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Abstract. The resistance distance was introduced by Klein and Randić as a generalization of the classical
distance. The Kirchhoff index K f (G) of a graph G is the sum of resistance distances between all unordered
pairs of vertices. In this paper we determine the extremal graphs with minimal Kirchhoff index among all
n-vertex graphs with k cut vertices where 1 ≤ k < n

2 .

1. Introduction

In 1993, Klein and Randić [11] introduced a distance function named resistance distance on the basis
of electrical network theory. They view a connected graph G as an electrical network N by replacing each
edge of G with a unit resistor. Let v1, v2, . . . , vn be labeled vertices of a graph G. The resistance distance
between vi and v j, denoted by rG(vi, v j), is defined to be the effective resistance between nodes vi and v j in G.
The conventional distance between vi and v j, denoted by dG(vi, v j), is the length of a shortest path between
them in a graph G. The famous Wiener index [23] W(G) is the sum of distances between all pairs of vertices,
that is W(G) =

∑
i< j

dG(vi, v j). Analogue to the Wiener index, the Kirchhoff index K f (G) is defined as:

K f (G) =
∑
i< j

rG(vi, v j).

As a useful structure-descriptor, the Kirchhoff index plays an important role in QSAR and QSPR. As
the Kirchhoff index and the well-studied Wiener index coincide for trees, it is more interesting to consider
the Kirchhoff index of cycle-containing structures. However, the computation of the Kirchhoff index is not
an easy task [24] when the size of the graph is very large due to its computational complexity. As it is
difficult to get the exact value or analytical formula, it becomes more and more desirable to find bounds
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for the Kirchhoff index of some classes of graphs. For a general graph G, Lukovits et al. [13] showed that
K f (G) ≥ n − 1 with equality holding if and only if G is the complete graph Kn; and it was showed in [16]
that the path Pn has maximal Kirchhoff index. For more information on the Kirchhoff index, the readers are
referred to recent papers [1, 2, 4, 6–8, 14, 15, 17–22, 25, 26, 28] and the references therein.

All graphs considered in this paper are finite and simple. For two non-adjacent vertices vi and v j, we
use G + e to denote the graph obtained by inserting a new edge e = viv j in G. Similarly, for e ∈ E(G) of
graph G, let G − e be the subgraph of G obtained by deleting the edge e from E(G). For a subset S of
V(G), let G − S be the subgraph of G obtained by deleting the vertices of S and the edges incident with
them. A subset S of V(G) is called a clique if G[S], the induced subgraph of G by S, is complete. For two
graphs G1 and G2, we denote by G1 ∪ G2 the graph which consists of two connected components G1 and
G2. The join of two vertex-disjoint graphs G1 and G2, denoted by G1

∨
G2, is the graph with vertex set

V(G1) ∪ V(G2) and edge set E(G1) ∪ E(G2) ∪ {uv | u ∈ V(G1), v ∈ V(G2)}. For a graph G with vertex set
V = {v1, v2, . . . , vn}, we denote by di the degree of the vertex vi in G for i = 1, 2, . . . ,n. Assume that A(G) is
the (0, 1)-adjacency matrix of G and D(G) is the diagonal matrix of vertex degrees. The Laplacian matrix
of G is L(G) = D(G) − A(G). The Laplacian polynomial Q(G, λ) of G is the characteristic polynomial of its

Laplacian matrix, Q(G, λ) = det(λIn − L(G)) =
n∑

k=0
(−1)kckλn−k. The Laplacian matrix L(G) has nonnegative

eigenvalues n ≥ µ1 ≥ · · · ≥ µn = 0 [12]. Denote by S(G) = {µ1, µ2, . . . , µn} the spectrum of L(G), i.e., the
Laplacian spectrum of G. If µi appears li > 1 times in S(G), we write µli

i for short in it.
In 1996, Gutman and Mohar [9] and Zhu et al. [33] independently obtained the following nice result, by

which a relation was established between Kirchhoff index and Laplacian spectrum:

