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Abstract. In this paper, the state estimation problem is dealt with for a class of neutral-type neural networks
with mixed time delays. We aim at designing a state estimator to estimate the neuron states, through
available output measurements, such that the dynamics of the estimation error is globally exponentially
stable in the presence of mixed time delays. By using the Lyapunov-Krasovskii functional, a linear matrix
inequality (LMI) approach is developed to establish sufficient conditions to guarantee the existence of the
state estimators. A simulation example is exploited to show the usefulness of the derived LMI-based
stability conditions.

1. Introduction

In the past few decades, the successful applications of cellular neural networks (CNNs) in a variety of
areas (e.g. pattern recognition, associative memory and combinational optimization) have aroused a surge
of research interests in the dynamical behaviors of the CNNs, see [1–10]. In particular, high-order and
large-scale neural networks have shown their great capacities in learning and data handling. For relatively
high-order and large-scale neural networks, however, it is often the case that only partial information
about the neuron states is available in the network outputs. Therefore, in order to make use of the neural
networks in practice, it becomes necessary to estimate the neuron states through available measurements.
The state estimation problem for neural networks has recently drawn particular research interests, see e.g.
[11–14, 34–39]. For example, Salam and Zhang [13] obtained an adaptive state estimator by using techniques
of optimization theory, the calculus of variations and gradient descent dynamics. In [14], the neuron state
estimation problem has been addressed for recurrent neural networks with time-varying delays, and an
effective LMI approach has been developed to verify the stability of the estimation error dynamics.

On the other hand, time delays, both constant and time-varying, are often encountered in various
engineering, biological, and economic systems due to the finite switching speed of amplifiers in electronic
networks, or to the finite signal propagation time in biological networks and so on (see e.g. [15–20]). For
the dynamical behavior analysis of delayed neural networks, different types of time delays, have been
taken into account by using a variety of techniques that include linear matrix inequality (LMI) approach,
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Lyapunov functional method, M-matrix theory, topological degree theory, and techniques of inequality
analysis, see e.g. [21–24].

Neutral functional differential equation (NFDE) is a class of equations depending on past as well
as present values, but which involve derivatives with delays as well as the function itself. NFDEs are
not only an extension of functional differential equations, but also provide good models in many fields
including biology, electronics, mechanics and economics. In practice, a large class of electrical networks
containing lossless transmission lines such as automatic control, high speed computers, robotics and etc.,
these systems can be well described by neutral-type delayed differential equations, see e.g. [25]. Particularly,
in engineering systems that the time-delays occur not only in the system states (or outputs) but also in
the derivatives of system states. Accordingly, CNNs with neutral terms have gained extensive research
interests due to the fact that the neutral delays could exist during the implementation process of CNNs
in VLSI circuits. The stability analysis issue of neutral CNNs has recently received much more research
attention and a rich body of results has been obtained, see e.g. [26–30].

So far, to the best of the authors’ knowledge, there is few results for the state estimation problem to
neutral-type neural networks with mixed time delays. The major challenges areas follows: (1) in order to
construct a feasible Lyapunov-Krasovskii functional, the neutral operatorA need exist inverse operator. So,
when the neutral operatorA is unstable, how can we obtain its inverse operatorA−1 and some inequalities
about A−1; (2) when the non-constant delays exist in CNNs, the corresponding state estimation becomes
more complicated since a new Lyapunov functional is required to reflect variable delay’s influence; and (3)
it is non-trivial to establish a unified framework to handle the neutral terms and variable delays influence.
It is, therefore, the main purpose of this paper to make the first attempt to handle the listed challenges.

In this paper, we consider the state estimation problem for a generalized neutral-type neural networks
with variable delays. Note that neural system comprise both the neutral term and variable delays that are
all dependent on the properties of neutral operator. The purpose of this paper is to estimate the neuron
states via available output measurements such that the estimation error converges to zero exponentially. A
numerically efficient LMI approach is developed to solve the addressed problem, and the explicit expression
of the set of desired estimators is characterized. A simulation example is used to demonstrate the usefulness
of the LMI method. The contribution of this paper is threefold: (1) For design of exponential state estimators,
the neutral operator is first taken into account in the neural networks with mixed time delays and a non-
neutral system can be viewed as the special cases. (2) Different from most of the existing results, we develop
a new unified framework to cope with the design of exponential state estimators for the neutral neural
networks by a blend of matrix theory, spectral graph theory, Lyapunov-Krasovskii functional and LMI
approach, which may be of independent interest. It is worth pointing out that our main results are also
valid for the case of non-neutral system. (3) Some new techniques are used in this article. In particular, a
key inequality and an appropriate Lyapunov-Krasovskii functional will be introduced to handle the neutral
neural networks, and they play a crucial role in the derivation of our main results.

