Stability of the Pexiderized Quadratic Functional Equation in Paranormed Spaces

Zhihua Wang ${ }^{\text {a }}$, Prasanna K. Sahoo ${ }^{\text {b }}$
${ }^{a}$ School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
${ }^{b}$ Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

Abstract

The aim of the present paper is to investigate the Hyers-Ulam stability of the Pexiderized quadratic functional equation, namely of $f(x+y)+f(x-y)=2 g(x)+2 h(y)$ in paranormed spaces. More precisely, first we examine the stability for odd and even functions and then we apply our results to prove the Hyers-Ulam stability of the quadratic functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ in paranormed spaces for a general function.

1. Introduction

The stability problem for functional equations originated from a question of Ulam [21] concerning the stability of group homomorphisms and affirmatively answered by Hyers [6] for Banach spaces. Subsequently, Hyers' result was generalized by Aoki [1] for additive mappings and Rassias [18] for linear mappings by considering an unbounded Cauchy difference. The paper by Rassias has provided a lot of influence in the development of what we now call the generalized Hyers-Ulam stability or Hyers-UlamRassias stability of functional equations. Rassias [17] considered the Cauchy difference controlled by a product of different powers of norms. The above results have been generalized by Forti [3] and Găvruta [5] who permitted the Cauchy difference to become arbitrarily unbounded. Since then, the stability of several functional equations has been extensively investigated by several mathematicians (see [4, 9, 10, 19] and references therein).

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 g(x)+2 h(y) \tag{1}
\end{equation*}
$$

is known as a Pexiderized quadratic functional equation. In the case $f=g=h$ the equation (1) reduces to quadratic functional equation. In various spaces, several results for the generalized Hyers-Ulam stability of functional equations (1) have been investigated by several researchers [2, 7, 8, 12, 20, 22]. Recently, several interesting results regarding the generalized Hyers-Ulam stability of many functional equations have been proved (cf. [11, 13-16]) in paranormed spaces.

[^0]The main purpose of this paper is to establish the Hyers-Ulam stability of the Pexiderized quadratic functional equation (1) in paranormed spaces. The paper is organized as follows: In section 1, we present a brief introduction and introduce related definitions. In section 2, we prove the Hyers-Ulam stability of the functional equation (1) in paranormed spaces for odd functions case. In section 3, we prove the Hyers-Ulam stability of the functional equation (1) in paranormed spaces for even functions case. In section 4, we apply our results to prove the Hyers-Ulam stability of the quadratic functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ in paranormed spaces for a general function case.

Next, we recall some basic facts concerning Fréchet spaces used in this paper.
Definition 1.1. (cf. [11, 13]) Let X be a vector space. A paranorm $P: X \rightarrow[0, \infty)$ is a function on X such that
(1) $P(0)=0$;
(2) $P(-x)=P(x)$;
(3) $P(x+y) \leq P(x)+P(y)$ (triangle inequality);
(4) If $\left\{t_{n}\right\}$ is a sequence of scalars with $t_{n} \rightarrow$ t and $\left\{x_{n}\right\} \subset X$ with $P\left(x_{n}-x\right) \rightarrow 0$, then $P\left(t_{n} x_{n}-t x\right) \rightarrow 0$ (continuity of multiplication).
In this case, the pair (X, P) is called a paranormed space if P is a paranorm on the vector space X.
The paranorm is called total if, in addition, we have $P(x)=0$ implies $x=0$. A Fréchet space is a total and complete paranormed space. Throughout this paper, assume that (X, P) is a Fréchet space and $(Y,\|\cdot\|)$ is a Banach space. It is easy to see that if P is a paranorm on X, then $P(n x) \leq n P(x)$ for all $x \in X$ and $n \in \mathbb{N}$.

2. Stability of the Functional Equation (1): Odd Functions Case

In this section, we prove some results related to the Hyers-Ulam stability of the Pexiderized quadratic functional equation (1) in paranormed spaces when f, g and h are odd functions.

