
Filomat 30:14 (2016), 3875–3883
DOI 10.2298/FIL1614875C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Abbas, Ali and Salvador [Fixed and periodic points of generalized contractions in metric spaces,
Fixed Point Theory Appl. 2013, 2013:243] extended the concept of F− contraction mapping introduced
in [21], to two mappings. The aim of this paper is to introduce the notion of a generalized F1− weak
contraction mapping and to study sufficient conditions for the existence of common fixed points for such
class of mappings. As applications, related invariant approximation results are derived. The results
obtained herein unify, generalize and complement various known results in the literature.

1. Introduction and Preliminaries

The Banach contraction principle appeared in explicit form in Banach’s thesis [3] in 1922 where it was
used to establish the existence of a solution for an integral equation. Since then, it has become a very
popular tool in solving existence problems in many branches of mathematics. Extensions of this principle
were obtained either by generalizing the domain of mappings or by extending the contractive condition on
the mappings (see, e.g., [1],[2],[4]-[22] and references mentioned therein).

Recently, Wardowski [21] introduced a new type of contractive mapping called F-contraction and proved
a fixed point theorem as a generalization of the Banach contraction principle. Abbas et al. ([2]) introduced
the concept of F− contraction with respect to a self mapping and obtained common fixed point results in an
ordered metric space. Meinardus [15] was the first who employed fixed point theorem to prove the existence
of invariant approximation in Banach spaces. Subsequently, several interesting and valuable results have
appeared about invariant approximations ([4], [5], [13] ). Following this research direction, we introduce
a notion of generalized F1-contraction mappings and obtain common fixed point results employing such
contractions. Some results on invariant approximation for such mappings are also obtained which in turn
extend and strengthen various known results.

In the sequel the letters N,R+ and and R will denote the set of all natural numbers, the set of all
nonnegative real numbers and the set of all real numbers, respectively.

Next we give some definitions which will be used in the sequel.
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Definition 1.1. ([21]) Let z be the collection of all mappings F : R+ → R such that
(F1) F is strictly increasing, that is, for all α, β ∈ R+ such that α < β implies that F(α) < F(β);
(F2) For any sequence {αn} of positive numbers, lim

n→∞
αn = 0 and lim

n→∞
F(αn) = −∞ are equivalent;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

For examples of mappings satisfying conditions ( F1 − F3 ), we refer to [21] and [22]. Let F be the
collection of all mappings F : R+ → R which satisfy conditions (F1) and (F3).

Definition 1.2. ([21]) Let (X, d) be a metric space. A map T : X → X is said to be F-contraction on X if there exist
F ∈ z and τ > 0 such that the following holds:

τ + F(d(Tx,Ty)) ≤ F(d(x, y))

for all x, y ∈ X with Tx , Ty.

Abbas et al. ([2]) extended the above definition to two mappings.
Recently, Wardowski and Dung [22] used a contractive inequality introduced and investigated by Ćirić

[10], [11] and extended the concept of F− contraction mappings to F−weak contraction mappings as follows:

Definition 1.3. Let (X, d) be a metric space. A map T : X → X is said to be F-weak contraction on X if there exist
F ∈ z and τ > 0 such that for any x, y ∈ X with d(Tx,Ty) > 0, the following hold:

τ + F(d(Tx,Ty)) ≤ F(max{d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2
}).

Every F− contraction mapping is F−weak contraction but converse does not hold in general ([22]).
To begin with, we recall the following result of [22].

Theorem 1.4. Let (X, d) be a complete metric space and T : X → X be F-weak contraction. If T or F is continuous,
then we have

(1) T has a unique fixed point x1 ∈ X.
(2) For all x ∈ X, the sequence {Tnx} is convergent to x1.

Now, we give the following definition.

Definition 1.5. Let (X, d) be a metric space and T, 1 : X → X. A mapping T is called F1-weak contraction on X if
there exist F ∈ F and τ > 0 such that for any x, y ∈ X with d(Tx,Ty) > 0, the following holds:

τ + F(d(Tx,Ty)) ≤ F(max{d(1x, 1y), d(1x,Tx), d(1y,Ty),
d(1x,Ty) + d(1y,Tx)

2
}).