Throughout the manuscript, Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and
the set of all n × m real matrices. The superscript “T” denotes the matrix transposition. We will use the
notation A > 0 (or A < 0) to denote that A is a symmetric and positive definite (or negative definite) matrix.
If A,B are symmetric matrices, A > B (A ≥ B), then A − B is a positive definite (positive semi-definite).
|z| denotes the Euclidean norm of a vector z and ||A|| denotes the induced norm of the matrix A, that is
||A|| =

√
λmax(A>A) where λmax(·) means the largest eigenvalue of A. If their dimensions are not explicitly

stated, are assumed to be compatible for algebraic operations.
The following sections are organized as follows: In Section 2, we give problem formulation, some useful

lemmas and definitions. In Section 3, sufficient conditions are established for existence results of system
(2.2). The main results of the present paper are given in Sections 4. In Section 5, an numerical example is
given to show the feasibility of our results. Finally, some conclusions are given about this paper.
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2. Problem Formulation and Main Lemmas

Consider the following neutral-type recurrent neural network with mixed time delays:

(Aixi)′(t) = −aixi(t) +

n∑
j=1

bi j f j(x j(t)) +

n∑
j=1

di j(t)1 j(x j(t − τ(t))) +

∫ t

t−δ(t)

n∑
j=1

ωi j(t)h j(x j(s))ds + Ii(t), (2.1)

whereAi is a difference operator defined by

(Aixi)(t) = xi(t) − cixi(t − γ),

where γ > 0 is a constant, xi(t) and Ii(t) represent the activation and external input of the ith neuron in
the I−layer at time t, respectively, f j, 1 j and h j are the activation functions of the jth neuron, ai represents
the rate with which the ith unit will reset its potential to the resting state when disconnected from the
network and external inputs at time t, τ(t) > 0 correspond to the finite speed of the axonal transmission of
signal, δ(t) > 0 describes the distributed time delay, bi j denotes the strength of the jth unit on the ith unit at
time t, di j denotes the strength of the jth unit on the ith unit at time t − τ(t), wi j denotes the distributively
delayed connection weights of the jth neuron on the i neuron.

The neural network (2.1) can be rewritten as the following matrix-vector form:

(Ax)′(t) = −Ax(t) + BF(x(t)) + DG(x(t − τ(t))) + W
∫ t

t−δ(t)
H(x(s))ds + I(t), (2.2)

where
Ax(t) = x(t) − Cx(t − γ), C = diag(c1, c2, · · · , cn), (2.3)

Ax(t) = (A1x1(t),A2x2(t), · · · ,Anxn(t))>, A = diag(a1, a2, · · · , an),

B = (bi j)n×n, D = (di j)n×n, W = (wi j)n×n, I(t) = (I1(t), I2(t), · · · , In(t))>,

F(x(t)) = ( f1(x1(t)), f2(x2(t)), · · · , fn(xn(t)))>,

G(x(t − τ(t))) = (11(x1(t − τ(t))), 12(x2(t − τ(t))), · · · , 1n(xn(t − τ(t))))>,

H(x(t)) = (h1(x1(t)), h2(x2(t)), · · · , hn(xn(t)))>.

Remark 2.1 The neural network model (2.2) shows the neutral character by theA operator, which is different
from other papers, see e.g. [28, 29].
We give two assumptions for the proof.
Assumption 1. There exist constants τ0 and δ0 such that

τ̇(t) ≤ τ0 < 1, δ̇(t) ≤ δ0 < 1.

Assumption 2. For i ∈ {1, 2, · · · ,n}, the neuron activation functions in (2.1) satisfy

l−i ≤
fi(s1) − fi(s2)

s1 − s2
≤ l+i ,

σ−i ≤
1i(s1) − 1i(s2)

s1 − s2
≤ σ+

i ,

υ−i ≤
hi(s1) − hi(s2)

s1 − s2
≤ υ+

i ,

where l−i , l
+
i , σ

−

i , σ
+
i , υ

−

i , υ
+
i are some constants.

Remark 2.2 The constants l±i , σ
±

i , ν
±

i in Assumption 2 are allowed to be positive, negative or zero. Hence, the
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resulting activation functions could be nonmonotonic, and more general than the usual sigmoid functions.
It is also noted that, for the state estimation task addressed in this paper, the neuron activation functions in
(2.2) are not assumed to be bounded as usual.
Remark 2.3 In general, the error state for estimation is similar to synchronization problems, see e.g. [40–42].
However, the purpose of state estimators is that choosing a proper estimator K so that x̂(t) approaches x(t)
asymptotically or exponentially. Furthermore, the estimator K can be obtained, which is different from
synchronization problems.

Suppose that the output from the neural network (2.2) is of the form:

y(t) = Rx(t) + Q(t, x(t)),

where y(t) = (y1(t), y2(t), · · · , ym(t))> ∈ Rm is the measurement output of the neural network, R ∈ Rm×n

is a known constant matrix, and Q(t, x(t)) = (q1(t, x(t)), · · · , qm(t, x(t)))> ∈ Rm is the nonlinear disturbance
dependant on the neuron state that satisfies the following Lipschitz condition:

|Q(t, x) −Q(t, y)| ≤ |L(Ax −Ay)|, (2.4)

where L ∈ Rn×n is a known constant matrix.
In order to estimate the neuron state of (2.2), we construct the following full-order state estimator:

(Ax̂)′(t) = −Ax̂(t) + BF(x̂(t)) + DG(x̂(t − τ(t))) + W
∫ t

t−δ(t)
H(x̂(s))ds + I(t) + K[y(t) − Rx̂(t) −Q(t, x̂(t))], (2.5)

where x̂(t) is the state estimate, and K ∈ Rn×m is the estimator gain matrix to be designed.
Our aim is to choose a suitable K so that x̂(t) approaches x(t) asymptotically or exponentially. For this

purpose, let E(t) = (ε1(t), · · · , εn(t))> = x̂(t) − x(t) be the state estimation error. Then, the state error E(t)
satisfies the following equation