K f (G) = n
n−1∑
i=1

1
µi
, (1)

for any connected graph G of order n ≥ 2.
In 2010, Deng [5] determined the minimum Kirchhoff index among all connected graphs with n vertices

and k cut edges, and characterized the corresponding extremal graphs. Along this line, we consider graphs
with minimum Kirchhoff index among all graphs with n vertices and k cut vertices. Assume that k,n are

two integers with 1 ≤ k <
n
2

. Let Gn,k be the class of connected graphs of order n and with k cut vertices.

In this paper we have determined the minimum Kirchhoff index of graphs from Gn,k with 1 ≤ k <
n
2

, and
characterized the corresponding extremal graphs.

2. Some Lemmas

In this section we will list or prove some basic but important lemmas as preliminaries.

Lemma 2.1. ([11]) Let x be a cut vertex of a graph G, and a and b be two vertices in different components of G − x.
Then

rG(a, b) = rG(a, x) + rG(x, b).

Lemma 2.2. ([13]) Let G be a non-complete connected graph. If G′ is obtained from G by inserting a new edge. Then
K f (G′) < K f (G).

Lemma 2.3. ([12]) Suppose that Gi is a graph of order ni for i = 1, 2. Then

S(G1

∨
G2) = {n1 + n2, 0}

⋃
{n1 + µi(G2)|1 ≤ i ≤ n2 − 1}

⋃
{n2 + µ j(G1)|1 ≤ j ≤ n1 − 1}.

For any connected graph G with vertex x ∈ V(G), the resistive eccentricity index [30] of x, denoted by
K fx(G), is defined to be the sum of resistance distance between x and all other vertices of G, that is to say,
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K fx(G) =
∑

y∈V(G−x)
rG(x, y). Considering the definition of Kirchhoff index, we have

K f (G) =
1
2

∑
v∈V(G)

K fv(G).

In the following lemma a formula on calculating the Kirchhoff index is given for a special class of graphs.

Lemma 2.4. ([13]) Let G1 and G2 be two connected graphs with exactly one common vertex x and G = G1 ∪ G2.
Then

K f (G) = K f (G1) + K f (G2) + (|V(G1)| − 1)K fx(G2) + (|V(G2)| − 1)K fx(G1).

Lemma 2.5. Let
f (x) =

n − x − 1
x + 1

+
x + 1

n − x − 1

be a function on the interval [1,n − 3]. Then f (x) reaches its maximum
n − 2

2
+

2
n − 2

at x = 1 or n − 3.

Proof. Define a new function

h(x) =
n − x − 1

x + 1
with 1 ≤ x ≤ n − 3 and 1(x) = x +

1
x
.

Then we have f (x) = 1(h(x)). Taking the second derivative, we arrive at

f ′′(x) = (1′(h(x))h′(x))′

= 1′′(h(x))(h′(x))2 + 1′(h(x))h′′(x)

=
2

h3(x)
n2

(x + 1)4 + (1 −
1

h2(x)
)

2n
(x + 1)3

=
2n

(x + 1)3

[
n

(x + 1)h(x)
1

h2(x)
+ 1 −

1
h2(x)

]

=
2n

(x + 1)3

[
n

n − x − 1
1

h2(x)
+ 1 −

1
h2(x)

]
> 0.

Therefore, f (x) is a convex function on the interval [1,n − 3]. Then f (x) attains its maximum at x = 1 or
x = n − 3. Noticing that

f (1) = f (n − 3) =
n − 2

2
+

2
n − 2

,

we complete the proof of this lemma.
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Figure 1: The graphs G and G′

Now we prove the following two properties of the resistive eccentricity index of vertex x in a graph G.