Definition 1.6. Let (X, d) be a metric space and T, 1 : X → X. A mapping T is called F1-contraction on (X, d) if
there exist F ∈ F and τ > 0 such that, for all x, y ∈ X satisfying d(Tx,Ty) > 0, the following holds:

τ + F(d(Tx,Ty)) ≤ F(d(1x, 1y)).

The following example shows that a mapping T is F1-weak contraction but not F1-contraction.

Example 1.7. Let X = [0, 1], and d(x, y) = |x − y|. Define T, 1 : X→ X by

T(x) =


1
3 , x ∈ [0, 1

3 )
1
2 , x ∈ [ 1

3 , 1)
0, x = 1
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and

1(x) =

 8
10 , x ∈ [0, 1

3 )
9
10 , x ∈ [ 1

3 , 1].

Note that T is F1-weak contraction when F(t) = ln(t), t ∈ (0,+∞) and τ = ln 1.045 but not F1-contraction if x = 1
and y = 0.

A subset M of a normed space E is said to be (1) convex if M includes every line segment joining any
two of its points (2) z−starshaped or starshaped with respect to z ∈ M if for any x ∈ M and q ∈ [0, 1],
qz + (1 − q)x ∈M. In this case, z is called a star-centre of M.

A selfmapping f on M is said to be demiclosed at y if for any sequence {xn} in M with {xn} converges
weakly to x ∈M and { f xn} converges to y strongly, then f x = y.

Definition 1.8. Let (X, d) be a metric space and f , 1 : X→ X. The pair ( f , 1) is called (a) commuting if f1x = 1 f x for
all x ∈ X (b) compatible if for any {xn} in X with lim

n→∞
f xn = lim

n→∞
1xn = t for some t in X , we have lim

n→∞
d( f1xn, 1 f xn) =

0 (c) weakly compatible if they commute at their coincidence points, that is, if 1 f x = f1x whenever 1x = f x.

Let f and 1 be two self maps on X. A point x ∈ X is called (1) a fixed point of f if f (x) = x; (2) a common
fixed point of 1 and f if x = 1x = f x; (3) coincidence point of 1 and f if 1x = f x. The set of all common fixed
points ( coincidence points) of 1 and f is denoted by F(1, f ) ( C(1,T), respectively).

Let M be a subset of metric space (X, d). For any x ∈ X, define

PM(x) = {y ∈M : d(x, y) = d(x,M)},

where d(x,M) = inf{d(x, y) : y ∈ M}. The set PM(x) is the set of best approximations of x from M. If for
each x ∈ X, PM(x) is nonempty, then M is called proximinal. Observe that if M is closed, then PM(x) is also
closed. The reader interested in the interplay of fixed points and approximation theory in normed spaces
is referred to the pioneer work of Park [18] and Singh ([20]).

2. Main Results

Theorem 2.1. Let D be a subset of a metric space (X, d) and 1 and T selfmappings of D with T(D) ⊆ 1(D). If T(D)
is complete, F ∈ F is a continuous mapping, T is F1-weak contraction mapping on D, then T and 1 have a unique
coincidence point. Moreover if (1,T) is weakly compatible, then F(T) ∩ F(1) is a singleton.

Proof. Let x0 in D be arbitrary. Choose a point x1 ∈ D such that 1x1 = Tx0. This can be done because
T(D) ⊆ 1(D). As 1x1 ∈ 1(D), there exists x2 ∈ D such that 1x2 = Tx1. Continuing this process, having chosen
xn in D with 1(xn) ∈ D, we obtain xn+1 in D such that 1xn+1 = Txn. Thus we obtain a sequence {xn} in D such
that 1xn+1 = Txn for n ≥ 0. If there exists some n0 in N ∪ {0} such that Txn0 = Txn0+1, then Txn0 = 1xn0+1
implies that 1xn0+1 = Txn0+1 and xn0+1 is coincidence point of 1 and T. We assume that Txn+1 , Txn for all n
inN ∪ {0}. Consider

F(d(Txn+1,Txn))

≤ F(max{d(1xn+1, 1xn), d(1xn+1,Txn+1), d(1xn,Txn)
d(1xn+1,Txn) + d(1xn,Txn+1)

2
}) − τ

= F(max{d(Txn,Txn−1), d(Txn,Txn+1), d(Txn−1,Txn)
d(Txn,Txn) + d(Txn−1,Txn+1)

