\|\right)^{n-1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{T}_{n}^{-1}\right\| \leq\left(1+\frac{1}{n-1} \sum_{k=1}^{n-1}\left\|X_{k}\right\|\right)^{n-1} \tag{2.10}
\end{equation*}
$$

Furthermore, we need the following result
Theorem 2.3. Let M be a linear operator in \mathfrak{G}, such that $\operatorname{Dom}(M)=\operatorname{Dom}\left(M^{*}\right)$ and $M_{I}=\left(M-M^{*}\right) / 2 i \in S N_{2 p}$ for some integer $p \geq 1$. Then

$$
\begin{equation*}
\left\|R_{\lambda}(M)\right\| \leq \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{\left(\beta_{p} N_{2 p}\left(M_{I}\right)\right)^{k p+m}}{\rho^{p k+m+1}(M, \lambda) \sqrt{k!}} \quad(\lambda \notin \sigma(M)) \tag{2.11}
\end{equation*}
$$

Moreover, one has

$$
\begin{equation*}
\left\|R_{\lambda}(M)\right\| \leq \sqrt{e} \sum_{m=0}^{p-1} \frac{\left(\beta_{p} N_{2 p}\left(M_{I}\right)\right)^{m}}{\rho^{m+1}(M, \lambda)} \exp \left[\frac{\left(\beta_{p} N_{2 p}\left(M_{I}\right)\right)^{2 p}}{2 \rho^{2 p}(M, \lambda)}\right] \quad(\lambda \notin \sigma(M)) \tag{2.12}
\end{equation*}
$$

For the proof in the case $p>1$ see [8, Theorem 7.9.1]. The case $p=1$ is proved in [8, Theorem 7.7.1]. Besides, β_{p} can be replaced by $\hat{\beta}_{p}$ according to (1.8).

3. The Finite Dimensional Case

In this section we apply Lemma 2.3 to an $n \times n$-matrix A whose eigenvalues are different and are enumerated in the increasing way of their absolute values. We define

$$
\begin{equation*}
\hat{\delta}(A):=\min _{j, k=1, \ldots, n ; k \neq j}\left|\lambda_{j}(A)-\lambda_{k}(A)\right|>0 . \tag{3.1}
\end{equation*}
$$

Hence, there is an invertible matrix $T_{n} \in \mathbb{C}^{n \times n}$ and a normal matrix $D_{n} \in \mathbb{C}^{n \times n}$, such that

$$
\begin{equation*}
T_{n}^{-1} A T_{n}=D_{n} \tag{3.2}
\end{equation*}
$$

Furthermore, for a fixed $m \leq n$ put

$$
\delta_{j}(A)=\inf _{m=1,2, \ldots, n ; m \neq j}\left|\lambda_{j}(A)-\lambda_{m}(A)\right| .
$$

Let $\left\{e_{k}\right\}$ be the Schur basis (the orthogonal normal basis of the triangular representation) of matrix A :

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & a_{22} & a_{23} & \ldots & a_{2 n} \\
. & . & . & \ldots & . \\
0 & 0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

with $a_{j j}=\lambda_{j}(A)$. Take $P_{j}=\sum_{k=1}^{j}\left(., e_{k}\right) e_{k} . B_{0}=A, \Delta P_{k}=\left(., e_{k}\right) e_{k}$,

$$
\begin{gathered}
Q_{j}=\sum_{k=j+1}^{n}\left(., e_{k}\right) e_{k}, A_{k}=\Delta P_{k} A \Delta P_{k}=\lambda_{k}(A) \Delta P_{k} \\
B_{j}=Q_{j} A Q_{j}=\left(\begin{array}{cccc}
a_{j+1, j+1} & a_{j+1, j+2} & \ldots & a_{j+1, n} \\
0 & a_{j+2, j+2} & \ldots & a_{j+2, n} \\
. & . & . & \ldots \\
0 & 0 & . & a_{n n}
\end{array}\right), \\
C_{j}=\Delta P_{j} A Q_{j}=\left(\begin{array}{llll}
a_{j, j+1} & a_{j, j+2} & \ldots & a_{j, n}
\end{array}\right)
\end{gathered}
$$

and

$$
\begin{equation*}
D_{n}=\operatorname{diag}\left(\lambda_{k}(A)\right) \tag{3.4}
\end{equation*}
$$