Theorem 2.1. Let r, θ be positive real numbers with $r>1$. Suppose that f, g and h are odd functions from Y to X such that

$$
\begin{equation*}
P\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(x)-h(y)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{2}
\end{equation*}
$$

for all $x, y \in Y$. Then there exists a unique additive mapping $A: Y \rightarrow X$ such that

$$
\begin{align*}
& P(f(x)-A(x)) \leq \frac{8}{2^{r}-2} \theta\|x\|^{r}, \tag{3}\\
& P(g(x)+h(x)-A(x)) \leq \frac{2\left(2^{r}+2\right)}{2^{r}-2} \theta\|x\|^{r} \tag{4}
\end{align*}
$$

for all $x \in Y$.
Proof. Interchanging x with y in (2), we get

$$
\begin{equation*}
P\left(\frac{1}{2} f(x+y)-\frac{1}{2} f(x-y)-g(y)-h(x)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{5}
\end{equation*}
$$

for all $x, y \in Y$. It follows from (2) and (5) that

$$
\begin{equation*}
P(f(x+y)-g(x)-h(y)-g(y)-h(x)) \leq 2 \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{6}
\end{equation*}
$$

for all $x, y \in Y$. Letting $y=0$ in (6), we get

$$
\begin{equation*}
P(f(x)-g(x)-h(x)) \leq 2 \theta\|x\|^{r} \tag{7}
\end{equation*}
$$

for all $x \in Y$. From (6) and (7), we conclude that

$$
\begin{equation*}
P(f(x+y)-f(x)-f(y)) \leq 4 \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{8}
\end{equation*}
$$

for all $x, y \in Y$. Putting $y=x$ in (8), we obtain

$$
\begin{equation*}
P(f(2 x)-2 f(x)) \leq 8 \theta\|x\|^{r} \tag{9}
\end{equation*}
$$

for all $x \in Y$. Thus

$$
P\left(f(x)-2 f\left(\frac{x}{2}\right)\right) \leq \frac{8}{2^{r}} \theta\|x\|^{r}
$$

for all $x \in Y$. Hence

$$
\begin{equation*}
P\left(2^{m} f\left(\frac{x}{2^{m}}\right)-2^{n} f\left(\frac{x}{2^{n}}\right)\right) \leq \sum_{j=m}^{n-1} \frac{8 \cdot 2^{j}}{2^{r j+r}} \theta\|x\|^{r} \tag{10}
\end{equation*}
$$

for all nonnegative integers n and m with $n \geq m$ and all $x \in Y$. It follows from (10) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in X for all $x \in Y$. Since X is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges for all $x \in Y$. So one can define a mapping $A: Y \rightarrow X$ by

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right) \tag{11}
\end{equation*}
$$

for all $x \in Y$. Moreover, letting $m=0$ and passing the limit as $n \rightarrow \infty$ in (10), we get (3).
Now, we show that A is additive. It follows from (8) and (11) that

$$
\begin{aligned}
P(A(x+y)-A(x)-A(y)) & =\lim _{n \rightarrow \infty} P\left(2^{n}\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right)\right) \\
& \leq \lim _{n \rightarrow \infty} 2^{n} P\left(f\left(\frac{x+y}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{n}}{2^{n r}} \cdot 4 \theta\left(\|x\|^{r}+\|y\|^{r}\right)=0
\end{aligned}
$$

for all $x, y \in Y$. Hence $A(x+y)=A(x)+A(y)$ for all $x, y \in Y$ and the mapping $A: Y \rightarrow X$ is additive.
By (3) and (7), we have

$$
\begin{align*}
P(g(x)+h(x)-A(x)) & =P(f(x)-A(x)+g(x)+h(x)-f(x)) \\
& \leq P(f(x)-A(x))+P(g(x)+h(x)-f(x)) \\
& \leq\left(\frac{8}{2^{r}-2}+2\right) \theta\|x\|^{r} \\
& =\frac{2\left(2^{r}+2\right)}{2^{r}-2} \theta\|x\|^{r} \tag{12}
\end{align*}
$$

for all $x \in Y$. Thus we obtained (4). To prove the uniqueness of A, assume that A^{\prime} be another additive mapping from Y to X, which satisfies (3). Then