(AE)′(t) = (−A − KR)E(t) + BF̂(E(t)) + DĜ(E(t − τ(t))) + W
∫ t

t−δ(t)
Ĥ(E(s))ds − KQ̂(t,E(t)), (2.6)

where
AE(t) = [A1ε1(t),A2ε2(t), · · · ,Anεn(t)]> = Ax̂(t) −Ax(t),

F̂(E(t)) = [ f̂1(ε1(t)), f̂2(ε2(t)), · · · , f̂n(εn(t))]> = F(x̂(t)) − F(x(t)),

Ĝ(E(t)) = [1̂1(ε1(t)), 1̂2(ε2(t)), · · · , 1̂n(εn(t))]> = G(x̂(t)) − G(x(t)),

Ĥ(E(t)) = [ĥ1(ε1(t)), ĥ2(ε2(t)), · · · , ĥn(εn(t))]> = H(x̂(t)) −H(x(t)),

Q̂(t,E(t)) = Q(t, x̂(t)) −Q(t, x(t)).

According to Assumption 2, for i ∈ {1, 2, · · · ,n}, s1, s2 ∈ R, we have

l−i ≤
f̂i(s1) − f̂i(s2)

s1 − s2
≤ l+i , (2.7)

σ−i ≤
1̂i(s1) − 1̂i(s2)

s1 − s2
≤ σ+

i , (2.8)

υ−i ≤
ĥi(s1) − ĥi(s2)

s1 − s2
≤ υ+

i , (2.9)

|Q̂(t,E)| ≤ |L(AE)|. (2.10)

We need the following definitions to go ahead to design the desired estimators.
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Definition 2.1. The system (2.5) is said to be a state estimator of the neural network (2.2) if the estimation error-state
system (2.6) is asymptotically stable.

Definition 2.2. The system (2.5) is said to be an exponential state estimator of the neural network (2.2) if the
estimation error-state system (2.6) is exponentially stable, i.e., there exist positive constants k > 0 and µ > 0 such
that every solution E(t, φ) of (2.6) satisfies

|E(t)| ≤ µe−kt sup
s∈[−τ∗,0]

|φ(s)|, ∀t > 0, (2.11)

where τ∗ = maxt≥0{τ(t), δ(t), γ}.

Lemma 2.3. If c+
i < 1, then the inverse of difference operatorA denoted byA−1, exists and

|A
−1
| ≤

1
1 − c+

i
,

where c+
i = max{|c1|, |c2|, · · · , |cn|}.

Proof. Let Bx(t) = Cx(t − γ), then |B| = c+
i < 1. Thus,A−1 = (I − B)−1 exists and |A−1

| = |(I − B)−1
| ≤

1
1−c+

i
.

Lemma 2.4. Let X,Y be any n−dimensional real vectors, and let P be a n × n positive semi-definite matrix. Then,
the following matrix inequality holds:

2X>PY ≤ X>PX + Y>PY.

Lemma 2.5. [31] Given constant matrices Ω1,Ω2,Ω3 where Ω1 = Ω>1 and Ω2 > 0, then

Ω1 + Ω>3 Ω−1
2 Ω3 < 0

if only if (
Ω1 Ω>3
Ω3 −Ω2

)
< 0 or

(
−Ω2 Ω3
Ω>3 −Ω1

)
< 0.

Lemma 2.6. [32] For any positive definite matrix M > 0, scalar γ > 0, vector function ω : [0, γ] → Rn such that
the integrations concerned are well defined, the following inequality holds:( ∫ γ

0
ω(s)ds

)>
M

( ∫ γ

0
ω(s)ds

)
≤ γ

( ∫ γ

0
ω>(s)Mω(s)ds

)
.

For presentation convenience, in the following, we denote

L1 = diag{l+1 l−1 , · · · , l
+
n l−n }, L2 = diag{

l+1 + l−1
2

, · · · ,
l+n + l−n

2
},

Σ1 = diag{σ+
1 σ
−

1 , · · · , σ
+
nσ
−

n }, Σ2 = diag{
σ+

1 + σ−1
2

, · · · ,
σ+

n + σ−n
2
},

Υ1 = diag{γ+
1γ
−

1 , · · · , γ
+
nγ
−

n }, Υ2 = diag{
γ+

1 + γ−1
2

, · · · ,
γ+

n + γ−n
2
}.
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3. Existence of Solution of System (2.2)

Let E(t, φ) denote the solution of the error-state system (2.6) with the initial condition of the form

E(s) = φ(s), s ∈ [−τ∗, 0],

where φ(·) ∈ C([−τ∗, 0],Rn).

Theorem 3.1. Under c+
i < 1 and Assumption 1 and 2, the solution of system (2.2) exists in B = C([0, h],Rn) and is

unique which satisfies initial condition x = φ̃(s), s ∈ [−τ∗, 0],, where h is a constant.

