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Abstract. A new class of generalized convex functions called sub-b-s-convex functions is defined by
modulating the definitions of s-convex functions and sub-b-convex functions. Similarly, a new class sub-b-
s-convex sets, which are generalizations of s-convex sets and sub-b-convex sets, is introduced. Furthermore,
some basic properties of sub-b-s-convex functions in both general case and differentiable case are presented.
In addition the sufficient conditions of optimality for both unconstrained and inequality constrained pro-
gramming are established and proved under the sub-b-s-convexity.

1. Introduction

Owing to the importance of the convexity and generalized convexity in the study of optimality to solve
mathematical programming, researchers worked a lot on the generalized convex functions. For example,
in earlier papers, C.R. Bector and R. Singh(1991)[4] introduced a class of b-vex functions. H. Hudzik and
L. Maligranda(1994)[10] discussed two kinds of s-convexity (0 < s < 1) and proved that s-convexity in
the second sense is essentially stronger than the s-convexity in the first sense whenever (0 < s < 1). E.A.
Youness(1999) [20] introduced a class of sets and a class of functions called E-convex sets and E-convex
functions by relaxing the definitions of convex sets and convex functions. X.M. Yang(2001)[19] gave some
examples for E.A. Youness’s paper[20] and perfected it. For more results on generalized E-convex functions,
place refer to [1, 8, 9] and closely related references therein.

Recently, these classes of generalized convex functions caused a lot of research interests. Especially for
the research of b-invex function. Such as, X.J. Long and J.W. Peng(2006)[13] discussed a class of functions
called semi-b-preinvex functions, which is a generalization of the semi preinvex functions and the b-vex
functions. Yu-Ru Syau et al.(2009)[17] introduced a class of functions, called E-b-vex functions, which is
defined as a generalization of b-vex functions and E-vex functions. T. Emam(2011)[18] researched a new
class of functions called roughly b-invex functions, discussed some their properties, and obtained sufficient
optimality criteria for nonlinear programming involving these functions. M.T. Chao et al.(2012)[6] studied
a new generalized sub-b-convex functions and a class of sub-b-convex sets, and presented the sufficient
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conditions of optimality for both unconstrained and inequality constrained sub-b-convex programming. For
more information on generalized convex functions, see [5, 7, 15]. These scholars’s researches promoted the
development of the generalized convex functions like b-invex function. Meanwhile, we now find a class of
generalized convex function, which are not sub-b-convex functions, also has some similar properties of sub-
b-convex function and even s-convex function, and more generalized than these two types of generalized
convex functions. Therefore, these extensions of convexity such as sub-b-convexity and s-convexity sparking
our research interest, so we turn our attention to this new research.

Inspired by the research works[2, 6, 10–12, 14, 16], the purpose of this paper is to present a new class of
generalized convex functions which is called sub-b-s-convex functions and discuss some properties of the
class of functions satisfying the sub-b-convexity. We also give the sufficient conditions of optimality for both
unconstrained and inequality constrained programming, which are obtained under the sub-b-s-convexity.
Therefore, under the sub-b-s-convexity, we can solve the sub-b-convex and s-convex optimization programs
which were solved separately in different frames.

The remainder of this paper is organized as follows. In Sect. 2, a new class of functions, called sub-b-s-
convex function, which further extends to the concept of sub-b-convexity is introduced. Correspondingly,
a new class of sets called sub-b-s-convex sets is introduced, and some properties of sub-b-s-convex function
and sub-b-s-convex sets are developed. In Sect. 3, we introduce a new sub-b-s-convex programming and
establish the sufficient conditions of optimality under the sub-b-s-convexity. Sect. 4 is devoted of drawing
the conclusions.

2. Basic Results

In this section, we first recalled the definitions of sub-b-convexity and s-convexity of function. The class
of sub-b-convex functions is defined by M.T. Chao et al.[6] as follows. Through out the paper, let S be a
nonempty convex set in Rn.

Definition 2.1. The function f : S → R is said to be a sub-b-convex function on S with respect to map b:
S × S × [0, 1]→ R, if

f
(
λx + (1 − λ)y

)
≤ λ f (x) + (1 − λ) f (y) + b(x, y, λ)

holds for all x, y ∈ S and λ ∈ [0, 1].