Lemma 2.6. Let G and G′ be the graphs depicted in Figure 1 where G0 is a connected graph and Gi is a complete graph
Kni for i = 1, 2. Assume that x is an arbitrary vertex in G0 different from xi with i = 1, 2 and rG0 (x, x1) = rG0 (x, x2)
in G′, then we have K fx(G′) < K fx(G).

Proof. Note that rKn (u, v) = 2
n for any two vertices u, v ∈ V(Kn). By the definition of the K fx(G) and Lemma

2.1, we have

K fx(G) = K fx(G0) +
∑

y∈V(G1−x1)

rG(x, y) +
∑

y∈V(G2−v2)

rG(x, y)

= K fx(G0) + (rG0 (x, x1) +
2
n1

)(n1 − 1) + (rG0 (x, x1) +
2
n1

+
2
n2

)(n2 − 1),

K fx(G′) = K fx(G0) +
∑

y∈V(G1−x1)

rG′ (x, y) +
∑

y∈V(G2−x2)

rG′ (x, y)

= K fx(G0) + (rG0 (x, x1) +
2
n1

)(n1 − 1) + (rG0 (x, x2) +
2
n2

)(n2 − 1).

Thus, considering that rG0 (x, x1) = rG0 (x, x2) in G′, we get

K fx(G) − K fx(G′) =
2
n1

(n2 − 1) > 0.

Therefore, we have K fx(G′) < K fx(G) as desired.

Lemma 2.7. Let G be a connected non-complete graph with x ∈ V(G) and two non-adjacent vertices u, v ∈ V(G).
Assume that G′ = G + uv. Then we have K fx(G) > K fx(G′).

Proof. From Theorem 2.1 of [29], we know that, for any vertex y , x in G,

rG(x, y) ≥ rG′ (x, y),

rG′ (x,u) = rG(x,u) −
(rG(x,u) + rG(u, v) − rG(x, v))2

4(1 + rG(u, v))
,

rG′ (x, v) = rG(x, v) −
(rG(x, v) + rG(u, v) − rG(x,u))2

4(1 + rG(u, v))
.
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Set
A = (rG(x,u) + rG(x, v)) − (rG′ (x,u) + rG′ (x, v)).

Thus we have

A =
(rG(x, v) + rG(u, v) − rG(x,u))2 + (rG(x,u) + rG(u, v) − rG(x, v))2

4(1 + rG(u, v))

≥
[(rG(x, v) + rG(u, v) − rG(x,u)) + (rG(x,u) + rG(u, v) − rG(x, v))]2

8(1 + rG(u, v))

=
rG(u, v)2

2(1 + rG(u, v))

> 0.

From the definition of the resistive eccentricity index of vertex x in a graph G, we conclude that
K fx(G) > K fx(G′) as desired.

Let n0 > k and ni ≥ 2 for i = 1, . . . , k be positive integers such that
k∑

i=0
ni = n + k. Denote by

En(n0; n1,n2, · · · ,nk) (see Fig. 2) the graph obtained by identifying k distinct vertices of Kn0 with one

vertex of Kni with i = 1, 2, · · · , k, respectively. For convenience, we write En(n − k;

k︷  ︸︸  ︷
2, . . . , 2) as En(n − k; 2(k))

when k ≥ 2. Clearly, we have En(n − k; 2(k)) ∈ Gn,k.

Figure 2: The graph En(n0; n1,n2, . . . ,nk)

Lemma 2.8. Let G ∈ Gn,k be some En(n0; n1,n2, . . . ,nk) as shown in Fig. 2 where xi ∈ V(Gi) ∩ V(G0) with
i = 1, 2, . . . , k and G0 = Kn0 , Gi = Kni for i ∈ {1, 2, . . . , k}. Assume that x is an arbitrary vertex in G0 different from
any vertex in {xi|1 ≤ i ≤ k}. Then