$$
\begin{aligned}
P\left(A(x)-A^{\prime}(x)\right) & =P\left(2^{n}\left(A\left(\frac{x}{2^{n}}\right)-A^{\prime}\left(\frac{x}{2^{n}}\right)\right)\right) \leq 2^{n}\left(P\left(A\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right)+P\left(A^{\prime}\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right)\right) \\
& \leq \frac{16 \cdot 2^{n}}{\left(2^{r}-2\right) 2^{n r}} \theta\|x\|^{r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in Y$. So we can conclude that $A(x)=A^{\prime}(x)$ for all $x \in Y$. This completes the proof of the theorem.

Corollary 2.2. Let r, s, θ be positive real numbers with $\lambda=r+s>1$. Suppose that f, g and h are odd functions from Y to X such that

$$
P\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(x)-h(y)\right) \leq\left\{\begin{array}{l}
\theta\|x\|^{r}\|y\|^{s}, \tag{13}\\
\theta\left(\|x\|^{r}\|y\|^{s}+\|x\|^{r+s}+\|y\|^{r+s}\right)
\end{array}\right.
$$

for all $x, y \in Y$. Then there exists a unique additive mapping $A: Y \rightarrow X$ such that

$$
\begin{align*}
& P(f(x)-A(x)) \leq\left\{\begin{array}{l}
\frac{2}{2^{\lambda}-2} \theta\|x\|^{\lambda}, \\
\frac{10}{2^{\lambda}-2} \theta\|x\|^{\lambda},
\end{array}\right. \tag{14}\\
& P(g(x)+h(x)-A(x)) \leq\left\{\begin{array}{l}
\frac{2}{2^{\lambda}-2} \theta\|x\|^{\lambda}, \\
\frac{2\left(2^{\lambda}+3\right)}{2^{\lambda}-2} \theta\|x\|^{\lambda}
\end{array}\right. \tag{15}
\end{align*}
$$

for all $x \in Y$.
Proof. The proof is similar to the proof of Theorem 2.1.
Theorem 2.3. Let r be a positive real number with $r<1$. Suppose that f, g and h are odd functions from X to Y such that

$$
\begin{equation*}
\left\|\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(x)-h(y)\right\| \leq P(x)^{r}+P(y)^{r} \tag{16}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x)\| \leq \frac{8}{2-2^{r}} P(x)^{r} \tag{17}\\
& \|g(x)+h(x)-A(x)\| \leq \frac{2\left(6-2^{r}\right)}{2-2^{r}} P(x)^{r} \tag{18}
\end{align*}
$$

for all $x \in X$.
Proof. The proof of Theorem 2.3 is similar to the proof of Theorem 2.1.
Corollary 2.4. Let r, s be positive real numbers with $\lambda=r+s<1$. Suppose that f, g and h are odd functions from X to Y such that

$$
\left\|\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(x)-h(y)\right\| \leq\left\{\begin{array}{l}
P(x)^{r} P(y)^{s} \tag{19}\\
P(x)^{r} P(y)^{s}+\left(P(x)^{r+s}+P(y)^{r+s}\right)
\end{array}\right.
$$

for all $x, y \in X$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\begin{align*}
& \|f(x)-A(x)\| \leq\left\{\begin{array}{l}
\frac{2}{2-2^{\lambda}} P(x)^{\lambda}, \\
\frac{10}{2-2^{\lambda}} P(x)^{\lambda}
\end{array}\right. \tag{20}\\
& \|g(x)+h(x)-A(x)\| \leq\left\{\begin{array}{l}
\frac{2}{2-2^{\lambda}} P(x)^{\lambda}, \\
\frac{2\left(7-2^{\lambda}\right)}{2-2^{\lambda}} P(x)^{\lambda}
\end{array}\right. \tag{21}
\end{align*}
$$

for all $x \in X$.
Proof. The proof is similar to the proof of Theorem 2.3.

3. Stability of the Functional Equation (1): Even Functions Case

In this section, we prove some results related to the Hyers-Ulam type stability of the Pexiderized quadratic functional equation (1) in paranormed spaces when f, g and h are even functions.