In addition,

$$
A=\left(\begin{array}{cc}
\lambda_{1}(A) & C_{1} \\
0 & B_{1}
\end{array}\right), B_{1}=\left(\begin{array}{cc}
\lambda_{2}(A) & C_{2} \\
0 & B_{2}
\end{array}\right), \ldots, B_{j}=\left(\begin{array}{cc}
\lambda_{j+1}(A) & C_{j+1} \\
0 & B_{j+1}
\end{array}\right)
$$

$(j<n)$. So B_{j} is an upper-triangular $(n-j) \times(n-j)$-matrix. Equation (2.4) takes the form

$$
\lambda_{j}(A) X_{j}-X_{j} B_{j}=-C_{j}
$$

Since $X_{j}=X_{j} Q_{j}$, we can write $X_{j}\left(\lambda_{j}(A) Q_{j}-B_{j}\right)=C_{j}$. Therefore

$$
\begin{equation*}
X_{j}=C_{j}\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1} \tag{3.5}
\end{equation*}
$$

The inverse operator is understood in the sense of subspace $Q_{j} \mathbb{C}^{n}$. Hence,

$$
\left\|X_{j}\right\| \leq\left\|C_{j}\right\|\left\|\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1}\right\|
$$

Besides, due to (2.11)

$$
\left\|\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1}\right\| \leq \sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{\left(\beta_{p} N_{2 p}\left(B_{j I}\right)^{k p+m}\right.}{\delta_{j}^{k p+m+1}(A) \sqrt{k!}}
$$

where $B_{j I}$ is the imaginary Hermitian component of B_{j}.
But $N_{2 p}\left(B_{j I}\right)=N_{2 p}\left(Q_{j} A_{I} Q_{j}\right) \leq N_{2 p}\left(A_{I}\right)(j \geq 1)$. So

$$
\left\|\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1}\right\| \leq \frac{\tau(A)}{\delta_{j}(A)}
$$

where

$$
\tau(A)=\sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{\left(\beta_{p} N_{2 p}\left(A_{I}\right)\right)^{k p+m}}{\hat{\delta}^{k p+m}(A) \sqrt{k!}}
$$

Consequently,

$$
\left\|X_{j}\right\| \leq \tau(A) \frac{\left\|C_{j}\right\|}{\delta_{j}(A)}
$$

Take $T_{n}=\hat{T}_{n}$ as in (2.6) with X_{k} defined by (3.5). Besides (2.9) and (2.10) imply

$$
\begin{equation*}
\left\|T_{n}\right\| \leq\left(1+\frac{1}{n-1} \sum_{j=1}^{n-1}\left\|X_{j}\right\|\right)^{n-1} \leq\left(1+\frac{\tau(A)}{(n-1)} \sum_{j=1}^{n-1} \frac{\left\|C_{j}\right\|}{\delta_{j}(A)}\right)^{n-1} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{n}^{-1}\right\| \leq\left(1+\frac{\tau(A)}{(n-1)} \sum_{j=1}^{n-1} \frac{\left\|C_{j}\right\|}{\delta_{j}(A)}\right)^{n-1} \tag{3.7}
\end{equation*}
$$

But by the Hólder inequality,

$$
\begin{equation*}
\sum_{j=1}^{n-1} \frac{\left\|C_{j}\right\|}{\delta_{j}(A)} \leq\left(\sum_{j=1}^{n-1}\left\|C_{j}\right\|^{2 p}\right)^{1 / 2 p} \zeta_{q}(A) \quad(1 /(2 p)+1 / q=1) \tag{3.8}
\end{equation*}
$$

where

$$
\zeta_{q}(A):=\left(\sum_{k=1}^{n-1} \frac{1}{\delta_{k}^{q}(A)}\right)^{1 / q} .
$$

In addition,

$$
\left\|C_{j}\right\|^{2} \leq \sum_{k=j+1}^{n}\left|a_{j k}\right|^{2}, j<n ; C_{n}=0
$$

and

$$
4\left\|A_{I} e_{j}\right\|^{2}=\left\|\left(A-A^{*}\right) e_{j}\right\|^{2}=\left|a_{j j}-\bar{a}_{j j}\right|^{2}+2 \sum_{k=j+1}^{n}\left|a_{j k}\right|^{2} \geq 2\left\|C_{j}\right\|^{2} ; j<n .
$$