K fx(G) ≥
2

n − k
(n − k − 1) +

(
1 +

2
n − k

)
k

with equality holding if and only if G � En(n − k; 2(k))
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Proof. Note that the graph in Fig. 2 is just of the form En(n0; n1,n2, · · · ,nk). By the definition of K fx(G) and

the structure of G as shown in Fig. 2, considering that
k∑

i=1
ni = n − n0 + k, we have

K fx(G) =
2
n0

(n0 − 1) +
( 2
n0

+
2
n1

)
(n1 − 1) + · · · +

( 2
n0

+
2
nk

)
(nk − 1)

=
2
n0

(n0 − 1 + n1 − 1 + · · · + nk − 1) +

k∑
i=1

2(ni − 1)
ni

=
2
n0

(n − 1) + 2k − 2
( 1
n1

+
1
n2

+ · · · +
1
nk

)
.

Now we define a function

f (n0,n1,n2, . . . ,nk) =
2
n0

(n − 1) + 2k − 2
( 1
n1

+
1
n2

+ · · · +
1
nk

)
with n0 > k and ni ≥ 2 for i = 1, 2, · · · , k. Set

A = f (n0,n1,n2, . . . ,nk) − f (n0 + 1,n1 − 1,n2, . . . ,nk).

Then we have

A = 2(n − 1)
( 1
n0
−

1
n0 + 1

)
+ 2

( 1
n1 − 1

−
1
n1

)
> 0.

Thus we have
f (n0,n1,n2, . . . ,nk) > f (n0 + 1,n1 − 1,n2, . . . ,nk).

If ni > 2 for some 1 ≤ i ≤ k, then by a similar reasoning as above, we arrive at:

f (n0,n1,n2, . . . ,nk) > f (n0 + 1,n1 − 1,n2, . . . ,nk)
> · · ·

> f (n − k, 2, 2, . . . , 2)

=
2

n − k
(n − k − 1) +

(
1 +

2
n − k

)
k.

Therefore, we claim that any graph G of the form En(n0; n1, . . . ,nk) with an arbitrary non-cut vertex x in
Kn0 can be changed into En(n− k; 2(k)) with a smaller resistive eccentricity index of x. Then the “only if” part
has been proved.

Conversely, if G � En(n − k; 2(k)), then we have

K fx(G) =
2

n − k
(n − k − 1) +

(
1 +

2
n − k

)
k,

finishing the proof of this lemma.

Recall that a block of a connected graph G is a maximal subgraph, which does not contain any cut vertex,
in G. We call a block in a graph G an end-block if this block contains at most one cut vertex in it as a whole.
A graph G is called block graph if each block in G is a clique.

Lemma 2.9. Let 1 ≤ k < n
2 and G ∈ Gn,k with a non-cut vertex x ∈ V(G) and K fx(G) as small as possible. Then G

must be a block graph with k cut vertices each of which connects exactly two cliques in it.
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Proof. From Lemma 2.7, we find that G must be a block graph with k cut vertices. Let x1 be any cut vertex
in G. It suffices to prove that, in G, exactly two cliques, say Kn1 and Kn2 , share the common vertex x1.

If not, there exist s ≥ 3 cliques Kn1 ,Kn2 , . . . ,Kns share the cut vertex x1. Choose v1 ∈ V(Kn1 ) and vs ∈ V(Kns )
such that both of them are different from x1. Now we construct a new graph G∗ = G + v1vs. Obviously,
G∗ ∈ Gn,k. However, we have K fx(G∗) < K fx(G) from Lemma 2.7, contradicting to the choice of G. Thus we
complete the proof of this lemma.

From Lemma 2.9, the following remark can be easily deduced.

Remark 2.10. Let 1 ≤ k <
n
2

and G ∈ Gn,k with a non-cut vertex x ∈ V(G) and K fx(G) as small as possible. Then G
can be obtained by identifying an arbitrary vertex in Ks+1 with a non-cut vertex of G1 ∈ Gn−s,k−1.

In the following we present an essential lemma to the structure of extremal graphs fromGn,k with respect
to resistive eccentricity index.

