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Abstract. In this paper, the existence and multiplicity of periodic orbits are obtained for first-order general
periodic boundary value problem

x′(t) + a(t)x(t) = f (t, x), t ∈ [0,T],
x(0) = αx(T),

where a : [0,T] → [0,+∞) and f : [0,T] × R+
→ R are continuous functions, α > 0 and T > 0 with

αe−
∫ T
0 a(s)ds = 1. The proofs are carried out by the use of topological degree theory. We also prove some

nonexistence theorems. Our results extend and improve some recent work in the literature.

1. Introduction

The existence of solutions for first-order periodic boundary value problems has been considered by
several authors; see [2]–[3], [5]–[7], [9]–[13] and references therein. Some theorems and methods of non-
linear functional analysis have been applied to research on this problem, such as the method of Mawhin
coincidence degree theory [2], [6], [9], [12], the upper and lower solutions method and monotone iterative
technique [11], [13] and fixed point theorems of cone mapping [3], [5], [7], [10]. In this paper, we consider
the first order general periodic boundary value problem (GPBVP){

x′(t) + a(t)x(t) = f (t, x(t)), t ∈ [0,T],
x(0) = αx(T), (1.1)

where a : [0,T]→ [0,+∞) and f : [0,T] ×R+
→ R are continuous functions, α > 0 and T > 0 with

αe−
∫ T

0 a(s)ds = 1. (1.2)
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The GPBVP (1.1) was first considered by Zima [12]. For the special case of GPBVP (1.1) in which α = 1
and a(t) ≡ 0 on [0,T], Peng [7] studied the existence of positve solutions of the first order periodic boundary
value problem, Peng’s approach is to rewrite the original PBVP as an equivalent one, so that the fixed
point theorem [1] can be applied, and by Leggett-Williams multiple fixed point theorem [4] and fixed point
theorem of cone expansion and compression [1], Liu [3] established some multiplicity results for periodic
boundary value problem.

In [12], the existence of positive solutions of the GPBVP (1.1) was studied. By using Leggett-Williams
norm-type theorem for coincidence due to O’Regan and Zima [6], it was established the existence of at least
one positive solution under some conditions.

Inspired by the above work, the aim of this paper is to consider the existence, multiplicity and nonex-
istence of positive solutions for the GPBVP (1.1). The main ingredient is an existence result for semilinear
equations in cones due to Zhang and Wang [14].

2. An Abstract Existence Result

For the convenience of the readers, we present here the necessary definitions and an order-type existence
theorem due to Zhang and Wang.

Definition 2.1.Let X be a Banach space. A nonempty convex closed set K ⊂ X is said to be a cone provided that
(i) ax ∈ K for any x ∈ K and any a ≥ 0 and
(ii) x,−x ∈ K implies x = θ.
Note that every cone K ⊂ X induces an ordering in X given by

x ≤ y⇔ y − x ∈ K.

Definition 2.2. Let X and Y be Banach spaces, D a linear subspace of X, {Xn} ⊂ D, and {Yn} ⊂ Y sequences of

oriented finite dimensional subspaces such that Qny → y in Y for every y and dist(x,Xn) → 0 for every x ∈ D
where Qn : Y → Yn and Pn : X → Xn are sequences of continuous linear projections. The projection scheme
Γ = {Xn,Yn,Pn,Qn} is then said to be admissible for maps from D ⊂ X to Y.

Definition 2.3. A map T : D ⊂ X→ Y is called approximation-proper (abbreviated A-proper) at a point y ∈ Y with
respect to Γ, if Tn ≡ QnT|D∩Xn is continuous for each n ∈ N and whenever {xn j : xn j ∈ D ∩ Xn j } is bounded with
Tn j xn j → y, then there exists a subsequence {xn jk

} such that xn jk
→ x ∈ D, and Tx = y. T is said to be A-proper on a

set Ω if it is A-proper at all points of Ω.
Let X and Y be Banach spaces, K be a cone in X, then K1 = (L + J−1P)(domL∩K) is a cone in Y. Consider

the semilinear equation
Lx = Nx, (2.1)

where L : domL ⊂ X → Y is a linear mapping, Ω ⊂ X is open, and N : Ω ∩ K ⊂ X → Y is a bounded
nonlinear mapping such that L − λN : Ω ∩ K ⊂ X → Y is A-proper for each λ ∈ [0, 1] with respect to a
suitable approximation scheme. We will assume that L : dom L ⊂ X → Y is a Fredholm operator of index
zero, that is, Im L is closed and dim Ker L = codim Im L < ∞. As a consequence of this property X and Y
may be expressed as direct sums; X = X0