Thus, $\left\|C_{j}\right\| \leq \sqrt{2}\left\|A_{I} e_{j}\right\|, j \leq n$ and therefore

$$
\sum_{j=1}^{n-1}\left\|C_{j}\right\|^{2 p} \leq 2^{p} \sum_{j=1}^{n-1}\left\|A_{I} e_{j}\right\|^{2 p}
$$

But from Lemmas II.4.1 and II.3.4 [12], it follows that

$$
\sum_{j=1}^{n-1}\left\|A_{I} e_{j}\right\|^{2 p} \leq N_{2 p}^{2 p}\left(A_{I}\right)
$$

Therefore relations (3.6)-(3.8) with the notation

$$
\psi_{n, p}(A)=\left(1+\frac{\tau(A) \sqrt{2} N_{2 p}\left(A_{I}\right) \zeta_{q}(A)}{n-1}\right)^{n-1}
$$

imply $\left\|T_{n}\right\| \leq \psi_{n, p}(A)$ and $\left\|T_{n}^{-1}\right\| \leq \psi_{n, p}(A)$.
We thus have proved the following.
Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator T_{n}, such that (3.2) holds with $\kappa_{T_{n}}:=\left\|T_{n}^{-1}\right\|\| \| T_{n} \| \leq \psi_{n, p}^{2}(A)$.

According to (2.12) one can replace $\tau(A)$ by

$$
\hat{\tau}(A):=\sqrt{e} \sum_{m=0}^{p-1} \frac{\left(\beta_{p} N_{2 p}\left(A_{I}\right)\right)^{m}}{\hat{\delta}^{m}(A)} \exp \left[\frac{\left(\beta_{p} N_{2 p}\left(A_{I}\right)\right)^{2 p}}{2 \hat{\delta}^{2 p}(A)}\right]
$$

and therefore

$$
\begin{equation*}
\kappa_{T_{n}} \leq \hat{\psi}_{n, p}^{2}(A) \tag{3.9}
\end{equation*}
$$

where

$$
\hat{\psi}_{n, p}(A)=\left(1+\frac{\hat{\tau}(A) \sqrt{2} N_{2 p}\left(A_{I}\right) \zeta_{q}(A)}{n-1}\right)^{n-1}
$$

The previous lemma and (3.9) improve the bound from [9, 10] for the condition numbers of matrices with large n.

4. Proof of Theorem 1.1

Recall the Keldysh theorem, cf. [12, Theorem V. 8.1].
Theorem 4.1. Let $A=S(I+K)$, where $S=S^{*} \in S N_{r}$ for some $r \in[1, \infty)$ and K is compact. In addition, let from $A f=0(f \in \mathfrak{H})$ it follows that $f=0$. Then A has a complete system of root vectors.

We need the following result.
Lemma 4.2. Under the hypothesis of Theorem 1.1, operator H^{-1} has a complete system of root vectors.
Proof. We can write $H=H_{R}+i H_{I}$ with the notation $H_{R}=\left(H+H^{*}\right) / 2$. For any real c with $-c \notin \sigma(H) \cup \sigma\left(H_{R}\right)$ we have

$$
(H+c I)^{-1}=\left(I+i\left(H_{R}+c I\right)^{-1} H_{I}\right)^{-1}\left(H_{R}+c I\right)^{-1}
$$

But $\left(I+i\left(H_{R}+c I\right)^{-1} H_{I}\right)^{-1}-I=K_{0}$, where $K_{0}=-i\left(H_{R}+c I\right)^{-1} H_{I}\left(I+i\left(H_{R}+c I\right)^{-1} H_{I}\right)^{-1}$ is compact. So

$$
\begin{equation*}
(H+c I)^{-1}=\left(H_{R}+c I\right)^{-1}\left(I+K_{0}\right) \tag{4.1}
\end{equation*}
$$

Due to (1.1) $(H+c I)^{-1}=H^{-1}\left(I+c H^{-1}\right)^{-1} \in S N_{r}$. Hence

$$
\left(H_{R}+c I\right)^{-1}=\left(I+i\left(H_{R}+c I\right)^{-1} H_{I}\right)(H+c I)^{-1} \in S N_{r}
$$

and therefore by (4.1) and the Keldysh theorem operator $(H+c I)^{-1}$ has a complete system of roots vectors. Since $(H+c I)^{-1}$ and H^{-1} commute, H^{-1} has a complete system of roots vectors, as claimed.