Lemma 2.11. Let n, k be two integers such that 1 ≤ k <
n
2

and G ∈ Gn,k with x ∈ V(G) being a non-cut vertex and
K fx(G) as small as possible. Assume that {v1, v2, . . . , vk} is the set of cut vertices in G. Then

G − {v1, v2, . . . , vk} = Kt0 ∪ Kt1 ∪ · · · ∪ Ktk with
k∑

i=0

ti = n − k.

Proof. We prove this lemma by induction on k.
For k = 1, from Lemma 2.7, our result follows immediately. Assume that this result holds for all positive

integers fewer than k ≥ 2. Now we choose G ∈ Gn,k with a non-cut vertex x and K fx(G) as small as possible.
By Lemma 2.9, we conclude that G is a block graph with k cut vertices.

Now we choose an end-block, say Ks+1, in G. Then, by Remark 2.10, the graph G ∈ Gn,k can be viewed as
a graph obtained by identifying an arbitrary vertex in Ks+1 with a non-cut vertex of G1 ∈ Gn−s,k−1. Denote by
{v1, v2, . . . , vk−1} the set of all cut vertices in G1 and by vk the above vertex intersected in G1 and Ks+1. Then

by induction hypothesis, we have G1 − {v1, v2, . . . , vk−1} = Kt0 ∪ Kt1 ∪ · · · ∪ Ktk−1 with
k−1∑
i=0

ti = n − s − k + 1. Set

s = tk, then we have G − {v1, v2, . . . , vk} = Kt0 ∪ Kt1 ∪ · · · ∪ Ktk with
k∑

i=0
ti = n − k, finishing the proof of this

lemma.

Lemma 2.12. Let k, n be two integers such that 1 ≤ k <
n
2

. For any graph G ∈ Gn,k with x ∈ V(G) being a non-cut
vertex, we have

K fx(G) ≥
2

n − k
(n − k − 1) +

(
1 +

2
n − k

)
k

with equality holding if and only if G � En(n − k; 2(k)) and x is a non-cut vertex of Kn−k in it.

Proof. Assume that G ∈ Gn,k such that K fx(G) is as small as possible with x being a non-cut vertex in G. Let
v1, v2, . . . , vk be all the cut vertices of G. By Lemma 2.11, we have

G − {v1, v2, . . . , vk} = Kt0 ∪ Kt1 ∪ · · · ∪ Ktk with
k∑

i=0

ti = n − k.

Next we will prove the following claim.

Claim 1. G � En(n0; n1,n2, . . . ,nk) with ni = ti + hi where 1 ≤ hi ≤ k for i = 0, 1, . . . , k and
k∑

i=0
hi = 2k, and x is a

non-cut vertex in Kn0 in it.

Proof of Claim 1. We prove this result by induction on k. If k = 1, our result holds trivially. Assume that
this result holds for all positive integers fewer than k. Now we consider the graphs from Gn,k. Thanks to
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Remark 2.10, again, any graph G ∈ Gn,k can be obtained by identifying one non-cut vertex in G∗ ∈ Gn−s,k−1
with any vertex of Ks+1 which is an end-block in G.

By induction hypothesis, we have G∗ � En−s(n0; n1, . . . ,nk−1) with x being a non-cut vertex in Kn0 in it. If
G � En(n0; n1,n2, . . . ,nk), our result follows immediately. Otherwise, by choosing G2 = Ks+1 and G1 = Kni

with i ∈ {1, 2, . . . , k − 1} in G∗ � En−s(n0; n1, . . . ,nk−1) in Lemma 2.6, G can be changed into another graph
G′ � En(n0; n1,n2, . . . ,nk) with K fx(G′) < K fx(G), contradicting to the choice of G. This completes the proof
of this claim.

By Claim 1 and Lemma 2.8, our result holds immediately.

In view of Lemma 2.2, it is straightforward to get the following remark.

