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Abstract. We consider sensitivity functionals and Lagrange multiplier method for solving finite dimen-
sional convex optimization problem.An analysis based on this property is also applied for semicoercive
infinite dimensional variational inequality in mechanics.

1. Introduction

The Lagrange multiplier method based on modified Lagrangian functions is one of the main methods for
solving finite-dimensional convex optimization problems (cf. [1, 5, 6]). In the past time, the Lagrange mul-
tiplier method is successfully applied to find the solutions of infinite-dimensional variational inequalities
in mechanics, see [9, 11, 12].

Convergence analysis of Lagrange multiplier method is in many respects provided with the help of
property of lower semicontinuity of sensitivity function. With the help of lower semicontinuity of sensitivity
functions, it is possible to prove continuous differentiability of dual functions, which allows to solve the
modified dual problems by applying effective iterative methods.

In Section 2 and 3 we consider sensitivity function and Lagrange multiplier method for solving finite-
dimensional convex optimization problem. In Section 4 the Lagrange multiplier method is considered in
semicoercive infinite-dimensional variational inequality in mechanics.

2. Finite-Dimensional Convex Optimization Problem

We consider the convex optimization problem f (x) −min,
x ∈ Ω = {z ∈ Rn : 1 j(z) ≤ 0, j = 1, 2, . . . ,m},

(1)

where f and 1 j are given convex functions defined on Rn. Assume that there exists x̃ ∈ Ω such that
1 j(x̃) < 0 for all j = 1, 2, . . . ,m, which is called a Slater’s condition. In this case, the Lagrange function
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L(x, y) = f (x) +
m∑

i=1
y j1

j(x) has a saddle point (x∗, y∗) ∈ Rn
×Rm

+ ; that is,

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀x ∈ Rn, ∀y ∈ Rm
+ .

Moreover, x∗ is an optimal solution of initial problem(1) and y∗ is optimal solution of the dual problem,
see[1, 5, 6]L(y) −max,

y ∈ Ω∗ = {ω ∈ Rm
+ : L(ω) > −∞},

(2)

where L(y) = inf
x∈Rn

{
f (x) +

m∑
j=1

y j1
j(x)

}
.

The effective domain of the concave dual function L(y) cannot coincide with the space Rm, and so it
complicates searching for the optimal solution of problem(2). Assuming that Ω is a compact set, it can be
seen that the set Ωv = {x : 1 j(x) ≤ v j, j = 1, 2, . . . ,m} is a compact set for every v = (v1, ..., vm) ∈ Rm if Ωv , ∅.
Let us consider the following function defined on the space Rn

×Rm
×Rm :

K(x, y, v) =

 f (x) +
m∑

j=1
y jv j + r

2

m∑
j=1

v2
j , if 1(x) ≤ v,

+∞, otherwise,

where 1(x) = (11(x), ..., 1m(x)).
We now introduce the modified Lagrangian function

M(x, y) = inf
v∈Rm

K(x, y, v).

We then have the equation

inf
v∈Rm

K(x, y, v) = inf
v≥1(x)

{
f (x) +

m∑
j=1

y jv j +
r
2

m∑
j=1

v2
j

}
= f (x) +

1
2r

inf
v≥1(x)

m∑
j=1

((
y j + rv j

)2
− y2

j

)
= f (x) +

1
2r

m∑
j=1

inf
v j≥1

j(x)

((
y j + rv j

)2
− y2

j

)
= f (x) +

1
2r

m∑
j=1

((
(y j + rv j)+

)2
− y2

j

)
,

where (y j + rv j(x))+ = max{0, y j + rv j(x)}.
Let us introduce the modified dual function

M(y) = inf
x∈Rn

M(x, y) = inf
x∈Rn

inf
v∈Rm

K(x, y, v).