2
}) − τ

≤ F(max{d(Txn,Txn−1), d(Txn,Txn+1), d(Txn−1,Txn),
d(Txn−1,Txn) + d(Txn,Txn+1)

2
}) − τ

= F(max{d(Txn,Txn−1), d(Txn,Txn+1)}) − τ.
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If for some n ≥ 1,

max{d(Txn,Txn−1), d(Txn,Txn+1)} = d(Txn,Txn+1)

then we have

F(d(Txn+1,Txn)) ≤ F(d(Txn+1,Txn)) − τ < F(d(Txn+1,Txn))

a contradiction. Hence

max{d(Txn,Txn−1), d(Txn,Txn+1)} = d(Txn,Txn−1)

for all n ≥ 1. Thus, we have

F(d(Txn+1,Txn)) ≤ F(d(Txn,Txn−1)) − τ

for all n ≥ 1. This further implies that

F(d(Txn+1,Txn)) ≤ F(d(Tx1,Tx0)) − nτ

for all n ≥ 1. On taking limit as n → ∞, we have lim
n→∞

F(d(Txn+1,Txn)) = −∞. We now show that

lim
n→∞

d(Txn+1,Txn) = 0. Assume on contrary that lim
n→∞

d(Txn+1,Txn) = α , 0. Using Archmidean property of
real numbers, there exists some α1 ∈ R+ such that 0 < α1 < α. By nondecreasing property of F, we obtain
that F(α1) < −∞, a contradiction.Hence lim

n→∞
d(Txn+1,Txn) = 0. By (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(d(Txn+1,Txn))kF(d(Txn+1,Txn)) = 0.

As F(d(Txn+1,Txn)) ≤ F(d(Tx1,Tx0)) − nτ, so

(d(Txn+1,Txn))k[F(d(Txn+1,Txn)) − F(d(Tx1,Tx0))] ≤ −(d(Txn+1,Txn))knτ ≤ 0,

and hence

lim
n→∞

(d(Txn+1,Txn))kn = 0.

Thus, there exists n1 ∈ N such that (d(Txn+1,Txn))kn ≤ 1 for all n ≥ n1. That is, d(Txn+1,Txn) ≤ 1

n
1
k

for all

n ≥ n1. Therefore for all m > n ≥ 1, we have

d(Txm,Txn) ≤ d(Txm,Txm−1) + ... + d(Txn+1,Txn)

<
∞∑

i=n

d(Txi+1,Txi)

≤

∞∑
i=n

1
i1/k

< ∞

This proves that {Txn} is a Cauchy sequence in g(X). As 1xn = Txn−1, {1xn} is also a Cauchy sequence in
T(D). By the completeness of T(D), there is some w ∈ T(D) ⊆ 1(D) such that limn→∞ 1xn+1 = limn→∞ Txn = w.
Let z ∈ D be such that 1(z) = w, that is,

lim
n→∞
1xn+1 = lim

n→∞
Txn = 1z. (1)

Let us assume that d(Tz,Txn) > 0 and d(1z,Tz) > 0. As T is a weak F-contraction, we have

F(d(Tz,Txn)) ≤ F(max{d(1z, 1xn), d(1z,Tz), d(1xn,Txn),
d(1z,Txn) + d(1xn,Tz)

2
}) − τ. (2)
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Then from (1) and (2) there is a sufficiently large n0, such that

F(d(Tz,Txn)) ≤ F(d(Tz, 1z)) − τ, (3)

for all n ≥ n0.
Note that if limn→∞ d(Tz,Txn) = d(Tz, 1z) > 0, then by (F2), limn→∞ F(d(Tz,Txn)) , −∞.
Now, taking the limit as n→∞ in the above inequality (3), we get, as

lim
n→∞

F(d(Tz,Txn)) = F(d(Tz, 1z)),

F(d(Tz, 1z)) ≤ F(d(Tz, 1z)) − τ.

Hence we have

τ ≤ 0,

a contradiction with the assumption τ > 0. Therefore, our supposition d(1z,Tz) > 0 was wrong. Thus
d(1z,Tz) = 0. Hence Tz = 1z. So we proved that z is a coincidence point of T and 1.