⊕
X1, Y = Y0

⊕
Y1 with continuous linear projections P : X →

Ker L = X0 and Q : Y → Y0. The restriction of L to dom L ∩ X1, denoted L1, is a bijection onto Im L = Y1
with continuous inverse L−1

1 : Y1 → dom L ∩ X1. Since X0 and Y0 have the same finite dimension, there
exists a continuous bijection J : Y0 → X0.

Concerning equation (2.1), by [14, Theorem 2.5], we have the following existence result which will be
used later.

Lemma 2.1[14]. If L : domL → Y is Fredholm of index zero, and let L − λN be A-proper for λ ∈ [0, 1]. Assume
that N is bounded and P + JQN + L−1

1 (I − Q)N maps K to K. Suppose Ω1 and Ω2 are two bounded open sets in X
such that θ ∈ Ω1 and Ω1 ⊂ Ω2, Ω2 ∩ K ∩ domL , ∅. If one of the following two conditions is satisfied:

(C1) Nx � Lx, for any x ∈ ∂Ω1 ∩ K and Nx � Lx, for any x ∈ ∂Ω2 ∩ K,
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(C2) Nx � Lx, for any x ∈ ∂Ω1 ∩ K and Nx � Lx, for any x ∈ ∂Ω2 ∩ K,
then equation (2.1) has at least one solution x ∈ K ∩ (Ω2 \Ω1).

For convenience we adopt the notation, let

ϕ(t) = e
∫ t

0 a(s)ds, ψ(t) =

∫ t

0

ds
ϕ(s)

, t ∈ [0,T].

From (1.2) we get ϕ(T) = α. We also define

G(t, s) =
ϕ(s)
ϕ(t)

 1 +
ψ(s)
ψ(T) , 0 ≤ s ≤ t ≤ T,

ψ(s)
ψ(T) , 0 ≤ t < s ≤ T,

and

H(t, s) =
ϕ(s)

ϕ(t)
∫ T

0 ϕ(τ)dτ
+ G(t, s) −

∫ T

0 G(t, τ)dτ∫ T

0 ϕ(τ)dτ
ϕ(s), t, s ∈ [0,T].

Set

κ = min
{ ∫ T

0 ϕ(s)ds

αψ(T)
, min

t,s∈[0,T]

1
αψ(T)H(t, s)

}
.

3. Existence and Multiplicity

In this section we use Lemma 2.1 to establish the existence and multiplicity of periodic orbits to the
GPBVP (1.1).

Consider the Banach spaces
X = Y = C[0,T]

with the sup norm
‖x‖ = max

t∈[0,T]
|x(t)|.

Let K = {x ∈ X : x(t) ≥ 0, t ∈ [0,T]}, then K is a cone of X. We can write GPBVP (1.1) as an abstract equation

Lx = Nx, x ∈ domL ∩ K,

where
L : domL→ Z, x→ x′ + a(·)x, domL = {x ∈ X : x′ ∈ C[0,T], x(0) = αx(T)},

and
N : X ∩ K→ Y, x→ f (·, x(·)).

We note that
KerL = {x ∈ domL : x(t) ≡ c

ϕ(t) , c ∈ R, for any t ∈ [0,T]},

ImL =
{
y ∈ Y :

∫ T

0 ϕ(s)y(s)ds = 0
}
,

dim KerL = codim ImL = 1.

Thus L is linear and Fredholm of index zero. We define

P : X→ X, x→
1

ϕ(·)ψ(T)

∫ T

0
x(s)ds

and

Q : Y→ Y, y→

∫ T

0 ϕ(s)y(s)ds∫ T

0 ϕ(s)ds
.
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For ImQ define

Jy(t) =
y
ϕ(t)

, t ∈ [0,T].