From the previous lemma it follows that there is an orthonormal (Schur) basis $\left\{\hat{e}_{k}\right\}_{k=1}^{\infty}$, in which H^{-1} is represented by a triangular matrix (see [12, Lemma I.4.1]). Denote $\hat{P}_{k}=\sum_{j=1}^{k}\left(., \hat{e}_{j}\right) \hat{e}_{j}$. Then

$$
H^{-1} \hat{P}_{k}=\hat{P}_{k} H^{-1} \hat{P}_{k}(k=1,2, \ldots)
$$

Besides,

$$
\begin{equation*}
\Delta \hat{P}_{k} H^{-1} \Delta \hat{P}_{k}=\lambda_{k}^{-1}(H) \Delta \hat{P}_{k}\left(\Delta \hat{P}_{k}=\hat{P}_{k}-\hat{P}_{k-1}, k=1,2, \ldots ; \hat{P}_{0}=0\right) . \tag{4.2}
\end{equation*}
$$

Put

$$
D=\sum_{k=1}^{\infty} \lambda_{k} \Delta \hat{P}_{k}\left(\Delta \hat{P}_{k}=\hat{P}_{k}-\hat{P}_{k-1}, k=1,2, \ldots\right) \text { and } V=H-D
$$

We have

$$
\begin{equation*}
H \hat{P}_{k} f=\hat{P}_{k} H \hat{P}_{k} f(k=1,2, \ldots ; f \in \operatorname{Dom}(H)) \tag{4.3}
\end{equation*}
$$

Indeed, $H^{-1} \hat{P}_{k}$ is an invertible $k \times k$ matrix, and therefore, $H^{-1} \hat{P}_{k} \mathfrak{G}$ is dense in $\hat{P}_{k} \mathfrak{G}$. Since $\Delta \hat{P}_{j} \hat{P}_{k}=0$ for $j>k$, we have $0=\Delta \hat{P}_{j} H H^{-1} \hat{P}_{k}=\Delta \hat{P}_{j} H \hat{P}_{k} H^{-1} \hat{P}_{k}$. Hence $\Delta \hat{P}_{j} H f=0$ for any $f \in \hat{P}_{k} H$. This implies (4.3).

Furthermore, put $H_{n}=H P_{n}$. Due to (4.3) we have

$$
\begin{equation*}
\left\|H_{n} f-H f\right\| \rightarrow 0(f \in \operatorname{Dom}(H)) \text { as } n \rightarrow \infty . \tag{4.4}
\end{equation*}
$$

From Lemma 3.1 and (4.4) with $A=H_{n}$ it follows that in $\hat{P}_{n} \mathfrak{H}$ there is a invertible operator T_{n} such that $T_{n} H_{n}=\hat{P}_{n} D T_{n}$ and

$$
\left\|T_{n}\right\| \leq \psi_{n, p}\left(H_{n}\right):=\left(1+\frac{\tau\left(H_{n}\right) \sqrt{2} N_{2 p}\left(H_{n I}\right) \zeta_{q}\left(H_{n}\right)}{n-1}\right)^{n-1}
$$

where

$$
\tau\left(H_{n}\right)=\sum_{m=0}^{p-1} \sum_{k=0}^{\infty} \frac{\left(\beta_{p} N_{2 p}\left(H_{n I}\right)\right)^{k p+m}}{\hat{\delta}^{k p+m}\left(H_{n}\right) \sqrt{k!}} .
$$

It is clear, that

$$
\tau\left(H_{n}\right) \sqrt{2} N_{2 p}\left(H_{n I}\right) \zeta_{q}\left(H_{n}\right) \leq \tau(H) \sqrt{2} N_{2 p}\left(H_{I}\right) \zeta_{q}(H)=u_{p}(H)
$$

and therefore

$$
\left\|T_{n}\right\| \leq\left(1+\frac{u_{p}(H)}{n-1}\right)^{n-1} \leq e^{u_{p}(H)}
$$

Similarly, $\left\|T_{n}^{-1}\right\| \leq e^{u_{p}(H)}$.
So there is a weakly convergent subsequence $T_{n_{j}}$ whose limit we denote by T. It is simple to check that $T_{n}=P_{n} T$. Since projections P_{n} converge strongly, subsequence $\left\{T_{n_{j}}\right\}$ converges strongly. Thus $T_{n_{j}} H_{n_{j}} f \rightarrow$ THf strongly and, therefore $\hat{P}_{n_{j}} D T_{n_{j}} f=T_{n_{j}} H_{n_{j}} f \rightarrow$ THf strongly. Letting $n_{j} \rightarrow \infty$ hence we arrive at the required result.