Now suppose that T and 1 are weakly compatible. Since w = T(z) = 1(z), then T(w) = T(1(z)) = 1(T(z)) =
1(w). Now we show that 1(w) = w. If T(z) , T(w), then we have

F(d(T(z),T(w))) ≤ F(max{d(1z, 1w), d(1z,Tz), d(1w,Tw),
d(1z,Tw) + d(1w,Tz)

2
}) − τ

= F(max{d(Tz,Tw),
d(Tz,Tw) + d(Tw,Tz)

2
}) − τ

= F(d(Tz,Tw)) − τ,

a contradiction. Hence T(z) = T(w) = 1(w) = w.
If z1, z2 are two common fixed points of T and 1 such that z1 , z2, then we have

F(d(z1, z2)) = F(d(T(z1),T(z2)))

≤ F(max{d(1z1, 1z2), d(1z1,Tz1), d(1z2,Tz2),
d(1z1,Tz2) + d(1z2,Tz1)

2
}) − τ

= F(max{d(z1, z2), d(z1, z1), d(z2, z2),
d(z1, z2) + d(z2, z1)

2
}) − τ

= F(d(z1, z2)) − τ.

a contradiction. Hence z1 = z2.

Corollary 2.2. Let D be a subset of a metric space (X, d) and 1 and T self-mappings on D with T(D) ⊆ 1(D). If
T(D) is complete, F ∈ F is a continuous mapping, T is F1-contraction mapping on D, then T and 1 have a unique
coincidence point in D. Moreover if (1,T) is weakly compatible, then F(T) ∩ F(1) is a singleton.

If 1 =identity mapping, then we have the following results.

Corollary 2.3. Let D be a nonempty subset of a metric space (X, d) and T : D→ D. If T(D) ⊆ D, T(D) is complete,
F ∈ F is a continuous mapping, and T is an F-weak contraction, then F(T) is singleton.

Corollary 2.4. Let D be a nonempty subset of a metric space (X, d) and T : D→ D. If T(D) ⊆ D, T(D) is complete,
F ∈ F is a continuous mapping, and T is an F-contraction mapping, then F(T) is a singleton.

As an application of Corollary 2.3, we obtain the following general result.

Theorem 2.5. Let D be a nonempty subset of a metric space (X, d) and 1,T : D → D. If F(1) is nonempty,
T(F(1)) ⊆ F(1), T(D) is complete, F ∈ F is a continuous mapping, and T is F1-weak contraction, then F(1,T) is a
singleton.
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Proof. Let x, y ∈ F(1). Note that

F(d(Tx,Ty)) ≤ F(max{d(1x, 1y), d(1x,Tx), d(1y,Ty),
d(1x,Ty) + d(1y,Tx)

2
}) − τ

= F(max{d(x, y), d(x,Tx), d(y,Ty),
d(x,Ty) + d(y,Tx)

2
}) − τ.

Hence T is an F−weak contraction on F(1). The completeness of T(D) implies the completeness of T(F(1)).
It follows from Corollary 2.3 that F(1,T) = F(1) ∩ F(T) is singleton.

In the sequel, we assume that D is a q-starshaped subset of a normed space E and 1,T : D→ D. Define
δ(1x,Ty) := inf{||1x − Tky|| : 0 ≤ k ≤ 1} for all x, y ∈ D where Tkx := kTx + (1 − k)q.

For a subset D of a normed space E, D
w

denotes weak closure of D in E

Definition 2.6. Let X be a normed linear space and T, 1 : X→ X. A mapping T is called generalized F1-nonexpansive
on X if there exist F ∈ F and τ > 0 such that for any x, y ∈ X with d(Tx,Ty) > 0, we have

F(||Tx − Ty||) ≤ F(max{||1x − 1y||, δ(1x,Tx), δ(1y,Ty), δ(1x,Ty), δ(1y,Tx)}) − τ.

Theorem 2.7. Let D be a subset of a normed space E and 1,T : D→ D. If F(1) is q-starshaped, T(F(1)) ⊆ F(1), T(D)
is compact, T is continuous and generalized F1-nonexpansive on D, F ∈ F is a continuous mapping, then F(1,T) is
nonempty. Moreover, if we replace T(F(1)) ⊆ F(1) with T(F(1))

w
⊆ F(1), compactness of T(D) with weak compactness

of T(D) and continuity of T with demiclosedness of 1 − T at zero, then the same conclusion holds provided that E is a
Banach space.