Theorem 3.1. Let r, θ be positive real numbers with $r>2$. Suppose that f, g and h are even functions from Y to X such that $f(0)=g(0)=h(0)=0$ and

$$
\begin{equation*}
P\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(x)-h(y)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{22}
\end{equation*}
$$

for all $x, y \in Y$. Then there exists a unique quadratic mapping $Q: Y \rightarrow X$ such that

$$
\begin{align*}
& P(Q(x)-f(x)) \leq \frac{8}{2^{r}-4} \theta\|x\|^{r} \tag{23}\\
& P(Q(x)-g(x)) \leq \frac{2^{r}+4}{2^{r}-4} \theta\|x\|^{r} \tag{24}\\
& P(Q(x)-h(x)) \leq \frac{2^{r}+4}{2^{r}-4} \theta\|x\|^{r} \tag{25}
\end{align*}
$$

for all $x \in Y$.
Proof. Interchanging x with y in (22), we have

$$
\begin{equation*}
P\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(y)-h(x)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{26}
\end{equation*}
$$

for all $x, y \in Y$. Putting $x=0$ in (22), we get

$$
\begin{equation*}
P(f(y)-h(y)) \leq \theta\|y\|^{r} \tag{27}
\end{equation*}
$$

for all $y \in Y$. For $y=0$ in (22) becomes

$$
\begin{equation*}
P(f(x)-g(x)) \leq \theta\|x\|^{r} \tag{28}
\end{equation*}
$$

for all $x \in Y$. Combining (22), (26), (27) and (28), we obtain

$$
\begin{equation*}
P(f(x+y)+f(x-y)-2 f(x)-2(y)) \leq 4 \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{29}
\end{equation*}
$$

for all $x, y \in Y$. Letting $y=x$ in (29), we have

$$
\begin{equation*}
P(f(2 x)-4 f(x)) \leq 8 \theta\|x\|^{r} \tag{30}
\end{equation*}
$$

for all $x \in Y$. Thus

$$
\begin{equation*}
P\left(f(x)-4 f\left(\frac{x}{2}\right)\right) \leq \frac{8}{2^{r}} \theta\|x\|^{r} \tag{31}
\end{equation*}
$$

for all $x \in Y$. Hence

$$
\begin{equation*}
P\left(4^{m} f\left(\frac{x}{2^{m}}\right)-4^{n} f\left(\frac{x}{2^{n}}\right)\right) \leq \sum_{j=m}^{n-1} \frac{8 \cdot 4^{j}}{2^{r j+r}} \theta\|x\|^{r} \tag{32}
\end{equation*}
$$

for all nonnegative integers n and m with $n \geq m$ and all $x \in Y$. It follows from (32) that the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence in X for all $x \in Y$. Since X is complete, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges for all $x \in Y$. Hence one can define the mapping $Q: Y \rightarrow X$ by

$$
\begin{equation*}
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right) \tag{33}
\end{equation*}
$$

for all $x \in Y$. Moreover, letting $m=0$ and passing the limit as $n \rightarrow \infty$ in (32), we get (23).

Next, we show that Q is quadratic. It follows from (29) and (33) that

$$
\begin{aligned}
P(Q(x+y) & +Q(x-y)-2 Q(x)-2 Q(y)) \\
& =\lim _{n \rightarrow \infty} P\left(4^{n}\left(f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{y}{2^{n}}\right)\right)\right) \\
& \leq \lim _{n \rightarrow \infty} 4^{n} P\left(f\left(\frac{x+y}{2^{n}}\right)+f\left(\frac{x-y}{2^{n}}\right)-2 f\left(\frac{x}{2^{n}}\right)-2 f\left(\frac{y}{2^{n}}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \frac{4^{n}}{2^{n r}} \cdot 4 \theta\left(\|x\|^{r}+\|y\|^{r}\right)=0
\end{aligned}
$$

for all $x, y \in Y$. Hence $Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)$ for all $x, y \in Y$ and the mapping $Q: Y \rightarrow X$ is quadratic.