Clearly, J is an isomorphism from ImQ to KerL. We see that, as in [4], we can obtain the inverse operator

L−1
1 : ImL→ domL ∩ KerP of L|domL∩KerP : domL ∩ KerP→ ImL as (L−1

1 y)(t) =
∫ 1

0 G(t, s)y(s)ds.

Next we state our first result:

Theorem 3.1. Assume that there exist two positive numbers 0 < a < b such that
(H1) f (t, b) < 0, for any t ∈ [0,T],
(H2) f (t, x) > 0, for any (t, x) ∈ [0,T] × [0, a],
(H3) f (t, x) ≥ −κx, for any (t, x) ∈ [0,T] × [0, b],
(H4) H(t, s) ≥ 0 for t, s ∈ [0,T]. Then the GPBVP(1.1) has at least one periodic orbit x∗ ∈ domL ∩ K satisfying

a ≤ ‖x∗‖ ≤ b.

Proof. First, since L−1
1 is compact by Arzelà-Ascoli theorem. Hence, by (a) of Lemma 2 in [8], the mapping

L − λN is A-proper for each λ ∈ [0, 1].
By conditions (H3), (H4) we get for any x ∈ K

(P + JQN + L−1
1 (I −Q)N)x(t)

=
1

ϕ(t)ψ(T)

∫ T

0
x(s)ds +

1

ϕ(t)
∫ T

0 ϕ(s)ds

∫ T

0
f (s, x(s))ϕ(s)ds

+

∫ T

0
G(t, s)

(
f (s, x(s)) −

∫ T

0 ϕ(s) f (s, x(s))ds∫ T

0 ϕ(s)ds

)
ds

=
1

ϕ(t)ψ(T)

∫ T

0
x(s)ds +

∫ T

0
H(t, s) f (s, x(s))ds

≥

∫ T

0

( 1
αψ(T)

− κH(t, s)
)
x(s)ds

≥ 0.

(3.1)

Thus (P + JQN + L−1
1 (I −Q)N)(K) ⊂ K.

Let
Ω1 = {x ∈ X : ‖x‖ < a}, Ω2 = {x ∈ X : ‖x‖ < b}.

Clearly, Ω1 and Ω2 are bounded and open sets and

θ ∈ Ω1 ⊂ Ω1 ⊂ Ω2.

We now show that
Nx � Lx, f or any x ∈ ∂Ω2 ∩ K. (3.2)

In fact, if there is x1 ∈ ∂Ω2 ∩ K such that
Nx1 ≥ Lx1.

Then
x′1(t) + a(t)x1(t) ≤ f (t, x1(t)), t ∈ [0,T].

Let t1 ∈ [0,T] be such that x1(t1) = b. Clearly, the function x1 attains a maximum on [0,T] at t = t1. Therefore
x′1(t1) = 0. As a consequence,

0 ≤ ba(t1) ≤ f (t1, b),

which is contraction to (H1). Therefore (3.2) holds.
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On the other hand, we claim that

Nx � Lx, f or any x ∈ ∂Ω1 ∩ K. (3.3)

In fact, if not, there exists x2 ∈ ∂Ω1 ∩ K, such that Nx2 ≤ Lx2, and therefore

x′2(t) + a(t)x2(t) ≥ f (t, x2(t)).

Multiplying the last inequality by e
∫ t

0 a(s)ds yields

(e
∫ t

0 a(s)dsx2(t))′ ≥ e
∫ t

0 a(s)ds f (t, x2(t)). (3.4)

For any x2 ∈ ∂Ω1 ∩ K, we have ‖x2‖ = a, then 0 ≤ x2(t) ≤ a for t ∈ [0,T]. Integrating (3.4) from 0 to T and
using the boundary conditions and condition (H2), we have

0 = αx2(T) − x2(0)

≥

∫ T

0 e
∫ t

0 a(s)ds f (t, x2(t))dt
> 0,

which is a contradiction. As a result, (3.3) is verified.
Thus all the hypotheses of Lemma 2.1 have been verified, so the conclusion of Theorem 3.1 follow from

Lemma 2.1.

Remark 3.1. In [12], the following condition is required:
(H∗) there exist a ∈ (0, b/α), t0 ∈ [0,T], β > 0,m ∈ (0, 1), and continuous functions 1 : [0,T] → [0,∞), h :
(0, a] → [0,∞) such that f (t, x) ≥ 1(t)h(x) for any t ∈ [0,T] and x ∈ (0, a], h(x)/xβ is non-increasing on (0, a]
with

h(a)
a

mβ

∫ T

0
G(t0, s)1(s)ds ≥ 1 −

mT
ϕ(t0)ψ(T)

.