Proof. Let {λn} be a sequence in (0, 1) such that λn → 1 as n→∞. For each n ≥ 1, define

Tnx = λnTx + (1 − λn)q

for all x ∈ F(1). As F(1) is q-starshaped and T(F(1)) ⊆ F(1), so we have Tn(F(1)) ⊆ F(1) for each n ≥ 1. Note
that

F(||Tnx − Tny||) = F(||λnTx + (1 − λn)q − λnTy − (1 − λn)q||)
= F(||λn(Tx − Ty)||).

Since F is strictly increasing and λn < 1 for each n ≥ 1, therefore

F(||Tnx − Tny||) < F(||(Tx − Ty)||)
< F(max{||1x − 1y||, δ(1x,Tx), δ(1y,Ty), δ(1x,Ty), δ(1y,Tx)}) − τ
< F(max{||1x − 1y||, ||1x − Tnx||, ||1y − Tny||, ||1x − Tny||, ||1y − Tnx||}) − τ

holds for all x, y ∈ F(1). As T(D) is compact, so Tn(D) is compact for each n ≥ 1. Thus Tn(D) is complete for
each n ≥ 1. It follows from Theorem 2.5 that for each n ≥ 1, F(1,Tn) = F(1)∩ F(Tn) = {xn} for some xn ∈ F(1).

Since T(D) is compact, there exists a subsequence {Txnk } of {Txn} such that Txnk → z ∈ T(D). Since {Txn}

is a sequence in T(F(1)), then z ∈ T(F(1)) ⊆ F(1). Moreover, xnk = Tnk xnk = λnk Txnk + (1 − λnk )q → z. As T is
continuous on D, we have Tz = z.

Next, assume that T(D)
w

is weakly compact and 1 − T is demiclosed at zero. Thus there exists a
subsequence {Txnk } of {Txn} such that Txnk →

w z ∈ T(F(1))
w

. Since {Txn} is a sequence in T(F(1)), then
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z ∈ T(F(1))
w
⊆ F(1). From the boundedness of {Txnk }, we conclude that {xxnk

} is bounded too. As λnk → 1
and

||xnk − Txnk || = ||1xnk − Txnk ||

= ||(1 − λnk )q + λnk Txnk − Txnk ||

≤ (1 − λnk ) ||q − Txnk ||

≤ (1 − λnk ) (||q|| + ||Txnk ||),

for each k ≥ 1. We have xnk − Txnk →
w 0. It follows from the demiclosedness of 1 − T at zero that

z − Tz = (1 − T)z = 0 and hence Tz = z. The result follows.

Let M be a nonempty subset of a metric space (X, d). Suppose that C = PM(u) ∩ C f
M(u), where C1M(u) =

{x ∈M : 1x ∈ PM(u)}.

Corollary 2.8. Let E be a normed linear space and T, 1 self mappings of E. If u ∈ E, D ⊆ G, G = D ∩ F(1) is q-
starshaped, T(G)⊆ G, T(D) is compact, and T is continuous generalized F1-nonexpansive on D, F ∈ F is a continuous
mapping, then PM(u)∩F(1,T) is nonempty. Moreover, if we replace T(G) ⊆ G with T(G)

w
⊆ G, compactness of T(D)

with weak compactness of T(D) and continuity of T with demiclosedness of 1 − T at zero, then the same conclusion
holds provided that E is a Banach space.

Corollary 2.9. Let E be a normed linear space and T, f self mappings of X. If u ∈ E, D ⊆ PM(u), G = D∩ F( f ) is q-
starshaped, T(G) ⊆ G, T(D) is compact and T is continuous generalized F1-nonexpansive on D, F ∈ F is a continuous
mapping, then PM(u)∩F( f ,T) is nonempty. Moreover, if we replace T(G) ⊆ G with T(G)

w
⊆ G, compactness of T(D)

with weak compactness of T(D) and continuity of T with demiclosedness of f − T at zero, then the same conclusion
holds provided that E is a Banach space.

Let G0 denotes the class of closed convex subsets of a normed space X containing 0. For M ∈ G0 and
p ∈ X, let Mp = {x ∈M : ‖x‖ ≤ 2‖p‖}. Then PM(p) ⊂Mp ∈ G0 (see [4], [17]).