Among others, H. Hudzik et al.[10] considered the class of functions which is s-convex in the second
sense defined in the following way:

Definition 2.2. The function f : S → R is said to be s-convex in the second sense(i.s.s. in short of in the second
sense) if

f
(
λx + (1 − λ)y

)
≤ λs f (x) + (1 − λ)s f (y)

holds for all x, y ∈ S, λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. The class of s-convex in the second sense is usually
denoted by K2

s .

In the following, by combining Definition 2.1 and Definition 2.2, we introduce the concepts of sub-b-s-
convex function and sub-b-s-convex set i.s.s.. Then we study some of their basic properties.

Definition 2.3. The function f : S → R is said to be sub-b-s-convex function i.s.s. on S with respect to map b:
S × S × [0, 1]→ R, if

f
(
λx + (1 − λ)y

)
≤ λs f (x) + (1 − λ)s f (y) + b(x, y, λ) (2.1)
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holds for all x, y ∈ S, λ ∈ [0, 1] and for some fixed s ∈ (0, 1]. On the other hand, If

f
(
λx + (1 − λ)y

)
≥ λs f (x) + (1 − λ)s f (y) + b(x, y, λ) (2.2)

holds for all x, y ∈ S, λ ∈ [0, 1] and for some fixed s ∈ (0, 1], then the function f is said to be sub-b-s-concave function
i.s.s.. If the inequality signs in the previous two inequalities are strict, then f is called strictly sub-b-s-convex and
sub-b-s-concave function i.s.s., respectively.

Remark 2.4. When s = 1, the sub-b-s-convex function i.s.s. is reduced to be the sub-b-convex function. Moreover,
when s = 1 and b(x, y, λ) ≤ 0, the sub-b-s-convex function is reduced to be the convex function.

Remark 2.5. Sub-b-s-convex function can be concave. It is easy to see that when b(x, y, λ) = f (λx + (1 − λ)y), if
f (x) ≥ 0, then f is a sub-b-s-convex function i.s.s.. In this case, if f is a concave function, then f is both sub-b-s-convex
and concave function.

Example 2.6. Let f : R→ R be defined as

f (x) = −(x − 2)2 + 4, x ∈ [0, 4],

and let b(x, y, λ) ≡ 4, then f is both sub-b-s-convex and concave function.

In what following, we are going to find out, whether or not, the sub-b-s-convex function i.s.s. shares
some similar properties with the sub-b-convex function. The first observation is given as follows.

Theorem 2.7. If f , 1 : S→ R are sub-b-s-convex functions i.s.s. with respect to the same map b, then f + 1 and α f ,
(α ≥ 0) are sub-b-s-convex with respect to the same map b.

Corollary 2.8. If fi: S → R,(i = 1, 2, · · · ,m) are sub-b-s-convex functions i.s.s. with respect to maps bi: S × S ×
[0, 1]→ R,(i = 1, 2, · · · ,m), respectively, then the function

f =

m∑
i=1

ai fi, ai ≥ 0, (i = 1, 2, · · · ,m) (2.3)

is sub-b-s-convex with respect to b =
∑m

i=1 aibi.

Proposition 2.9. If fi: S→ R,(i = 1, 2, · · · ,m) are sub-b-s-convex functions i.s.s. with respect to maps bi: S × S ×
[0, 1]→R, (i = 1, 2, · · · ,m), respectively, then the function f = max{ fi, i = 1, 2, · · · ,m} is a sub-b-s-convex function
i.s.s. with respect to b = max{bi, i = 1, 2, · · · ,m}.

Theorem 2.10. Assume f : S→ R is a sub-b-s-convex functions i.s.s. with respect to b: S × S × [0, 1]→ R and 1:
R→ R is an increasing function. If 1 satisfies the following conditions

(i) 1(αx) = α1(x),∀x ∈ R, α ≥ 0, (2.4)
(ii) 1(x + y) = 1(x) + 1(y),∀x, y ∈ R, (2.5)

then f ′ = 1 ◦ f is a sub-b-s-convex function i.s.s. with respect to b′ = 1 ◦ b.