Proof. Let x ∈ B andAx(t) = u(t). Then x(t) = A−1u(t) and (2.2) transforms to the following system:

u′(t) = −A[A−1u(t)] + BF([A−1u(t)]) + DG(A−1u(t − τ(t))) + W
∫ t

t−δ(t)
H([A−1u(s)])ds + I(t). (3.1)

Define T on B by

Tu(t) = u(0) +

∫ t

0

{
− A[A−1u(s)] + BF([A−1u(s)]) + DG(A−1u(s − τ(s))) + W

∫ s

s−δ(s)
H([A−1u(ν)])dν + I(s)

}
ds.

Obviously, Tu ∈ B. We will show that T : B → B is a contraction mapping. In fact, from Lemma 2.1 and
Assumption 1 and 2, for any u, v ∈ Bwe have

|Tu − Tv| ≤
∫ t

0

{
|A[A−1u(s) −A−1v(s)]| + |B

[
F([A−1u(s)]) − F([A−1u(s)])

]
|

+ |D
[
G(A−1u(s − τ(s))) − G(A−1v(s − τ(s)))

]
|

+

∫ t

s−δ(s)
|W

[
H([A−1u(ν)]) −H([A−1v(ν)])

]
|dν

}
ds

≤

( h
1 − c+

i

√√√ n∑
i=1

( n∑
j=1

|ai j|
)2

+
h

1 − c+
i

√√√ n∑
i=1

( n∑
j=1

|bi j l̂ j|
)2

+
h(τ∗ + h)

(1 − τ0)(1 − c+
i )

√√√ n∑
i=1

( n∑
j=1

|di jσ̂ j|
)2

+
τ∗h

1 − c+
i

√√√ n∑
i=1

( n∑
j=1

|wi jν̂ j|
)2
)
|u − v|,

where l̂ j = max j∈{1,2,··· ,n}{|l+j |, |l
−

j |}, σ̂ j = max j∈{1,2,··· ,n}{|σ+
j |, |σ

−

j |}, ν̂ j = max j∈{1,2,··· ,n}{|ν+
j |, |ν

−

j |}. Choose suitable

l̂ j, σ̂ j and ν̂ j such that

h
1 − c+

i

√√√ n∑
i=1

( n∑
j=1

|ai j|
)2

+
h

1 − c+
i

√√√ n∑
i=1

( n∑
j=1

|bi j l̂ j|
)2

+
h(τ∗ + h)

(1 − τ0)(1 − c+
i )

√√√ n∑
i=1

( n∑
j=1

|di jσ̂ j|
)2

+
τ∗h

1 − c+
i

√√√ n∑
i=1

( n∑
j=1

|wi jν̂ j|
)2
< 1

which yields T is contractive on set B. Thus, T possesses a unique fixed point ψ∗ ∈ B such that Tψ∗ = ψ∗, it
follows from (3.1) that x∗ = A−1ψ∗ ∈ B is the unique solution of (2.2).
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4. Main Results

Theorem 4.1. Under the conditions of Theorem 3.1, the system (2.5) becomes a state estimator of the neural network
(2.2) if there exist a constant ρ > 0, a matrix M ∈ Rn×m, three n × n positive definite matrices P1,P2 and P3, and
three diagonal matrices Λ = diag(λ1, · · · , λn) > 0,Γ = diag(γ1, · · · , γn) > 0 and ∆ = diag(δ1, · · · , δn) > 0 such
that the following LMI holds:

Φ =



ρL>L −P1A −MR P1B 0 P1D 0 P1W M
−A>P>1 − R>K>P>1 −ΛL1 − ΓΣ1 − ∆Υ1 ΛL2 ΓΣ2 0 ∆Υ2 0 0

B>P>1 ΛL2 −Λ 0 0 0 0 0
0 ΓΣ2 0 P2 − Γ 0 0 0 0

D>P>1 0 0 0 −τ0P2 0 0 0
0 ∆Υ2 0 0 0 δ+P3 − ∆ 0 0

W>P>1 0 0 0 0 0 −δ0P3 0
M> 0 0 0 0 0 0 −ρI


< 0, (4.1)

where δ+ = maxt≥0 δ(t), δ− = mint≥0 δ(t). In this case, the estimator gain matrix K can be taken as

K = P−1
1 M. (4.2)

Proof. To proceed with the stability analysis of the error-state system (2.6), we construct the following
Lyapunov-Krasovskii functional

V(t) = [AE(t)]>P1[AE(t)] +

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds +

∫ δ(t)

0

∫ t

t−s
Ĥ>(E(η))P3Ĥ(E(η))dηds.

The time derivative of V(t) along the trajectory of the system (2.6) can be calculated as follows:

V̇(t) = 2[AE(t)]>P1

[
(−A − KR)E(t) + BF̂(E(t)) + DĜ(E(t − τ(t))) + W

∫ t

t−δ(t)
Ĥ(E(s))ds − KQ̂(t,E(t))

]
+ Ĝ>(E(t))P2Ĝ(E(t)) − (1 − τ′(t))Ĝ>(E(t − τ(t)))P2Ĝ(E(t − τ(t)))

+δ(t)Ĥ>(E(t))P3Ĥ(E(t)) − (1 − δ′(t))
∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds.

(4.3)

It follows from (2.10), Lemmas 2.2 and 2.3 that

−2[AE(t)]>P1KQ̂(t,E(t)) ≤ ρ−1[AE(t)]>P1KK>P>1 [AE(t)] + ρQ̂>(t,E(t))Q̂(t,E(t))

≤ ρ−1[AE(t)]>P1KK>P>1 [AE(t)] + ρ[AE(t)]>L>L[AE(t)],

−(1 − δ′(t))
∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds ≤ −

δ0

δ−

( ∫ t

t−δ(t)
Ĥ(E(s))ds

)>
P3

∫ t

t−δ(t)
Ĥ(E(s))ds.