Since inf
x∈Rn

inf
v∈Rm

K(x, y, v) = inf
v∈Rm

inf
x∈Rn

K(x, y, v), we get

M(y) = inf
v∈Rm

inf
1(x)≤v

{
f (x) +

m∑
j=1

y jv j +
r
2

m∑
j=1

v2
j

}
= inf

v∈Rm

{
χ(v) +

m∑
j=1

y jv j +
r
2

m∑
j=1

v2
j

}
,

where the function χ is given by

χ(v) =

 inf
1(x)≤v

f (x), if {x : 1(x) ≤ v} , ∅,

+∞, otherwise,
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which is called a sensitivity function (cf. [1, 5, 6]).
Thus, the function M(y) may have the following two representation:

M(y) = inf
x∈Rn

{
f (x) +

1
2r

m∑
j=1

((
(y j + rv j)+

)2
− y2

j

)}
, (3)

M(y) = inf
v∈Rm

{
χ(v) +

m∑
j=1

y jv j +
r
2

m∑
j=1

v2
j

}
. (4)

Definition 2.1. A point (x, y) ∈ Rn
×Rm is called a saddle point of the modified Lagrangian function M(x, y), if the

following inequalities hold:

M(x, y) ≤M(x, y) ≤M(x, y), ∀x ∈ Rn, ∀y ∈ Rm.

It has been known that the sets of saddle points of the functions L(x, y) and M(x, y) are the same, see
[6, 10], and hence it allows to use the modified Lagrangian function M(x, y) instead of classical Lagrangian
function L(x, y) for searching saddle points, and a question of solvability of problem (3) or (4) can be arisen.
In well-known monographs the question of solvability of problem (3) has been considered by assuming
f (x) is strongly convex function, see [5, 6, 10]. We will consider the question of solvability of problem (4).

Since Ω is a compact set, it can be shown that χ(v) is a proper convex function [1, 3].

Theorem 2.2. The sensitivity function χ(v) is a lower semicontinuous function.

Proof. Let us take an arbitrary sequence {vk
} ⊂ domχ such that lim

k→∞
vk = v̂, and let x(vk) = argmin

x∈Ωvk

f (x). It is

obvious that f (x(vk)) = χ(vk) and {x(vk)} is a bounded sequence. Without lose of generality, we can assume
that {x(vk)} is a convergent sequence. Let x̂ = lim

k→∞
x(vk). We then have f (x̂) = f ( lim

k→∞
x(vk)) = lim

k→∞
f (x(vk)) =

lim
k→∞

χ(vk). Since 1 j(x(vk)) ≤ vk
j for j = 1, 2, . . . ,m, we get 1 j(x̂) ≤ v̂ j for j = 1, 2, . . . ,m as k → +∞. Therefore,

Ωv̂ = ∅ and lim
k→∞

χ(vk) = f (x̂) ≥ χ(v̂), which means that χ(v) is a lower semicontinuous function.

It can be easily seen that epiχ = {(v, a) ∈ Rm
× R : χ(v) ≤ a} is a convex closed set in Rm

× R and, the

function Fy(v) = χ(v) +
m∑

j=1
y jv j + r

2

m∑
j=1

v2
j is a lower semicontinuous function for any fixed y ∈ Rm. From the

separation theorem, one can see that there exist ψ ∈ Rm and α ∈ R such that

〈ψ, v〉Rm + χ(v) + α ≥ 0, ∀v ∈ domχ,

where 〈ψ, v〉Rm is the usual inner product on Rm.
Therefore, Fy(v) −→ +∞ under ‖v‖Rm −→ ∞, which implies that Fy(v) is a coercive function. Hence,

there is a unique point v(y) = argmin
v∈Rm

Fy(v). This means that (4) is a solvable problem.

3. Modified Duality Scheme

Let us consider the modified dual problemM(y) −max,
y ∈ Rm.

(5)

It is known that (2) and (5) are equivalent (cf. [1, 6]). But unlike L(y) in Problem (2), the function M(y)
in (5) is a smooth function.
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Theorem 3.1. The function M(y) is differentiable in Rm and its derivative ∇M(y) is equal to v(y) = argmin
v∈Rm

Fy(v).

Moreover, v(y) satisfies the Lipschitz condition with a constant 1
r ; that is,

‖v(ŷ) − v( ˆ̂y)‖Rm ≤
1
r
‖ŷ − ˆ̂y‖Rm , ∀ŷ, ˆ̂y ∈ Rm.