By (23) and (28), we have

$$
\begin{align*}
P(Q(x)-g(x)) & =P(Q(x)-f(x)+f(x)-g(x)) \\
& \leq P(Q(x)-f(x))+P(f(x)-g(x)) \\
& \leq\left(\frac{8}{2^{r}-4}+1\right) \theta\|x\|^{r} \\
& =\frac{2^{r}+4}{2^{r}-4} \theta\|x\|^{r} \tag{34}
\end{align*}
$$

for all $x \in Y$. Thus we obtained (24). Similarly, we show that the above inequality also holds for h. The uniqueness assertion can be done on the same lines as in Theorem 2.1. This completes the proof of the theorem.

Corollary 3.2. Let r, s, θ be positive real numbers with $\lambda=r+s>2$. Suppose f, g and h are even functions from Y to X such that $f(0)=g(0)=h(0)=0$ and (13) for all $x, y \in Y$. Then there exists a unique quadratic mapping $Q: Y \rightarrow X$ such that

$$
\begin{align*}
& P(Q(x)-f(x)) \leq\left\{\begin{array}{l}
\frac{2}{2^{\lambda}-4} \theta\|x\|^{\lambda}, \\
\frac{10}{2^{\lambda}-4} \theta\|x\|^{\lambda},
\end{array}\right. \tag{35}\\
& P(Q(x)-g(x)) \leq\left\{\begin{array}{l}
\frac{2}{2^{\lambda}-4} \theta\|x\|^{\lambda}, \\
\frac{2^{\lambda}+6}{2^{\lambda}-4} \theta\|x\|^{\lambda}
\end{array}\right. \tag{36}\\
& P(Q(x)-h(x)) \leq\left\{\begin{array}{l}
\frac{2}{2^{\lambda}-4} \theta\|x\|^{\lambda}, \\
\frac{2^{\lambda}+6}{2^{\lambda}-4} \theta\|x\|^{\lambda}
\end{array}\right. \tag{37}
\end{align*}
$$

for all $x \in Y$.
Proof. The proof is similar to the proof of Theorem 3.1.
Theorem 3.3. Let r be a positive real number with $r<2$. Suppose that f, g and h are even functions from X to Y such that $f(0)=g(0)=h(0)=0$ and satisfy

$$
\begin{equation*}
\left\|\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-g(x)-h(y)\right\| \leq P(x)^{r}+P(y)^{r} \tag{38}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
& \|Q(x)-f(x)\| \leq \frac{8}{4-2^{r}} P(x)^{r} \tag{39}\\
& \|Q(x)-g(x)\| \leq \frac{12-2^{r}}{4-2^{r}} P(x)^{r} \tag{40}\\
& \|Q(x)-h(x)\| \leq \frac{12-2^{r}}{4-2^{r}} P(x)^{r} \tag{41}
\end{align*}
$$

for all $x \in X$.

Proof. The proof Theorem 3.3 is similar to the proof of Theorem 3.1.
Corollary 3.4. Let r, s be positive real numbers with $\lambda=r+s<2$. Suppose that f, g and h are even functions from X to Y such that $f(0)=g(0)=h(0)=0$ and satisfy (19) for all $x, y \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{align*}
& \|Q(x)-f(x)\| \leq\left\{\begin{array}{l}
\frac{4}{4-2^{\lambda}} P(x)^{\lambda}, \\
\frac{10}{4-2^{\lambda}} P(x)^{\lambda},
\end{array}\right. \tag{42}\\
& \|Q(x)-g(x)\| \leq\left\{\begin{array}{l}
\frac{4}{4-2^{\lambda}} P(x)^{\lambda}, \\
\frac{14-2^{\lambda}}{4-2^{\lambda}} P(x)^{\lambda}
\end{array}\right. \tag{43}\\
& \|Q(x)-h(x)\| \leq\left\{\begin{array}{l}
\frac{4}{4-2^{\lambda}} P(x)^{\lambda}, \\
\frac{14-2^{\lambda}}{4-2^{\lambda}} P(x)^{\lambda}
\end{array}\right. \tag{44}
\end{align*}
$$

for all $x \in X$.
Proof. The proof is similar to the proof of Theorem 3.3.