Substituting the above into (4.3) leads to

V̇(t) ≤ 2[AE(t)]>P1

[
(−A − KR)E(t) + BF̂(E(t)) + DĜ(E(t − τ(t))) + W

∫ t

t−δ(t)
Ĥ(E(s))ds

]
+ ρ−1[AE(t)]>P1KK>P>1 [AE(t)] + ρ[AE(t)]>L>L[AE(t)]

+ Ĝ>(E(t))P2Ĝ(E(t)) − τ0Ĝ>(E(t − τ(t)))P2Ĝ(E(t − τ(t)))

+δ+Ĥ>(E(t))P3Ĥ(E(t)) −
δ0

δ−

( ∫ t

t−δ(t)
Ĥ(E(s))ds

)>
P3

∫ t

t−δ(t)
Ĥ(E(s))ds

≤ X>(t)Φ1X(t) + ρ−1[AE(t)]>P1KK>P>1 [AE(t)],

(4.4)
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where

X(t) =
[
[AE(t)]>,E>(t), F̂>(E(t)), Ĝ>(E(t)), Ĝ>(E(t − τ(t))), Ĥ>(E(t)),

( ∫ t

t−δ(t)
Ĥ(E(s))ds

)>]>
,

Φ1 =



ρL>L −P1A −MR P1B 0 P1D 0 P1W
−A>P>1 − R>K>P>1 0 0 0 0 0 0

B>P>1 0 0 0 0 0 0
0 0 0 P2 0 0 0

D>P>1 0 0 0 −τ0P2 0 0
0 0 0 0 0 δ+P3 0

W>P>1 0 0 0 0 0 −
δ0
δ−P3


.

Moreover, for i ∈ {1, 2, · · · ,n}, one can infer from (2.7)–(2.9) that

( f̂i(εi(t)) − l+i εi(t))( f̂i(εi(t)) − l−i εi(t)) ≤ 0,

(1̂i(εi(t)) − σ+
i εi(t))(1̂i(εi(t)) − σ−i εi(t)) ≤ 0,

(ĥi(εi(t)) − υ+
i εi(t))(ĥi(εi(t)) − υ−i εi(t)) ≤ 0,

which are equivalent to (
E(t)

F̂(E(t))

)>  l+i l−i eie>i −
l+i +l−i

2 eie>i
−

l+i +l−i
2 eie>i eie>i

 ( E(t)
F̂(E(t))

)
≤ 0,

(
E(t)

Ĝ(E(t))

)>  σ+
i σ
−

i eie>i −
σ+

i +σ−i
2 eie>i

−
σ+

i +σ−i
2 eie>i eie>i

 ( E(t)
Ĝ(E(t))

)
≤ 0,

(
E(t)

Ĥ(E(t))

)>  υ+
i υ
−

i eie>i −
υ+

i +υ−i
2 eie>i

−
υ+

i +υ−i
2 eie>i eie>i

 ( E(t)
Ĥ(E(t))

)
≤ 0,

where ei denotes the unit column vector having 1 element on its ith row and zeros elsewhere. Let K = P−1
1 M

and we have
X>(t)Φ1X(t) + ρ−1[AE(t)]>P1KK>P>1 [AE(t)]

− Σn
i=1λi

(
E(t)

F̂(E(t))

)>  l+i l−i eie>i −
l+i +l−i

2 eie>i
−

l+i +l−i
2 eie>i eie>i

 ( E(t)
F̂(E(t))

)

− Σn
i=1γi

(
E(t)

Ĝ(E(t))

)>  σ+
i σ
−

i eie>i −
σ+

i +σ−i
2 eie>i

−
σ+

i +σ−i
2 eie>i eie>i

 ( E(t)
Ĝ(E(t))

)

− Σn
i=1δi

(
E(t)

Ĥ(E(t))

)>  υ+
i υ
−

i eie>i −
υ+

i +υ−i
2 eie>i

−
υ+

i +υ−i
2 eie>i eie>i

 ( E(t)
Ĥ(E(t))

)
= X>(t)Φ1X(t) + ρ−1[AE(t)]>MM>[AE(t)]

+

(
E(t)

F̂(E(t))

)> (
−ΛL1 ΛL2
ΛL2 −Λ

) (
E(t)

F̂(E(t))

)
+

(
E(t)

Ĝ(E(t))

)> (
−ΓΣ1 ΓΣ2
ΓΣ2 −Γ

) (
E(t)

Ĝ(E(t))

)
+

(
E(t)

Ĥ(E(t))

)> (
−∆Υ1 ∆Υ2
∆Υ2 −∆

) (
E(t)

Ĥ(E(t))

)
= X>(t)(Φ2 + ρ−1M̄M̄>)X(t),
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where

Φ2 =



ρL>L −P1A −MR P1B 0 P1D 0 P1W
−A>P>1 − R>K>P>1 −ΛL1 − ΓΣ1 − ∆Υ1 ΛL2 ΓΣ2 0 ∆Υ2 0

B>P>1 ΛL2 −Λ 0 0 0 0
0 ΓΣ2 0 P2 − Γ 0 0 0

D>P>1 0 0 0 −τ0P2 0 0
0 ∆Υ2 0 0 0 δ+P3 − ∆ 0

W>P>1 0 0 0 0 0 −
δ0
δ−P3


.