Obviously, our condition (H2) is much weaker and less strict compared with (H∗). Moreover, (H2) is
easier to check than (H∗). So our result generalizes and improves [10, Theorem 3.1].

We shall use the following assumptions:
(H5) there are positive solutions m1,m2 such that m1 ≤ H(t, s) ≤ m2 for t, s ∈ [0,T],
(H6) f (t, x) ≥ −κx, f or any t ∈ [0,T], x ≥ 0, where κ satisfies

0 < κ <
1

m2αψ(T)
.

We now construct a particular closed convex set K̃ in X, defined by

K̃ =
{
x ∈ X : x(t) ≥ 0, x(t) ≥ σ‖x‖, t ∈ [0,T]

}
,

where σ = m1
m2

. Thus 0 < σ < 1. It is easy to see that K̃ is a cone in X. Now we show

(P + JQN + L−1
1 (I −Q)N)(K̃) ⊂ K̃.

For any x ∈ K̃. It follows from conditions (H5)− (H6) that, by using the same method to get (3.1), we can get

(P + JQN + L−1
1 (I −Q)N)x(t) ≥ 0.

We claim that

(Px + JQN)x(t) + L−1
1 (I −Q)Nx(t) ≥ σ‖(P + JQN)x + L−1

1 (I −Q)Nx‖.
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By conditions (H1) − (H2), we have

(Px + JQN)x(t) + L−1
1 (I −Q)Nx(t)

=
1

ϕ(t)ψ(T)

∫ T

0
x(s)ds +

∫ T

0
H(t, s) f (s, x(s))ds

=

∫ T

0
[

1
ϕ(t)ψ(T)

− κH(t, s)]x(s)ds +

∫ T

0
H(t, s)[ f (s, x(s)) + κx(x)]ds

≤

∫ T

0
[

1
ϕ(t)ψ(T)

− κH(t, s)]x(s)ds + m2

∫ T

0
[ f (s, x(s)) + κx(x)]ds.

From the last inequality, we have from conditions (H1) − (H2)

(Px + JQN)x(t) + L−1
1 (I −Q)Nx(t)

=

∫ T

0
[

1
ϕ(t)ψ(T)

− κH(t, s)]x(s)ds +

∫ T

0
H(t, s)[ f (s, x(s)) + κx(x)]ds

≥

∫ T

0
[

1
ϕ(t)ψ(T)

− κH(t, s)]x(s)ds + m1

∫ T

0
[ f (s, x(s)) + κx(x)]ds

= σ
[1
σ

∫ T

0
[

1
ϕ(t)ψ(T)

− κH(t, s)]x(s)ds +
m1

σ

∫ T

0
[ f (s, x(s)) + κx(x)]ds

]
≥ σ

[ ∫ T

0
[

1
ϕ(t)ψ(T)

− κH(t, s)]x(s)ds + m2

∫ T

0
[ f (s, x(s)) + κx(x)]ds

]
≥ σ‖(P + JQN)x + L−1

1 (I −Q)Nx‖.

Therefore, (P + JQN)x + L−1
1 (I −Q)Nx ∈ K̃.

Theorem 3.2. Under assumptions (H5)–(H6), if moreover there exist constants a, b and c, such that 0 < a < σb < c
and

(H1)′ f (t, a) < 0, ∀ t ∈ [0,T],
(H2)′ f (t, x) > 0, ∀ (t, x) ∈ [0,T] × [σb, b],
(H3)′ f (t, c) < 0, ∀ t ∈ [0,T],

then the GPBVP (1.1) has at least two periodic orbits x∗, x∗∗ ∈ K̃ with

a ≤ ‖x∗‖ < b < ‖x∗∗‖ ≤ c.

Proof. We construct the sets Ωa = {x ∈ X : ‖x‖ < a}, Ωb = {x ∈ X : ‖x‖ < b} and Ωc = {x ∈ X : ‖x‖ < c} in order
to apply Lemma 2.1.