Inequality (1.7) follows from (3.9) according to the above arguments.

5. Operators with Hilbert - Schmidt Components

In this section in the case $p=1$ we slightly improve Theorem 1.1. Besides, the misprint in the main result from [11] is corrected.

Denote

$$
g(H):=\sqrt{2}\left[N_{2}^{2}\left(H_{I}\right)-\sum_{k=1}^{\infty}\left|I m \lambda_{k}(H)\right|^{2}\right]^{1 / 2} \leq \sqrt{2} N_{2}\left(H_{I}\right),
$$

and

$$
\tau_{2}(H):=\sum_{k=0}^{\infty} \frac{g^{k+1}(H)}{\sqrt{k!} \hat{\delta}^{k}(H)}
$$

Theorem 5.1. Let conditions (1.1) and (1.2) be fulfilled with $p=1$. Then there are an invertible operator T and a normal operator D acting in \mathfrak{H}, such that (1.5) holds. Moreover,

$$
\begin{equation*}
\kappa_{T} \leq e^{2 \digamma_{2}(H) \tau_{2}(H)} \tag{5.1}
\end{equation*}
$$

Proof. Let A be an $n \times n$-matrix whose eigenvalues are different. Define $\hat{\delta}(A), \delta_{m}(A)$ and $\zeta_{2}(A)$ as in Section 3. We have

$$
g(A):=\sqrt{2}\left[N_{2}^{2}\left(A_{I}\right)-\sum_{k=1}^{n}\left|I m \lambda_{k}(A)\right|^{2}\right]^{1 / 2}
$$

Put

$$
\tau_{2}(A):=\sum_{k=0}^{n-2} \frac{g^{k+1}(A)}{\sqrt{k!} \hat{\delta}^{k}(A)} \text { and } \gamma_{n}(A):=\left(1+\frac{\zeta_{2}(A) \tau_{2}(A)}{n-1}\right)^{2(n-1)}
$$

Due to Lemma 3.1 from [11], there are an invertible matrix $M_{n} \in \mathbb{C}^{n \times n}$ and a normal matrix $D_{n} \in \mathbb{C}^{n \times n}$, such that $M_{n}^{-1} A M_{n}=D_{n}$. and

$$
\begin{equation*}
\left\|M_{n}^{-1} \mid\right\|\left\|M_{n}\right\| \leq \gamma_{n}(A) \tag{5.2}
\end{equation*}
$$

Now take H_{n} and \hat{P}_{n} as in the proof of Theorem 1.1 from which it follows follows that in $\hat{P}_{n} \mathfrak{H}$ there is a invertible operator T_{n} such that $T_{n} H_{n}=\hat{P}_{n} D T_{n}$. Besides, according to (5.2)

$$
\left\|T_{n}^{-1} \mid\right\|\left\|T_{n}\right\| \leq\left(1+\frac{\zeta_{2}\left(H_{n}\right) \tau_{2}\left(H_{n}\right)}{n-1}\right)^{2(n-1)}
$$

with

$$
\tau_{2}\left(H_{n}\right)=\sum_{k=0}^{n-2} \frac{g^{k+1}\left(H_{n}\right)}{\sqrt{k!} \hat{\delta}^{k}\left(H_{n}\right)}
$$

It is simple to see that $\zeta_{2}\left(H_{n}\right) \leq \zeta_{2}(H), \tau_{2}\left(H_{n}\right) \leq \tau_{2}(H)$ and thus

$$
\left\|T_{n}^{-1}\right\|\left\|\left\|T_{n}\right\| \leq e^{2 \zeta_{2}(H) \tau_{2}(H)}\right.
$$

Hence taking into account (4.4) and that a subsequence of $\left\{T_{n}\right\}$ strongly converges (see the proof of Theorem 1.1), we arrive at the required result.