M̄ = (M 0 0 0 0 0 0)>.

From Φ < 0 and Lemma 2.3 (Schur complement), it can be concluded that

Φ2 + ρ−1M̄M̄> < 0. (4.5)

Thus, from (4.4) and (4.5) we obtain

V̇(t) ≤ X>(t)(Φ2 + ρ−1M̄M̄)X(t)

≤ λmax(Φ2 + ρ−1M̄M̄>)|X(t)|2 ≤ λmax(Φ2 + ρ−1M̄M̄>)|E(t)|2.

Noticing λmax(Φ2 + ρ−1M̄M̄>) < 0, it follows from the Lyapunov stability theory that estimation error-state
system (2.6) is asymptotically stable. Therefore, from Definition 2.1, the system (2.5) is a state estimator of
the neural network (2.2).

Now, let us consider the conditions for the estimation error-state system (2.6) to be an exponential
estimator of the neural network (2.2).

Theorem 4.2. Let ε0 be a given positive constant. Under the conditions of Theorem 3.1, then the system (2.5) is
an exponential state estimator of the neural network (2.2) if there exist a constant ρ > 0, a matrix M ∈ Rn×m,
three n × n positive definite matrices P1,P2 and P3, and three diagonal matrices Λ = diag(λ1, · · · , λn) > 0,Γ =
diag(γ1, · · · , γn) > 0 and ∆ = diag(δ1, · · · , δn) > 0 such that the following LMI holds:

Ψ =



ρL>L −P1A −MR P1B 0 P1D 0 P1W M
−A>P>1 − R>K>P>1 −ΛL1 − ΓΣ1 − ∆Υ1 ΛL2 ΓΣ2 0 ∆Υ2 0 0

B>P>1 ΛL2 −Λ 0 0 0 0 0
0 ΓΣ2 0 P2 − Γ 0 0 0 0

D>P>1 0 0 0 −τ0P2 0 0 0
0 ∆Υ2 0 0 0 δ+P3 − ∆ 0 0

W>P>1 0 0 0 0 0 −
δ0
δ−P3 0

M> 0 0 0 0 0 0 −ρI


< 0.

In this case, the estimator gain matrix K can be taken as

K = P−1
1 M.

Proof. Let

Ṽ(t) = [AE(t)]>P1[AE(t)] +

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds + ε0

∫ τ(t)

0

∫ t

t−s
Ĝ>(E(η))P2Ĝ(E(η))dηds

+

∫ δ(t)

0

∫ t

t−s
Ĥ>(E(η))P3Ĥ(E(η))dηds.
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The time derivative of Ṽ(t) along the trajectory of the system (2.6) can be calculated as follows:

dṼ(t)
dt
≤ 2[AE(t)]>P1

[
(−A − KR)E(t) + BF̂(E(t)) + DĜ(E(t − τ(t))) + W

∫ t

t−δ(t)
Ĥ(E(s))ds

]
+ ρ−1[AE(t)]>P1KK>P>1 [AE(t)] + ρ[AE(t)]>L>L[AE(t)]

+ (1 + ε0δ
+)Ĝ>(E(t))P2Ĝ(E(t)) − τ0Ĝ>(E(t − τ(t)))P2Ĝ(E(t − τ(t)))

+δ+Ĥ>(E(t))P3Ĥ(E(t)) −
(1 − ε0)δ0

δ−

( ∫ t

t−δ(t)
Ĥ(E(s))ds

)>
P3

∫ t

t−δ(t)
Ĥ(E(s))ds

− ε0

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds − ε0

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds

≤ Y>(t)Ψ1Y(t) + ρ−1[AE(t)]>P1KK>P>1 [AE(t)]

− ε0

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds − ε0

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds,

(4.6)

where

Y(t) =
[
[AE(t)]>,E>(t), F̂>(E(t)), Ĝ>(E(t)), Ĝ>(E(t − τ(t))), Ĥ>(E(t)),

( ∫ t

t−δ(t)
Ĥ(E(s))ds

)>]>
,

Ψ1 =



ρL>L −P1A −MR P1B 0 P1D 0 P1W
−A>P>1 − R>K>P>1 0 0 0 0 0 0

B>P>1 0 0 0 0 0 0
0 0 0 (1 + ε0δ+)P2 0 0 0

D>P>1 0 0 0 −τ0P2 0 0
0 0 0 0 0 δ+P3 0

W>P>1 0 0 0 0 0 −
(1−ε0)δ0
δ− P3


.