Let x ∈ K̃ with ‖x‖ = b, we have σb = σ‖x‖ ≤ x(t) ≤ b. It follows from (H2)′ that, by using the similar
method to get (3.3), we can get

Nx � Lx, f or any x ∈ ∂Ωb ∩ K̃. (3.6)

It follows from (H1)′ and (H3)′ that, by using the same method to get (3.2), we can get

Nx � Lx, f or any x ∈ ∂Ωa ∩ K̃, (3.7)

Nx � Lx, f or any x ∈ ∂Ωc ∩ K̃. (3.8)

Now, (3.6), (3.7) and the first part of Lemma 2.1 guarantee that there exists x∗ ∈ K̃ ∩ (Ωb\Ωa) such that
Lx∗ = Nx∗. By (3.7), (3.8) and the second part of Lemma 2.1 guarantee that there exists x∗∗ ∈ K̃ ∩ (Ωc\Ωb)
such that Lx∗∗ = Nx∗∗. Thus a ≤ ‖x∗‖ < b < ‖x∗∗‖ ≤ c.
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Theorem 3.3. Under assumptions (H5)–(H6), if moreover there exist constants a, b and c, such that 0 < a < b < σc < c
and

(H1)′′ f (t, x) > 0, ∀ (t, x) ∈ [0,T] × [0, a],
(H2)′′ f (t, b) < 0, ∀ t ∈ [0,T],
(H3)′′ f (t, x) > 0, ∀ (t, x) ∈ [0,T] × [σc, c],

then the GPBVP (1.1) has at least two periodic orbits x∗, x∗∗ ∈ K̃ with

a ≤ ‖x∗‖ < b < ‖x∗∗‖ ≤ c.

Proof. We omit the details because they are much similar to that in the proof of Theorem 3.2.

4. Nonexistence Results and Example

First, we give some sufficient conditions for the nonexistence of positive solutions.

Theorem 4.1. If

inf
x>0

min
t∈[0,T]

f (t, x)
x

> 0, (4.1)

then the GPBVP (1.1) has no positive solution.

Proof. Assume, to the contrary, that x(t) is a positive solution of the GPBVP (1.1). Then x ∈ K, x(t) > 0 for
0 ≤ t ≤ T, and

x′(t) + a(t)x(t) = f (t, x), 0 ≤ t ≤ T. (4.2)

Multiply (4.2) by ϕ(t) to obtain

ϕ(t)x′(t) + ϕ(t)a(t)x(t) = (ϕ(t)x(t))′ = ϕ(t) f (t, x), 0 ≤ t ≤ T. (4.3)

From assumption (4.1), there exists ε > 0 such that

f (t, x(t)) ≥ εx(t), t ∈ [0,T]. (4.4)

Integrating Eq. (4.3) form 0 to T and using (4.4) and boundary conditions we get

0 =

∫ T

0
ϕ(t) f (t, x)dt ≥ ε

∫ T

0
ϕ(t)x(t)dt.

Since
∫ T

0 ϕ(t)x(t)dt > 0, we have reached a contradiction. Therefore the GPBVP (1.1) has no positive
solution.

In a similar fashion, we can prove the next theorem.
Theorem 4.2. If sup

x>0
max
t∈[0,T]

f (t,x)
x < 0, then the GPBVP (1.1) has no positive solution.

Remark 4.1. It is to be noted that for T = 1, α = 1 and a(t) ≡ 0 on [0, 1], the same conclusions of Theorems
3.1, 3.2, 4.1 and 4.2 hold for the periodic boundary value problem{

x′(t) = f (t, x), 0 ≤ t ≤ 1,
x(0) = x(1). (4.5)

Especially, for PBVP (4.5), our conclusions are also true and new.
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Example 4.1. Consider the following boundary value problem{
x′(t) + x(t) = f (t, x), 0 ≤ t ≤ 1,
x(0) = ex(1). (4.6)

We choose a(t) ≡ 1 and

f (t, x) =

 3e(t+1)
(e−1)2 x, 0 ≤ x ≤ 1

2 ,
2e(t+1)
3(e−1)2 (x2

− 6x + 5), x ≥ 1
2 .

A simple calculation shows that α = e, κ = e
(e−1)2 , ϕ(t) = et and ψ(t) = 1 − e−t. Thus f (t, x) ≥ −κx, x ≥ 0, t ∈

[0, 1]. If we choose a = 1
4 , b = 3, then it is easy to verify that the BVP (4.6) satisfies Theorem 3.1 and hence it

has at least one periodic orbit x∗ on [0, 1] with 1
4 ≤ ‖x

∗
‖ ≤ 3.
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