Theorem 2.10. Let E be a normed linear space and T, 1 self mappings on X. If p ∈ E and M ∈ G0 such that
T(Mp) ⊆ M, T(Mp) is compact, and ‖Tx − p‖ ≤ ‖x − p‖ for all x ∈ Mp, then PM(p) is nonempty, closed and convex
with T(PM(p)) ⊆ PM(p). If, in addition, D is a subset of PM(p), G = D ∩ F(1) is q-starshaped, T(G) ⊆ G and T is
continuous generalized F1-nonexpansive on D, F ∈ F is a continuous mapping, then PM(p) ∩ F(1,T) is nonempty.
Moreover if we replace compactness of T(Mp) with weak compactness of T(Mp)

w
, T(G) ⊆ G with T(G)

w
⊆ G and

continuity of T with demiclosedness of 1 − T at 0, then the same conclusion holds provided that E is a Banach space.

Proof. If p ∈M then the result follows. Assume that p <M. If x ∈M\Mp, then ‖x‖ > 2‖p‖ and hence

‖p − x‖ ≥ ‖x‖ − ‖p‖ > ‖p‖ ≥ d(p,M).

Thus α = d(p,M) ≤ ‖p‖. As T(Mp) is compact so by the continuity of norm, there exists z ∈ T(Mp) such that

β = d(p, cl T(Mp)) = ‖z − p‖.

On the other hand, if T(Mp)
w

is weakly compact, then by Lemma 5.5 in ([20]), there exists z ∈ T(Mp)
w

such
that β = d(p,T(Mp)

w
) = ‖z − p‖.

Thus in both cases, we have

α = d(p,M) ≤ d(p,T(Mp)) = β

= d(p,T(Mp)) ≤ ‖Tx − p‖
≤ ‖x − p‖
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for all x ∈Mp. Therefore α = β = d(p,M), that is,

d(p,M) = d(p,T(Mp)) = ‖p − z‖

and z ∈ PM(P). Hence PM(p) is nonempty. The closedness and convexity of PM(p) follows from that of M.
Now we prove that T(PM(p)) ⊆ PM(p). If y ∈ T(PM(p)). Then y = Tx for some x ∈ PM(p). Since

‖p − y‖ = ‖p − Tx‖ ≤ ‖p − x‖ = d(p,M).

Therefore y ∈ PM(p) ⊂Mp. Now T(PM(p)) ⊂M gives that y ∈M.

The compactness of T(Mp) (weak compactness of T(Mp)
w
, respectively) implies that T(D) compact

(respectively, T(D)
w

is weakly compact). Hence the result follows from Corollary 2.9.

Example 2.11. Let M = [0, 1]. Define T, 1 :M→M by

T(x) =

 0, x ∈ [0, 1
2 )

1
8 , x ∈ [ 1

2 , 1]

and 1(x) = x2.
Note that

τ + F(d(Tx,Ty)) ≤ F(max{d(1x, 1y), d(1x,Tx), d(1y,Ty),
d(1x,Ty) + d(1y,Tx)

2
})

holds with F(t) = ln(t), t ∈ (0,+∞) and τ = ln 1.5. Moreover 0 is common fixed point of T and 1.

Remarks 2.11.1. 1) It must be noted that the assumption of linearity or affinity for I is necessary in almost all
known results dealing with common fixed points of maps T, and I when T is I-nonexpansive under the conditions of
commuting, weakly commuting, R-subweakly commuting, compatibility or Banach operator pairs (see [4]-[9], [14]
and the literature cited therein), but our results in this paper are independent of the linearity or affinity condition on I.

2) In [22], it was shown that from different types of F-weak contractions, one can obtain the variety of well-known
contractions. Using the concept the of Wardowski [21], we introduce the F1-weak contraction mappings by omitting
condition (F2) which was assumed in [21, 22]. Also, in Example 1.7, we showed that F1-contraction is F1-weak
contraction but not conversely. Therefore, the obtained results generalize and extend many of the well-known results
existing in the literature to F1-weak contraction mappings.

Acknowledgement: The authors thank editor and reviewers for their valuable suggestions that helped
us to improve the final version of the paper.
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