Then we have
Y>(t)Ψ1Y(t) + ρ−1[AE(t)]>P1KK>P>1 [AE(t)]

− Σn
i=1λi

(
E(t)

F̂(E(t))

)>  l+i l−i eie>i −
l+i +l−i

2 eie>i
−

l+i +l−i
2 eie>i eie>i

 ( E(t)
F̂(E(t))

)

− Σn
i=1γi

(
E(t)

Ĝ(E(t))

)>  σ+
i σ
−

i eie>i −
σ+

i +σ−i
2 eie>i

−
σ+

i +σ−i
2 eie>i eie>i

 ( E(t)
Ĝ(E(t))

)

− −Σn
i=1δi

(
E(t)

Ĥ(E(t))

)>  υ+
i υ
−

i eie>i −
υ+

i +υ−i
2 eie>i

−
υ+

i +υ−i
2 eie>i eie>i

 ( E(t)
Ĥ(E(t))

)
= Y>(t)Φ1Y(t) + ρ−1[AE(t)]>MM>[AE(t)]

+

(
E(t)

F̂(E(t))

)> (
−ΛL1 ΛL2
ΛL2 −Λ

) (
E(t)

F̂(E(t))

)
+

(
E(t)

Ĝ(E(t))

)> (
−ΓΣ1 ΓΣ2
ΓΣ2 −Γ

) (
E(t)

Ĝ(E(t))

)
+

(
E(t)

Ĥ(E(t))

)> (
−∆Υ1 ∆Υ2
∆Υ2 −∆

) (
E(t)

Ĥ(E(t))

)
= Y>(t)(Ψ2 + ρ−1M̄M̄>)Y(t),
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where

Ψ2 =



ρL>L −P1A −MR P1B 0 P1D 0 P1W
−A>P>1 − R>K>P>1 −ΛL1 − ΓΣ1 − ∆Υ1 ΛL2 ΓΣ2 0 ∆Υ2 0

B>P>1 ΛL2 −Λ 0 0 0 0
0 ΓΣ2 0 (1 + ε0δ+)P2 − Γ 0 0 0

D>P>1 0 0 0 −τ0P2 0 0
0 ∆Υ2 0 0 0 δ+P3 − ∆ 0

W>P>1 0 0 0 0 0 −
(1−ε0)δ0
δ− P3


,

M̄ =
(

M 0 0 0 0 0 0
)>
.

From Lemma 2.3, the condition Ψ < 0 is equivalent to

Ψ2 + ρ−1M̄M̄> < 0, (4.7)

which implies that

Y>(t)Ψ1Y(t) + ρ−1
E
>(t)MM>E>(t) ≤ λmax(Ψ2 + ρ−1M̄M̄>)|X(t)|2 ≤ λmax(Ψ2 + ρ−1M̄M̄>)|E(t)|2.

From (4.6) and (4.7), we have

dṼ(t)
dt
≤ Y>(t)Ψ1Y(t) + ρ−1

E
>(t)MM>E>(t) − ε0

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds − ε0

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds

≤ λmax(Ψ2 + ρ−1M̄M̄>)|E(t)|2 − ε0

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds − ε0

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds

(4.8)
and

Ṽ(t) ≤ λmax(P1)|E(t)|2 + (1 + ε0τ
+)

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds + δ+

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds, (4.9)

where τ+ = maxt≥0 τ(t).
In order to analyze the exponential stability of the state-error system (2.6), we consider the following

modified Lyapunov- Krasovskii functional:

V̂(t) = e2ktṼ(t),

where k is a positive constant to be determined. Calculating the time derivative of V̂(t) along trajectory of
the system (2.6) and using (4.8) and (4.9), we obtain

dV̂(t)
dt

= 2ke2ktṼ(t) + e2kt dṼ(t)
dt

≤ 2ke2kt
[
λmax(P1)|E(t)|2 + (1 + ε0τ

+)
∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds + δ+

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds

]
+ e2kt

[
λmax(Ψ2 + ρ−1M̄M̄>)|E(t)|2 − ε0

∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds − ε0

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds

]
≤ e2kt

[
(2kλmax(P1) + λmax(Ψ2 + ρ−1M̄M̄>))|E(t)|2 + (2k(1 + ε0τ

+) − ε0)
∫ t

t−τ(t)
Ĝ>(E(s))P2Ĝ(E(s))ds

+ (2kδ+
− ε0)

∫ t

t−δ(t)
Ĥ>(E(s))P3Ĥ(E(s))ds

]
.

(4.10)
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Set

k0 = min
{
−
λmax(Ψ2 + ρ−1M̄M̄>)

2λmax(P1)
,

ε0

2(1 + ε0τ+)
,
ε0

2δ+

}
,

and fix k to be a positive constant satisfying k ≤ k0. We can now obtain from (4.10) that

dV̂(t)
dt
≤ 0

and

V̂(t) ≤ V̂(0) = Ṽ(0) ≤ λmax(P1)|E(0)|2 + (1 + ε0τ
+)λmax(P2)

∫ 0

−τ(0)
|Ĝ(E(s))|2ds + δ+λmax(P3)

∫ 0

−δ(0)
|Ĥ(E(s))|2ds.

(4.11)
Let

σ = max
1≤i≤n
{|σ−i |, σ

+
i }, ν = max

1≤i≤n
{|ν−i |, ν

+
i },

µ0 = λmax(P1) + (1 + ε0τ
+)σ2λmax(P2) + δ+ν2λmax(P3).