Remark 2.13. Let 1 ≤ k < n
2 and G ∈ Gn,k with Kirchhoff index as small as possible. Then G must be a block graph

with k cut vertices.

By Remark 2.13, we can obtain a parallel remark to Remark 2.10.

Remark 2.14. Let 1 ≤ k < n
2 and G ∈ Gn,k with K f (G) as small as possible. Then G can be obtained by identifying

an arbitrary vertex in Ks+1 with a non-cut vertex of G1 ∈ Gn−s,k−1.

Based on Remark 2.13, we can easily obtain the following lemma as an analogue of Lemma 2.11.

Lemma 2.15. Let G ∈ Gn,k with K f (G) as small as possible and v1, v2, . . . , vk all the cut vertices of G. Then we have

G − {v1, v2, . . . , vk} = Kt0 ∪ Kt1 ∪ · · · ∪ Ktk with
k∑

i=0
ti = n − k.

Lemma 2.16. Let

f (x) =
(k − 1)(k − 4) + 2x(k − 2)

n − x − k + 1
, 1 ≤ x ≤ n − 2(k − 1) and 3 ≤ k <

n
2
.

Then f (x) uniquely reaches its minimum
(k − 1)(k − 4) + 2(k − 2)

n − k
at x = 1.

Proof. Taking the first derivative, considering the fact that n ≥ 2k, for any integer k ≥ 3, we have

f ′(x) =
2(k − 2)n − k(k − 1)

(n − x − k + 1)2

>
4k(k − 2) − k(k − 1)

(n − x − k + 1)2

> 0.

Thus we conclude that f (x) is monotonically increasing on the interval [1,n − 2(k − 1)]. Therefore

f (x) ≥
(k − 1)(k − 4) + 2(k − 2)

n − k

with equality holding if and only if x = 1, which implies our result in this lemma.

3. Main Results

In this section we will determine the lower bound on Kirchhoff index of graphs from Gn,k with
0 ≤ k < n

2 and characterize the corresponding extremal graph at which the lower bound is attained. For
k = 0, from Lemma 2.2, we deduce that the extremal graph from Gn,k with minimal Kirchhoff index is Kn
with K f (Kn) = n − 1. So the in the following we always assume that k ≥ 1.
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Theorem 3.1. For any graph G ∈ Gn,1, we have

K f (G) ≥ n − 1 +
n2
− n − 2
n − 1

with equality holding if and only if G � En(n − 1; 2).

Proof. We choose G ∈ Gn,1 with K f (G) as small as possible and with x being the cut vertex of G. By Lemma
2.2, we claim that G− x must have two components and both of them are complete graphs. Without loss of
generality, we assume that G− x = Kk ∪Kn−k−1. In view of Lemma 2.2, again, we have G = K1

∨
(Kn−k−1 ∪Kk)

with 1 ≤ k ≤ n−1
2 . Recall that S(Kk) =

{
k(k−1), 0

}
. From Lemma 2.3, we obtain that

S(G) =
{
n, (n − k)(n−k−2), (k + 1)(k−1), 1, 0

}
.

By Eq. (1), we have

K f (G) = n
(1
n

+
n − k − 2

n − k
+

k − 1
k + 1

+ 1
)

= 1 + 3n − 2n
( 1
n − k

+
1

k + 1

)
.

Now we define a function

f (x) = 1 + 3n − 2n
( 1
n − x

+
1

x + 1

)
with 1 ≤ x ≤

n − 1
2

.

Taking the first derivative of f (x), we get

f ′(x) = 2n
[

1
(x + 1)2 −

1
(n − x)2

]

> 0 as 1 ≤ x ≤
n − 1

2
.

Thus we have

f (x) ≥ f (1) = n − 1 +
n2
− n − 2
n − 1

with equality holding if and only if k = 1 in G = K1
∨

(K1 ∪Kn−2), that is, G � En(n− 1; 2), finishing the proof
of this theorem.