4. Applications of Stability Results: A General Function Case

In this section, we apply our results to prove the Hyers-Ulam stability of the quadratic functional equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ in paranormed spaces for a general function case.

Theorem 4.1. Let r, θ be positive real numbers with $r>2$. Suppose that f is a mapping from Y to X such that $f(0)=0$ and satisfies

$$
\begin{equation*}
P\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \tag{45}
\end{equation*}
$$

for all $x, y \in Y$. Then there are unique mappings $A, Q: Y \rightarrow X$ such that A is additive, Q is quadratic and

$$
\begin{equation*}
P(f(x)-A(x)-Q(x)) \leq\left(\frac{8}{2^{r}-2}+\frac{8}{2^{r}-4}\right) \theta\|x\|^{r} \tag{46}
\end{equation*}
$$

for all $x \in Y$.
Proof. Since f satisfies inequality (45), and passing to the odd part f^{o} and the even part f^{e} of f. Hence we have

$$
\begin{aligned}
& P\left(\frac{1}{2} f^{o}(x+y)+\frac{1}{2} f^{o}(x-y)-f^{o}(x)-f^{o}(y)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right) \\
& P\left(\frac{1}{2} f^{e}(x+y)+\frac{1}{2} f^{e}(x-y)-f^{e}(x)-f^{e}(y)\right) \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
\end{aligned}
$$

for all $x, y \in Y$. From the proofs of Theorems 2.1 and 3.1 , we obtain a unique additive mapping A and a unique quadratic mapping Q satisfying

$$
P\left(f^{o}(x)-A(x)\right) \leq \frac{8}{2^{r}-2} \theta\|x\|^{r} \quad \text { and } \quad P\left(f^{e}(x)-Q(x)\right) \leq \frac{8}{2^{r}-4} \theta\|x\|^{r}
$$

for all $x \in Y$. Therefore, we have

$$
P(f(x)-A(x)-Q(x)) \leq\left(\frac{8}{2^{r}-2}+\frac{8}{2^{r}-4}\right) \theta\|x\|^{r}
$$

for all $x \in Y$, as desired. This completes the proof of the theorem.

Corollary 4.2. Let r, s, θ be positive real numbers with $\lambda=r+s>2$. Suppose that f be a mapping from Y to X such that $f(0)=0$ and satisfies

$$
P\left(\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y)\right) \leq\left\{\begin{array}{l}
\theta\|x\|^{r}\|y\|^{s}, \tag{47}\\
\theta\left(\|x\|^{r}\|y\|^{s}+\|x\|^{r+s}+\|y\|^{r+s}\right)
\end{array}\right.
$$

for all $x, y \in Y$. Then there are unique mappings $A, Q: Y \rightarrow X$ such that A is additive, Q is quadratic and

$$
P(f(x)-A(x)-Q(x)) \leq\left\{\begin{array}{l}
\left(\frac{2}{2^{\lambda}-2}+\frac{2}{2^{\lambda}-4}\right) \theta\|x\|^{\lambda} \tag{48}\\
\left(\frac{10}{2^{\lambda}-2}+\frac{10}{2^{\lambda}-4}\right) \theta\|x\|^{\lambda}
\end{array}\right.
$$

for all $x \in Y$.
Proof. The proof is similar to the proof of Theorem 4.1 and the result follows from Corollaries 2.2 and 3.2.

Theorem 4.3. Let r be a positive real numbers with $r<1$. Suppose that f is a mapping from X to Y such that $f(0)=0$ and satisfies

$$
\begin{equation*}
\left\|\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y)\right\| \leq P(x)^{r}+P(y)^{r} \tag{49}
\end{equation*}
$$

for all $x, y \in X$. Then there are unique mappings $A, Q: X \rightarrow Y$ such that A is additive, Q is quadratic and

$$
\begin{equation*}
\|f(x)-A(x)-Q(x)\| \leq\left(\frac{8}{2-2^{r}}+\frac{8}{4-2^{r}}\right) P(x)^{r} \tag{50}
\end{equation*}
$$

for all $x \in X$.
Proof. The proof is similar to the proof of Theorem 4.1 and the result follows from Theorems 2.3 and 3.3.