Then, it is indicated from (4.11) that

e2ktṼ(t) ≤ λmax(P1)|E(0)|2 + (1 + ε0τ
+)σ2λmax(P2) sup

[−τ(0),0]
|E(s)|2 + δ+ν2λmax(P3) sup

[−δ(0),0]
|E(s)|2

≤ (λmax(P1)| + (1 + ε0τ
+)σ2λmax(P2) + δ+ν2λmax(P3)) sup

[−τ∗,0]
|E(s)|2

= µ0 sup
[−τ∗,0]

|E(s)|2 = µ0 sup
[−τ∗,0]

|φ(s)|2,

and therefore
Ṽ(t) ≤ µ0e−2kt sup

[−τ∗,0]
|φ(s)|2.

From V̂(t) ≥ λmax(P1)|E(t)|2, we get

|E(t)|2 ≤
Ṽ(t)

λmax(P1)
≤

µ0

λmax(P1)
e−2kt sup

[−τ∗,0]
|φ(s)|2

and

|E(t)| ≤
√

µ0

λmax(P1)
e−kt sup

[−τ∗,0]
|φ(s)|.

From Definition 2.2, the proof of this theorem is complete.

Remark 4.3. In [33], Liu etc. studied the state estimation problems of RNNs. However, the considered RNNs is
no-neutral type and the delay is constant. In the present paper, system (2.2) is neutral-type and contains mixed
time-varying delays. Though the methods of this paper is similar to [33], but, due to the influence of neutral terms
and variable delays, some new technique and methods are developed for overcoming these difficulties.

5. Numerical example

In this section, we present a simulation example so as to illustrate the usefulness of our main results.
Consider a 3-neuron neural network (2.2) with the following parameters:

C = diag(
1
2
,

1
2
,

1
2

), A = diag(5.5, 7, 8), B =

 1 −0.4 0.8
0.5 −1.6 0.8
−0.6 −1.2 −1.4

 ,
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D =

 −1.3 0.9 0.8
−0.5 1 0.8
0.6 −0.7 1.4

 , W =

 1.6 0.7 −0.8
0.6 1.1 1.1
−0.6 −0.7 1.4

 , I(t) =

 5 + 5 cos t
5 sin t
5 cos t

 ,
τ(t) = 1 − 0.5 sin t, δ(t) = 1 − 0.5 cos t, γ = 1.

For s ∈ R, take the activation function as follows:

f1(s) = 11(s) = h1(s) = tanh(−1.4s), f2(s) = 12(s) = h2(s) = tanh(1.6s), f3(s) = 13(s) = h3(s) = tanh(−2.4s).

the parameters C and Q are given as

C =

(
1 0 1
0 1 1

)
, Q(x) =

(
0.1 cos x1
0.1 sin x2

)
.

We have
L1 = Σ1 = Υ1 = diag(0, 0, 0), L2 = Σ2 = Υ2 = diag(−0.7, 0.8,−1.2),

and

L =

 0.2 0 0
0 0.2 0
0 0 0

 .
Then τ0 = 0.5, δ0 = 0.5, δ+ = 1.5, δ− = 0.5. Using the Matlab LMI toolbox to solve the LMI Ψ < 0, we obtain

P1 = 1.0e − 013 ×

 0.6951 −0.3235 0.2976
−0.3235 0.5145 −0.1567
0.2976 −0.1567 0.5048

 , P2 = 1.0e − 012 ×

 0.2410 0.0008 −0.0006
0.0008 0.2145 −0.0011
−0.0006 −0.0011 0.1703

 ,

P3 = 1.0e − 012 ×

 0.1346 −0.0001 −0.0009
−0.0001 0.1219 0.0004
−0.0009 0.0004 0.0980

 , Λ = 1.0e − 012 ×

 0.5875 0 0
0 0.4795 0
0 0 0.2536

 ,
Γ = 1.0e − 012 ×

 0.5739 0 0
0 0.4619 0
0 0 0.2400

 , ∆ = 1.0e − 012 ×

 0.2718 0 0
0 0.2213 0
0 0 0.1212

 ,
M = 1.0e − 013 ×

 −0.3171 0.2537
−0.2685 0.0786
0.2264 0.4282

 , ρ = 1.0e + 008 × 3.3425, K = P−1
1 M =

 −1.3550 0.2622
−1.0975 0.5841
0.9065 0.8751

 .
From Theorem 4.2, system (2.5) is an estimator of the neural network (2.2).

Remark 5.1. In [33], Liu et. al considered the state estimation problem of a class of non-neutral type neural networks
with mixed discrete and distributed delays

x′(t) = −Dx(t) + AF(x(t)) + BG(x(t − τ1)) + W
∫ t

t−τ2

H(x(s))ds + I(t). (5.1)

The authors showed that both the existence conditions and the explicit expression of the desired estimator can
be characterized in terms of the solution to an LMI. Obviously, system (5.1) is a special case when C = 0 and
τ(t) = τ1, δ(t) = τ2 in system (2.2). Hence, the numerical results of (5.1) can be easily deduced by the corresponding
results of (2.2).
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6. Conclusions

In this paper, we have investigated state estimation problems for a class of neutral-type neural networks
with mixed delays. An exponential state estimator is designed to estimate the neuron states, through
available output measurements, such that the dynamics of the estimation error is globally exponentially
stable. By utilizing novel Lyapunov-Krasovskii functionals, we have established an LMI approach to derive
the sufficient conditions guaranteeing the existence of the state estimators. The criteria are expressed in the
form of LMIs, which can be solved effectively by using the matlab LMI toolbox. A simulation example has
been provided to show the usefulness of the derived LMI-based stability conditions.
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