6. Applications of Theorem 1.1

Rewrite (1.5) as $H x=T^{-1} D T x$. Let ΔP_{k} be the eigenprojections of the normal operator D and $E_{k}=$ $T^{-1} \Delta P_{k} T$. Then

$$
H x=\sum_{k=1}^{\infty} \lambda_{k}(H) E_{k} x \quad(x \in \operatorname{Dom}(H))
$$

Let $f(z)$ be a scalar function defined and bounded on the spectrum of H. Put

$$
f(H)=\sum_{k=1}^{\infty} f\left(\lambda_{k}(H)\right) E_{k}
$$

and

$$
\gamma_{p}(H)=e^{2 u_{p}(H)}
$$

Theorem 1.1 immediately implies.
Corollary 6.1. Let conditions (1.1) and (1.2) hold. Then $\|f(H)\| \leq \gamma_{p}(H) \sup _{k}\left|f\left(\lambda_{k}(H)\right)\right|$.
In particular, we have

$$
\left\|e^{-H t}\right\| \leq \gamma_{p}(H) e^{-\beta(H) t} \quad(t \geq 0)
$$

where $\beta(H)=\inf _{k} \operatorname{Re} \lambda_{k}(H)$ and

$$
\begin{equation*}
\left\|R_{\lambda}(H)\right\| \leq \frac{\gamma_{p}(H)}{\rho(H, \lambda)}(\lambda \notin \sigma(H)) . \tag{6.1}
\end{equation*}
$$

Let A and \tilde{A} be linear operators. Then the quantity

$$
s v_{A}(\tilde{A}):=\sup _{t \in \sigma(\tilde{A})} \inf _{s \in \sigma(A)}|t-s|
$$

is said to be the variation of \tilde{A} with respect to A.
Now let \tilde{H} be a linear operator in \mathfrak{G} with $\operatorname{Dom}(H)=\operatorname{Dom}(\tilde{H})$ and

$$
\begin{equation*}
\xi:=\|H-\tilde{H}\|<\infty . \tag{6.2}
\end{equation*}
$$

From (6.1) it follows that $\lambda \notin \sigma(\tilde{H})$, provided $\xi \gamma_{p}(H)<\rho(H, \lambda)$. So for any $\mu \in \sigma(\tilde{H})$ we have $\xi \gamma_{p}(H) \geq$ $\rho(H, \mu)$. This inequality implies our next result.

Corollary 6.2. Let conditions (1.1), (1.2) and (6.2) hold. Then $s v_{H}(\tilde{H}) \leq \xi \gamma_{p}(H)$.
Now consider unbounded perturbations. To this end put

$$
H^{-v}=\sum_{k=1}^{\infty} \lambda_{k}^{-v}(H) E_{k}(0<v \leq 1)
$$

Similarly H^{v} is defined. We have

$$
\begin{equation*}
\left\|H^{v} R_{\lambda}(H)\right\| \leq \frac{\gamma(H)}{\phi_{v}(H, \lambda)}(\lambda \notin \sigma(H)) \tag{6.3}
\end{equation*}
$$

where

$$
\phi_{v}(H, \lambda)=\inf _{k}\left|\left(\lambda-\lambda_{k}(H)\right) \lambda_{k}^{-v}(H)\right| .
$$

Now let \tilde{H} be a linear operator in \mathfrak{G} with $\operatorname{Dom}(H)=\operatorname{Dom}(\tilde{H})$ and

$$
\begin{equation*}
\xi_{v}:=\left\|(H-\tilde{H}) H^{-v}\right\|<\infty . \tag{6.4}
\end{equation*}
$$

Take into account that

$$
R_{\lambda}(H)-R_{\lambda}(\tilde{H})=R_{\lambda}(H)(\tilde{H}-H) R_{\lambda}(\tilde{H})=R_{\lambda}(\tilde{H})(\tilde{H}-H) H^{-v} H^{v} R_{\lambda}(H)
$$

Thus, $\lambda \notin \sigma(\tilde{H})$, provided the conditions (6.4) and $\xi_{\nu} \gamma_{p}(H)<\phi_{v}(H, \lambda)$ hold. So for any $\mu \in \sigma(\tilde{H})$ we have

$$
\begin{equation*}
\xi_{v} \gamma(H) \geq \phi_{v}(H, \mu) \tag{6.5}
\end{equation*}
$$

The quantity

$$
v-\operatorname{rsv}_{H}(\tilde{H}):=\sup _{t \in \sigma(\tilde{H})} \inf _{s \in \sigma(H)}\left|(t-s) s^{-v}\right|
$$

is said to be the v - relative spectral variation of operator \tilde{H} with respect to H. Now (6.5) implies.
Corollary 6.3. Let conditions (1.1), (1.2) and (6.4) hold. Then $v-\operatorname{rsv}_{H}(\tilde{H}) \leq \xi_{v} \gamma_{p}(H)$.