Corollary 4.4. Let r, s be positive real numbers with $\lambda=r+s<1$. Suppose that f is a mapping from X to Y such that $f(0)=0$ and satisfies

$$
\left\|\frac{1}{2} f(x+y)+\frac{1}{2} f(x-y)-f(x)-f(y)\right\| \leq\left\{\begin{array}{l}
P(x)^{r} P(y)^{s} \tag{51}\\
P(x)^{r} P(y)^{s}+P(x)^{r+s}+P(y)^{r+s}
\end{array}\right.
$$

for all $x, y \in X$. Then there are unique mappings $A, Q: X \rightarrow Y$ such that A is additive, Q is quadratic and

$$
\|f(x)-A(x)-Q(x)\| \leq\left\{\begin{array}{l}
\left(\frac{2}{2-2^{\lambda}}+\frac{2}{4-2^{\lambda}}\right) P(x)^{\lambda} \tag{52}\\
\left(\frac{10}{2-2^{\lambda}}+\frac{10}{4-2^{\lambda}}\right) P(x)^{\lambda}
\end{array}\right.
$$

for all $x \in X$.
Proof. The proof is similar to the proof of Theorem 4.3 and the result follows from Corollaries 2.4 and 3.4.

Acknowledgements: The work was done while the first author studied at University of Louisville as a Postdoctoral Fellow from Hubei University of Technology during 2013-14.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66.
[2] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), 76-86.
[3] G. L. Forti, The stability of homomorphisms ans amembility, with applications to functional equations, Abh. Math. Sem. Univ. Hamburg 57(1987), 215-226.
[4] G. L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295(2004), 127-133.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
[6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27(1941), 222-224.
[7] K. W. Jun and Y. H. Lee, On the Hyers-Ulam-Rassias stability of a pexiderized quadratic inequality, Math. Ineq. Appl. 4(2001), 93-118.
[8] S. M. Jung and P. K. Sahoo, Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc. 38(2001), 645-656.
[9] S. M. Jung, Hyers- Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011.
[10] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Science, New York, 2009.
[11] S. Lee, C. Park and J. Lee, Functional inequalities in paranormed spaces, J. Chungcheong Math. Soc. 26(2013), 287-296.
[12] A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Result. Math. 52(2008), 161-177.
[13] C. Park, Stability of an AQCQ-functional equation in paranormed spaces, Adv. Diff. Equ. 2012(2012), Article ID 148.
[14] C. Park and J. Lee, An AQCQ-functional equation in paranormed spaces, Adv. Diff. Equ. 2012(2012), Article ID 63.
[15] C. Park and J. Lee, Functional equations and inequalities in paranormed spaces, J. Ineq. Appl. 2013(2013), Article ID 198.
[16] C. Park and D. Shin, Functional equations and inequalities in paranormed spaces, Adv. Diff. Equ. 2012(2012), Article ID 123.
[17] J. M. Rassias, On approximation of approximately linear mappings, J. Funct. Anal. 46(1982), 126-130.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[19] P. K. Sahoo and Pl. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton, 2011.
[20] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano 53(1983), 113-129.
[21] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
[22] Z. Wang and W. Zhang, Fuzzy stability of the Pexiderized quadratic functional equation: A fixed point approach, Fixed Point Theory and Applications, Volume 2009, Article ID 460912, 10 pages.

[^0]: 2010 Mathematics Subject Classification. Primary 39B82; Secondary 39B72, 35A17
 Keywords. Hyers-Ulam stability; Paranormed space; Pexiderized quadratic functional equation.
 Received: 31 October 2014; Accepted: 08 February 2015
 Communicated by Dragan S. Djordjević
 Research supported by Key Project of Educational Department of Hubei Province of China (Grant Nos. D20161401)
 Email addresses: matwzh2000@126. com (Zhihua Wang), corresponding author (Zhihua Wang), sahoo@louisville.edu
 (Prasanna K. Sahoo)