Proof Since f is a sub-b-s-convex functions i.s.s. with respect to b and 1 is an increasing function, it follows
that

(1 ◦ f )
(
λx + (1 − λ)y

)
= 1

(
f
(
λx + (1 − λ)y

))
≤ 1

(
λs f (x) + (1 − λ)s f (y) + b(x, y, λ)

)
.
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Since λ ∈ [0, 1], by combining the two conditions of (2.4) and (2.5), it yields that

(1 ◦ f )
(
λx + (1 − λ)y

)
≤ λs1

(
f (x)

)
+ (1 − λ)s1

(
f (y)

)
+ 1

(
b(x, y, λ)

)
= λs(1 ◦ f )(x) + (1 − λ)s(1 ◦ f )(y) + (1 ◦ b)(x, y, λ).

That is, f ′ = 1 ◦ f is a sub-b-s-convex function i.s.s. with respect to b′ = 1 ◦ b and the proof is completed.

Remark 2.11. In Theorem 2.7, Corollary 2.8, Proposition 2.9 and Theorem 2.10, if the sub-b-s-convex function f and
1 are replaced with the strict sub-b-s-convex function i.s.s., then we can obtain the similar conclusions. Obviously,
Theorem 2.7, Corollary 2.8 and Proposition 2.9 satisfy the conditions of Theorem 2.10, so Theorem 2.7, Corollary 2.8
and Proposition 2.9 can be regarded as the special cases of Theorem 2.10.

In what following, we introduce a new concept of sub-b-s-convex set i.s.s..

Definition 2.12. Let X ⊆ Rn+1 be a nonempty set. X is said to be a sub-b-s-convex set i.s.s. with respect to b:
Rn
×Rn

× [0, 1]→ R, if

(
λx + (1 − λ)y, λsα + (1 − λ)sβ + b(x, y, λ)

)
∈ X (2.6)

holds for all (x, α), (y, β) ∈ X, x, y ∈ Rn, λ ∈ [0, 1], and some fixed s ∈ (0, 1].

Here, we give a characterization of sub-b-s-convex function f : S → R i.s.s. in terms of their epigraph
E( f ), which is given by

E( f ) =
{
(x, α)|x ∈ S, α ∈ R, f (x) ≤ α

}
. (2.7)

Theorem 2.13. A function f : S→ R is a sub-b-s-convex function i.s.s. with respect to b: S× S× [0, 1]→R, if and
only if E( f ) is a sub-b-s-convex set i.s.s. with respect to b.

Proof Suppose that f is a sub-b-s-convex function i.s.s. with respect to b. Let (x1, α1), (x2, α2) ∈ E( f ). Then,
f (x1) ≤ α1, f (x2) ≤ α2. So we have

f
(
λx1 + (1 − λ)x2

)
≤ λs f (x1) + (1 − λ)s f (x2) + b(x1, x2, λ)

≤ λsα1 + (1 − λ)sα2 + b(x1, x2, λ)

holds for all x1, x2 ∈ S, λ ∈ [0, 1] and some fixed s ∈ (0, 1]. Hence, it is easy to see that

(
λx1 + (1 − λ)x2, λ

sα + (1 − λ)sβ + b(x1, x2, λ)
)
∈ E( f ).

Thus, by Definition 2.12, E( f ) is a sub-b-s-convex set i.s.s. with respect to b.

Conversely, let’s assume that E( f ) is a sub-b-s-convex set i.s.s. with respect to b. Let x1, x2 ∈ S, then(
x1, f (x1)

)
,
(
x2, f (x2)

)
∈ E( f ). Thus, for λ ∈ [0, 1] and some fixed s ∈ (0, 1], we have that

(
λx1 + (1 − λ)x2, λ

s f (x1) + (1 − λ)s f (x2) + b(x1, x2, λ)
)
∈ E( f ).

This implies that

f
(
λx1 + (1 − λ)x2

)
≤ λs f (x1) + (1 − λ)s f (x2) + b(x1, x2, λ).

That is, f is a sub-b-s-convex function i.s.s. with respect to b and the proof of Theorem 2.13 is completed.
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Proposition 2.14. If Xi is a family of sub-b-s-convex sets i.s.s. with respect to the same map b(x, y, λ), then
⋂

i∈I Xi
is a sub-b-s-convex set i.s.s. with respect to b(x, y, λ).

Proof Let (x, α), (y, β) ∈
⋂

i∈I Xi, then, for each i ∈ I, (x, α), (y, β) ∈ Xi.
Since Xi is a sub-b-s-convex set i.s.s. with respect to b, for all λ ∈ [0, 1] and some fixed s ∈ (0, 1], it follows
that (

λx + (1 − λ)y, λsα + (1 − λ)sβ + b(x, y, λ)
)
∈ Xi,∀i ∈ I.