Theorem 3.2. For any graph G ∈ Gn,2, we have

K f (G) ≥ n − 1 +
2n2
− 4n − 2
n − 2

with equality holding if and only if G � En(n − 2, 2(2)).

Proof. Assume that G ∈ Gn,2 with K f (G) as small as possible. From Remark 2.14, we find that G can
be obtained by identifying one non-cut vertex, say v1, of G1 ∈ Gn−s,1 with any one vertex of Ks+1 where
1 ≤ s ≤ n − 3. Note that

f (x) =
2x

n − x − 1
with 1 ≤ x ≤ n − 3
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reaches its minimum at x = 1. Therefore, by Lemmas 2.4, 2.5 and 2.12 and Theorem 3.1, we have

K f (G) = K f (G1) + K f (Ks+1) + (n − s − 1)K fv1 (Ks+1) + sK fv1 (G1)

≥ n − s − 1 +
(n − s)2

− (n − s) − 2
n − s − 1

+ s + (n − s − 1)
2s

s + 1

+ s
[ 2
n − s − 1

(n − s − 2) +
(
1 +

2
n − s − 1

)]
= n − 1 + (n − s − 1)

2s
s + 1

+
n2
− 2s2 + (s − 1)n − 2s − 2

n − s − 1

= n − 1 + (n − s − 1)
(
2 −

2
s + 1

)
+

(
1 +

2s
n − s − 1

)
n −

2(s2 + s + 1)
n − s − 1

= 3n − 3 − 2s − 2
(n − s − 1

s + 1
+

s + 1
n − s − 1

)
+ n +

2sn
n − s − 1

−
2s2

n − s − 1

= 4n − 3 − 2
(n − s − 1

s + 1
+

s + 1
n − s − 1

)
+

2s
n − s − 1

≥ 4n − 3 − 2
(n − 2

2
+

2
n − 2

)
+

2
n − 2

= n − 1 +
2n2
− 4n − 2
n − 2

with both equalities holding if and only if G1 � En(n − 1; 2) and s = 1. Equivalently, G � En(n − 2, 2(2)),
finishing the proof of this theorem.

Theorem 3.3. Let G ∈ Gn,k with 2 ≤ k < n
2 . Then we have

K f (G) ≥ n − 1 +
n2k − nk2 + k2

− 3k
n − k

with equality holding if and only if G � En(n − k; 2(k)).

Proof. We prove this theorem by introduction on k, i.e., the number of cut vertices. When k = 2, by Theorem
3.2, our result holds obviously. Therefore, we always assume that k ≥ 3 in the following proof.

Assume that the result holds for any graph from Gn,k−1 for all values of n. Let G ∈ Gn,k with Kirchhoff
index as small as possible. From Lemma 2.15 and the above argument, we find that G − {v1, v2, . . . , vk} =

Kt0 ∪ Kt1 ∪ · · · ∪ Ktk with
k∑

p=0
tp = n − k. Now we choose one subgraph Kti such that any vertex in it has the

maximum eccentricity in G. From the definition of eccentricity of vertex in a graph, there exists at least one
other subgraph Kt j of G such that any vertex in it has also the maximum eccentricity in G. Moreover, we
assume that, in G, vi is adjacent to every vertices of Kti and v j is adjacent to every vertices of Kt j . Suppose
that min{ti, t j} = s. By Remark 2.14, any graph G ∈ Gn,k can be obtained by identifying one non-cut vertex
of G1 ∈ Gn−s,k−1 with one vertex of Ks+1, that is, G1 and Ks+1 have only one common vertex, say x. Now we
prove the following claim about the property of the set Gn−s,k−1.

Claim 1. k − 1 ≤
n − s

2
in Gn−s,k−1.

Proof of Claim 1. Otherwise, we have s > n − 2(k − 1). Let

G∗ = G −
(
V(Kti ) ∪ V(Kt j )

)
.
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Then G∗ ∈ Gn−ti−t j,k−2. However, the order of G∗ is

n − ti − t j ≤ n − 2s
< n − 2n + 4(k − 1)
= 4k − 4 − n
< 2k − 4.