References

[1] N. E. Benamara and N. K. Nikolskii, Resolvent tests for similarity to a normal operator, Proc. London Math. Soc., 78, (1999) 585-626.
[2] T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, M. Lindner, Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation, Numer. Methods Partial Differential Equ., 27, (2011) 31-69
[3] R. Bhatia, and P. Rosenthal, How and why to solve the operator equation $A X-X B=Y$, Bull. London Math. Soc. 29 (1997) 1-21.
[4] J.A. van Casteren, Operators similar to unitary or selfadjoint ones, Pacific J. Math. 104 (1) (1983) 241-255.
[5] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner, Condition number estimates for combined potential boundary integral operators in acoustic scattering, J. Int. Eqn. Appl., 21 (2009), 229-279.
[6] Daleckii, Yu. L. and Krein, M. G. Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., Providence, R. I., 1971.
[7] M.M. Faddeev and R.G. Shterenberg, On similarity of differential operators to a selfadjoint one, Math. Notes, 72 (2002) 292-303.
[8] M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, Springer-Verlag, Berlin, 2003.
[9] M.I. Gil', Perturbations of functions of diagonalizable matrices, Electr. J. of Linear Algebra, 20 (2010) 303-313.
[10] M.I. Gil', A bound for condition numbers of matrices, Electronic Journal of Linear Algebra, 27, (2014) 162-171.
[11] M. I. Gil', A bound for similarity condition numbers of unbounded operators with HilbertSchmidt hermitian components, J. Aust. Math. Soc. (2014) 1-12 (online from September, 2014).
[12] I.C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Mathem. Monographs, v. 18, Amer. Math. Soc., Providence, R. I., 1969.
[13] Guoliang Chen, Yimin Wei and Yifeng Xue, The generalized condition numbers of bounded linear operators in Banach spaces, J. Aust. Math. Soc. 76, (2004), 281-290.
[14] I.M. Karabash, J -selfadjoint ordinary differential operators similar to selfadjoint operators, Methods Funct. Anal. Topology, 6 (2) (2000) 22-49.
[15] I.M. Karabash, A.S. Kostenko and M.M. Malamud, The similarity problem for J-nonnegative Sturm-Liouville operators, J. Differential Equations, 246 (2009) 964-997.
[16] T.Kato, Perturbation Theory for Linear Operators, Springer-Verlag. New York, 1966.
[17] A. Kostenko, The similarity problem for indefinite Sturm-Liouville operators with periodic coefficients, Oper. Matrices, 5 (4) (2011) 707-722.
[18] A. Kostenko, The similarity problem for indefinite Sturm-Liouville operators and the help inequality, Advances in Mathematics, 246 (2013) 368-413
[19] M. M. Malamud, Similarity of a triangular operator to a diagonal operator, Journal of Mathematical Sciences, 115, no. 2, (2003), 2199-2222.
[20] S.V. Parter and Sze-Ping Wong, Preconditioning second-order elliptic operators: condition numbers and the distribution of the singular values, Journal of Scientific Computing, 6, no. 2, (1991), 129-157.
[21] B. Pruvost, Analytic equivalence and similarity of operators, Integr. Equ. Oper. Theory, 44 (2002), 480-493.
[22] M. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J, 23 (1956), 263-270.
[23] M. Seidel and B. Silbermann, Finite sections of band-dominated operators, norms, condition numbers and pseudospectra, Operator Theory: Advances and Applications, Vol. 228, 375-390, Springer, Basel, 2013.

[^0]: 2010 Mathematics Subject Classification. Primary 47A30; Secondary 47A55, 47A56, 47B40
 Keywords. operators, similarity, condition numbers, spectrum perturbations, operator function
 Received: 30 September 2014; Accepted: 14 December 2014
 Communicated by Dragan S. Djordjević
 Email address: gilmi@bezeqint.net (Michael Gil')