Thus,

(
λx + (1 − λ)y, λsα + (1 − λ)sβ + b(x, y, λ)

)
∈

⋂
i∈I

Xi.

Hence,
⋂

i∈I Xi is a sub-b-s-convex set i.s.s. with respect to b and the conclusion obtains.

Proposition 2.15. If { fi|i ∈ I} is a family of numerical functions i.s.s., and each fi is a sub-b-s-convex function with
respect to the same map b(x, y, λ), then the numerical function f = supi∈I fi(x) is a sub-b-s-convex function i.s.s.with
respect to b(x, y, λ).

Proof Since fi is a sub-b-s-convex function i.s.s. on S with respect to b(x, y, λ), its epigraph E( fi) =
{
(x, α)|x ∈

S, fi(x) ≤ α
}

is a sub-b-s-convex set i.s.s. with respect to b. Therefore, their intersection⋂
i∈I

E( fi) =
{
(x, α)|x ∈ S, fi(x) ≤ α, i ∈ I

}
=

{
(x, α)|x ∈ S, f (x) ≤ α

}
= E( f ),

where f (x)=supi∈I fi(x). By Theorem 2.13 and Proposition 2.14, we know that f = supi∈I fi(x) is a sub-b-s-
convex function i.s.s. with respect to b(x, y, λ) and the conclusion follows.

3. Main Results

We consider continuously differentiable functions which are sub-b-s-convex functions with respect to
a map b(x, y, λ). For fixed x, y ∈ S, b(x, y, λ) is a continuously decreasing function about λ. So, b(x,y,λ)

λ is a
continuously decreasing function about λ.

Furthermore, we assume that the limit limλ→0+

b(x,y,λ)
λ exists and the limit is the maximum of b(x,y,λ)−o(λ)

λ
for all λ ∈ (0, 1] and fixed x, y ∈ S.

Theorem 3.1. Suppose that f : S→ R is a non-negative differentiable sub-b-s-convex function i.s.s. with respect to
map b(x, y, λ). Then

(i) ∇ f (y)T(x − y) ≤ λs−1
(

f (x) + f (y)
)

+ lim
λ→0+

b(x, y, λ)
λ

, (3.1)

(ii) ∇ f (y)T(x − y) ≤ λs−1
(

f (x) − f (y)
)

+
f (y)
λ

+ lim
λ→0+

b(x, y, λ)
λ

. (3.2)

Proof (i) By the Taylor expansion and the sub-b-s-convexity of f , we have taht

f
(
λx + (1 − λ)y

)
= f

(
y + λ(x − y)

)
= f (y) + λ∇ f (y)T(x − y) + o(λ).

(3.3)
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f
(
λx + (1 − λ)y

)
≤ λs f (x) + (1 − λ)s f (y) + b(x, y, λ)

≤ λs f (x) + (1 + λs) f (y) + b(x, y, λ).
(3.4)

Combining the equality (3.3) and inequality (3.4) yields that

λ∇ f (y)T(x − y) + o(λ) ≤ λs
(

f (x) + f (y)
)

+ b(x, y, λ). (3.5)

Dividing the inequality (3.5) above byλ and using the fact that limλ→0+

b(x,y,λ)
λ is the maximum of b(x,y,λ)

λ −
o(λ)
λ ,

it yields that

∇ f (y)T(x − y) ≤ λs−1
(

f (x) + f (y)
)

+ lim
λ→0+

b(x, y, λ)
λ

,

which proves the first part of Theorem 3.1.

(ii) Combining the above equality (3.3) and inequality (3.4), it yields that

f (y) + λ∇ f (y)T(x − y) + o(λ) ≤ λs f (x) + (1 − λ)s f (y) + b(x, y, λ)
= λs f (x) + (1 − λ)s f (y) − λs f (y)
+ λs f (y) + b(x, y, λ)

= λs
(

f (x) − f (y)
)

+ b(x, y, λ)

+
(
(1 − λ)s + λs

)
f (y).