Note that the last inequality holds because of the fact that k < n
2 . Without loss of generality, we assume that

i < j. From the above argument, we find that V∗ ∆
= {v1, v2, . . . , vi−1, vi+1, . . . , v j−1, v j+1, . . . , vk} is the set of all

cut vertices in G∗, and G∗ − V∗ =
⋃

1≤p≤k,p,i, j
Ktp . But, the order of G∗ − V∗ is

n∗ < 2k − 4 − (k − 2) = k − 2.

A contradiction occurs to the structure of G∗ − V∗, which completes the proof of this claim.

Considering the fact that the function

h(x) =
2(n − x − 1)

x + 1

is monotonically decreasing on the interval [1,n − 2(k − 1)], by Lemmas 2.12, 2.16 and the induction
hypothesis, we have

K f (G) = K f (G1) + K f (Ks+1) + (n − s − 1)K fx(Ks+1) + sK fx(G1)

≥ n − s − 1 +
(n − s)2(k − 1) − (n − s)(k − 1)2 + (k − 1)2

− 3(k − 1)
n − s − k + 1

+ s

+ (n − s − 1)
2s

s + 1
+ s

[
2(n − s − k)
n − s − k + 1

+
(
1 +

2
n − s − k + 1

)
(k − 1)

]

= n − 1 + (n − s − 1)
(
2 −

2
s + 1

)
+

(k − 1)
[
(n − s)2

− (n − s)(k − 1) + k − 4
]

n − s − k + 1

+ s
2(n − s − k) + (n − s − k + 3)(k − 1)

n − s − k + 1

= 3n − 2s − 3 −
2(n − s − 1)

s + 1
+ (n − s)(k − 1) +

(k − 1)(k − 4)
n − s − k + 1

+
2s(n − s − k) + s(k − 1)(n − s − k + 3)

n − s − k + 1

= (n − s)(k + 1) + n − 3 −
2(n − s − 1)

s + 1
+

(k − 1)(k − 4)
n − s − k + 1

+
s(n − s − k)(k + 1) + 3(k − 1)s

n − s − k + 1
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= (n − s)(k + 1) + n − 3 −
2(n − s − 1)

s + 1
+

(k − 1)(k − 4 + 3s)
n − s − k + 1

+
(
1 −

1
n − s − k + 1

)
s(k + 1)

= n(k + 1) + n − 3 −
2(n − s − 1)

s + 1
+

(k − 1)(k − 4) + 2s(k − 2)
n − s − k + 1

≥ n(k + 1) + n − 3 − (n − 2) +
(k − 1)(k − 4) + 2(k − 2)

n − k

= n − 1 +
n2k − nk2 + k2

− 3k
n − k

with both equalities holding if and only if s = 1 and G1 � En−1(n − k; 2(k−1)), i.e., G � En(n − k; 2(k)). Thus our
result follows immediately.

Combining Theorems 3.1, 3.2 and 3.3, we can obtain the following result:

Theorem 3.4. For any graph G ∈ Gn,k with 1 ≤ k <
n
2

, we have

K f (G) ≥ n − 1 +
n2k − nk2 + k2

− 3k
n − k

with equality holding if and only if G � En(n − k; 2(k)).

After obtaining Theorem 3.4, naturally we would like to propose the following two problems, by which
we end this paper:

(1) Which graphs fromGn,k with
n
2
≤ k ≤ n− 3 have the minimal Kirchhoff index? Probably Lemma 2.15

also works for this problem, although we can not know the exact extremal graph on this topic.
(2) Which graphs fromGn,k have the maximal Kirchhoff index? Maybe the cycle Cn is a natural candidate

we are searching for the case k = 0. If so, it can be a starting point for this problem.
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