(3.6)

Obviously,
(
λs + (1 − λ)s

)
≤ 2 for λ ∈ [0, 1] and some fixed s ∈ (0, 1]. By invoking the fact that f is a

non-negative function, inequality (3.6) can be simplified to

f (y) + λ∇ f (y)T(x − y) + o(λ) ≤ λs
(

f (x) − f (y)
)

+ 2 f (y) + b(x, y, λ).

Thus,

λ∇ f (y)T(x − y) + o(λ) ≤ λs
(

f (x) − f (y)
)

+ f (y) + b(x, y, λ). (3.7)

In the same way, dividing the inequality (3.7) above by λ and using the fact that limλ→0+

b(x,y,λ)
λ is the

maximum of b(x,y,λ)
λ −

o(λ)
λ , we have

∇ f (y)T(x − y) ≤ λs−1
(

f (x) − f (y)
)

+
f (y)
λ

+ lim
λ→0+

b(x, y, λ)
λ

,

which proves the second part of Theorem 3.1.

Theorem 3.2. Suppose that f : S→ R is a negative differentiable sub-b-s-convex function i.s.s. with respect to map
b(x, y, λ). Then

∇ f (y)T(x − y) ≤ λs−1
(

f (x) − f (y)
)

+ lim
λ→0+

b(x, y, λ)
λ

. (3.8)

Proof By the Taylor expansion and the sub-b-s-convexity of f , we have that

f
(
λx + (1 − λ)y

)
= f

(
y + λ(x − y)

)
= f (y) + λ∇ f (y)T(x − y) + o(λ).

(3.9)
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f
(
λx + (1 − λ)y

)
≤ λs f (x) + (1 − λ)s f (y) + b(x, y, λ). (3.10)

Since λ ∈ [0, 1] and some fixed s ∈ (0, 1], then we have
(
λs + (1 − λ)s

)
≥ 1. Furthermore, because f is a

negative function, the inequality (3.10) can be simplified to

f
(
λx + (1 − λ)y

)
≤ λs f (x) + (1 − λs) f (y) + b(x, y, λ). (3.11)

Meanwhile, combining the above equality (3.9) and inequality (3.11) yields that

λ∇ f (y)T(x − y) + o(λ) ≤ λs( f (x) − f (y)) + b(x, y, λ). (3.12)

Dividing the inequality (3.12) above byλ and using the fact that limλ→0+

b(x,y,λ)
λ is the maximum of b(x,y,λ)

λ −
o(λ)
λ ,

we have

∇ f (y)T(x − y) ≤ λs−1( f (x) − f (y)) + lim
λ→0+

b(x, y, λ)
λ

.

The proof of Theorem 3.2 is completed.

Corollary 3.3. Let f : S→ R be a differentiable sub-b-s-convex function i.s.s. with respect to map b. For λ ∈ (0, 1],
if f is a non-negative function, then

∇

(
f (y) − f (x)

)T
(x − y) ≤

f (y)
λ

+
f (x)
λ

+ lim
λ→0+

b(x, y, λ)
λ

+ lim
λ→0+

b(y, x, λ)
λ

. (3.13)

If f is a negative function, then

∇

(
f (y) − f (x)

)T
(x − y) ≤ lim

λ→0+

b(x, y, λ)
λ

+ lim
λ→0+

b(y, x, λ)
λ

. (3.14)

Proof If f is a non-negative function, by Theorem 3.1, we have that

∇ f (y)T(x − y) ≤ λs−1
(

f (x) − f (y)
)

+
f (y)
λ

+ lim
λ→0+

b(x, y, λ)
λ

,

∇ f (x)T(y − x) ≤ λs−1
(

f (y) − f (x)
)

+
f (x)
λ

+ lim
λ→0+

b(y, x, λ)
λ

.

Adding the two inequalities above, it is easy to show that

∇

(
f (y) − f (x)

)T
(x − y) ≤

f (y)
λ

+ lim
λ→0+

b(x, y, λ)
λ

+
f (x)
λ

+ lim
λ→0+

b(y, x, λ)
λ

.

In a similar way, if f is a negative function, by Theorem 3.2, we can also get

∇

(
f (y) − f (x)

)T
(x − y) ≤ lim

λ→0+

b(x, y, λ)
λ

+ lim
λ→0+

b(y, x, λ)
λ

.

The proof is completed.

Now, we apply the associated results above to the nonlinear programming. First, we consider the
unconstraint problem (P).

(P) : min{ f (x), x ∈ S} (3.15)
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Theorem 3.4. Let f : S→ R be a non-negative differentiable and sub-b-s-convex function i.s.s. with respect to b. If
x̄ ∈ S and the inequality

∇ f (x̄)T(x − x̄) ≥
f (x̄)
λ

+ lim
λ→0+

b(x, x̄, λ)
λ

(3.16)

holds for each x ∈ S, λ ∈ (0, 1] and some fixed s ∈ (0, 1], then x̄ is the optimal solution to the optimal problem (P) with
respect to f on S.

Proof For any x ∈ S, since f is a non-negative differentiable sub-b-s-convex function i.s.s., by (3.2) of Theorem
3.1, we have that

∇ f (x̄)T(x − x̄) −
f (x̄)
λ
− lim
λ→0+

b(x, x̄, λ)
λ

≤ λs−1
(

f (x) − f (x̄)
)

holds for λ ∈ (0, 1] and some fixed s ∈ (0, 1], on the other hand, since

∇ f (x̄)T(x − x̄) ≥
f (x̄)
λ

+ lim
λ→0+

b(x, x̄, λ)
λ

,

we have f (x) − f (x̄) ≥ 0. Therefore, x̄ is the optimal solution of f on S. This completes the proof.

Example 3.5. Let f : [0,+∞)→ R be defined as

f (x) = (x2 + 4x)s,

and let b(x, y, λ) = λx2 + 4λy2, here s is a fixed constant on (0, 1). Then f is sub-b-s-convex function.

In fact, 1(x) = x2 +4x is a non-negative convex function on [0,+∞), combining Corollary 7 in [3](M. Alomari,
M. Darus and S.S. Dragomir 2009), then f (x) is an s-convex function on [0,+∞), 0 < s < 1. So we have that

f (λx + (1 − λ)y) ≤ λs f (x) + (1 − λ)s f (y).

Since b(x, y, λ) = λx2 + 4λy2
≥ 0 for x, y ∈ [0, 2] and λ ∈ (0, 1], it is easy to show that

f (λx + (1 − λ)y) ≤ λs f (x) + (1 − λ)s f (y) + b(x, y, λ).

Hence, f is sub-b-s-convex function.
Now we consider the following unconstraint sub-b-s-convex programming

P : min
{

f (x), x ∈ [0,+∞)
}
,

where f (x) = (x2 + 4x)s, b(x, y, λ) = λx2 + 4λy2 and some fixed s ∈ (0, 1). Since f (x) is a non-negative
differentiable and sub-b-s-convex function i.s.s.with respect to b and the limit limλ→0+

b(x,y,λ)
λ exists for fixed

x, y ∈ [0,+∞) and λ ∈ (0, 1]. Followed by calculating, we have that

∇ f (x̄)T(x − x̄) = s(x̄2 + 4x̄)s−1(2x̄ + 4)(x − x̄)

f (x̄)
λ

=
(x̄2 + 4x̄)s

λ

lim
λ→0+

b(x, x̄, λ)
λ

= x2 + 4x̄2.

It can easily see that x̄ = 0, the inequality ∇ f (x̄)T(x − x̄) ≥ f (x̄)
λ + limλ→0+

b(x,x̄,λ)
λ holds for all x ∈ [0,+∞),

λ ∈ (0, 1] and some fixed s ∈ (0, 1). According to the theorem 3.4, the minimum value of f (x) at zero. As
shown in Figure 1, let x ∈ [0, 2] and s take 0.5, 0.6 and 0.7, respectively. We can obtain the same optimal
value at (0,0).



J.G. Liao, T.S. Du / Filomat 30:14 (2016), 3885–3895 3893

Figure 1: The optimal value of f (x) with different s

Corollary 3.6. Let f : S→ R be a strictly non-negative sub-b-s-convex function i.s.s. with respect to b. If x̄ ∈ S and
satisfies the condition (3.16), then x̄ is the unique optimal solution of f on S.

Proof From Theorem 3.1, if f is a strictly non-negative sub-b-s-convex function i.s.s. with respect to b, then
we have

∇ f (y)T(x − y) < λs−1
(

f (x) − f (y)
)

+
f (y)
λ

+ lim
λ→0+

b(x, y, λ)
λ

.

Suppose x1, x2 ∈ S are two different optimal solutions of problem (P). Then f (x1) = f (x2). Combining the
above inequalities, we have

∇ f (x2)T(x1 − x2) −
f (x2)
λ
− lim
λ→0+

b(x1, x2, λ)
λ

< λs−1
(

f (x1) − f (x2)
)
.

Hence, from (3.16), we can see

λs−1
(

f (x1) − f (x2)
)
> 0.

Since f (x1) = f (x2), so x1 = x2 = x̄. Therefore, x̄ is the unique optimal solution of f on S and the proof of
Corollary 3.6 is completed.

Next, we apply the associated results to the nonlinear programming with inequality constraints as
follows:

(Ps) : min
{

f (x)|x ∈ Rn, 1i(x) ≤ 0, i ∈ I
}
, I = {1, 2, · · · ,m}. (3.17)

Denote the feasible set of (Ps) by F = {x ∈ Rn
|1i(x) ≤ 0, i ∈ I}. For the convenience of discussion, we assume

that f and 1i are all differentiable and F is a nonempty set in Rn.

Theorem 3.7. (Karush-Kuhn-Tucker Sufficient Conditions) Suppose that the function f : Rn
→ R is non-

negative differentiable sub-b-s-convex function i.s.s. with respect to b: Rn
×Rn

× (0, 1]→ R, 1i: Rn
→ R (i ∈ I) are

differentiable sub-b-s-convex functions i.s.s. with respect to bi: Rn
×Rn

× (0, 1]→ R (i ∈ I). Assume that x∗ ∈ F is a
KKT point of (Ps), i.e., there exist multipliers ui ≥ 0 (i ∈ I) such that

∇ f (x∗) +
∑
i∈I

ui∇1i(x∗) = 0,ui1i(x∗) = 0. (3.18)
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If

f (x∗)
λ

+ lim
λ→0+

b(x, x∗, λ)
λ

≤ −

∑
i∈I

ui lim
λ→0+

bi(x, x∗, λ)
λ

, (3.19)

then x∗ is an optimal solution of the problem (Ps).

Proof For any x ∈ F, we have

1i(x) ≤ 0 = 1i(x∗), i ∈ I(x∗) = {i ∈ I|1i(x∗) = 0}.

Therefore, by the sub-b-s-convexity of 1i and the Theorem 3.2, for i ∈ I(x∗), we obtain

∇1i(x∗)T(x − x∗) − lim
λ→0+

b(x, x∗, λ)
λ

≤ λs−1
(
1i(x) − 1i(x∗)

)
≤ 0. (3.20)

From (3.18), we have

∇ f (x∗)T(x − x∗) = −
∑
i∈I

ui∇1i(x∗)T(x − x∗) = −
∑

i∈I(x∗)

ui∇1i(x∗)T(x − x∗).

Using the condition (3.19), we have that

∇ f (x∗)T(x − x∗) −
f (x∗)
λ
− lim
λ→0+

b(x, x∗, λ)
λ

≥ −

∑
i∈I

ui∇1i(x∗)T(x − x∗) +
∑
i∈I

ui lim
λ→0+

bi(x, x∗, λ)
λ

= −
∑

i∈I(x∗)

ui

(
∇1i(x∗)T(x − x∗) − lim

λ→0+

bi(x, x∗, λ)
λ

)
.

Combining the inequality (3.20) with the above inequality, we have

∇ f (x∗)T(x − x∗) −
f (x∗)
λ
− lim
λ→0+

b(x, x∗, λ)
λ

≥ 0.

From Theorem 3.4, we can get f (x) − f (x∗) ≥ 0 for each x ∈ F. Therefore x∗ is an optimal solution of the
problem (Ps). This ends the proof.

4. Conclusion

In this paper, we have introduced sub-b-s-convex functions and sub-b-s-convex sets i.s.s.. According to
the definition, it is observed that sub-b-s-convex function can be reduced into sub-b-convex function on the
condition that s = 1. Furthermore, it can be simplified into convex function on the conditions that s = 1 and
b(x, y, λ) ≤ 0. Therefore, the sub-b-s-convex function i.s.s. is a generalization of sub-b-convex and s-convex
function. In the end, we have studied Karush-Kuhn-Tucker sufficient conditions for obtaining an optimal
solution of sub-b-s-convex programming with unconstrained or inequality constrained conditions.
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