Proof. Let ŷ, ˆ̂y ∈ Rm, v̂ = v(ŷ), and let ˆ̂v = v( ˆ̂y). We then have the equalities

χ(v̂) +

m∑
j=1

ŷ jv̂ j +
r
2

m∑
j=1

v̂ j
2 +

r
2
‖ ˆ̂v − v̂‖2Rm ≤ χ( ˆ̂v) +

m∑
j=1

ŷ j ˆ̂v j +
r
2

m∑
j=1

ˆ̂v j
2
, (6)

χ( ˆ̂v) +

m∑
j=1

ˆ̂y j ˆ̂v j +
r
2

m∑
j=1

ˆ̂v j
2

+
r
2
‖v̂ − ˆ̂v‖2Rm ≤ χ(v̂) +

m∑
j=1

ˆ̂y jv̂ j +
r
2

m∑
j=1

v̂ j
2. (7)

Adding two inequalities above, we obtain the inequality

r‖v̂ − ˆ̂v‖2Rm ≤

m∑
j=1

(ŷ j − ˆ̂y j)( ˆ̂v j − v̂ j),

r‖v̂ − ˆ̂v‖2Rm ≤ 〈ŷ − ˆ̂y, ˆ̂v − v̂〉. (8)

It follows from (8) that

‖v̂ − ˆ̂v‖Rm ≤
1
r
‖ŷ − ˆ̂y‖Rm . (9)

From (6) and (7), it also follows that

m∑
j=1

ˆ̂y j( ˆ̂v j − v̂ j) +
r
2

m∑
j=1

( ˆ̂v j
2
− v̂ j

2) ≤ χ(v̂) − χ( ˆ̂v) ≤
m∑

j=1

ŷ j( ˆ̂v j − v̂ j) +
r
2

m∑
j=1

( ˆ̂v j
2
− v̂ j

2),

and hence we have
lim
ˆ̂y→ŷ

χ( ˆ̂v) = χ(v̂).

This means that the dual function M(y) is continuous inRm. It follows from the continuity of the concave
function M(y) that the subdifferential ∂(−M(y)) of the convex function −M(y) is not empty for any y ∈ Rm.
Let t ∈ ∂(−M(y)). Then for any ξ ∈ Rm we have the inequality

M(ξ) ≤M(y) +

m∑
j=1

t j(ξ j − y j);

that is,

χ(v(ξ)) +

m∑
j=1

ξ jv j(ξ) +
r
2

m∑
j=1

v2
j (ξ)

≤ χ(v(y)) +

m∑
j=1

y jv j(y) +
r
2

m∑
j=1

v2
j (y) +

m∑
j=1

t j(ξ j − y j)

≤ χ(v(ξ)) +

m∑
j=1

y jv j(ξ) +
r
2

m∑
j=1

v2
j (ξ) +

m∑
j=1

t j(ξ j − y j).
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Therefore, for any ξ ∈ Rm, β > 0, one can see that

β−1
m∑

j=1

(v j(ξ) − t j)(ξ j − y j) ≤ 0.

Setting ξ = y + βp, where p ∈ Rm is arbitrary, and letting β tend to zero, we can obtain the following
inequality by (9):

m∑
j=1

(v j(y) − t j)p j ≤ 0, ∀p ∈ Rm.

This means that t = v(y). Hence, due to the uniqueness of the element v(y), the function M(y) is differentiable
in Rm and ∇M(y) = v(y), see [3]. This completes the proof.

Theorem 3.1 helps us to solve the dual problem (5) by using an iterative gradient method given below
(cf. [5, 6]) :

yk+1 = yk + rv(yk), k = 0, 1, 2, ...,where y0 is a given initial vector, (10)

v(yk) = argmin
v∈Rm

{
χ(v) +

m∑
j=1

yk
jv j + r

2

m∑
j=1

v2
j

}
, and r > 0 is a constant.

Theorem 3.2. ([5, 6]) The sequence {yk
}, generated by (10), converges to the solution of dual problem (5).

The iterative method (10) can be copied as follows (cf. [5, 6, 10]) :

(i) xk+1 = argmin
x

M(x, yk)

(ii) yk+1 = (yk + r1(xk+1))+

Theorem 3.3. ([6, 10]) Any limit point of the sequence {(xk, yk)} is a saddle point of the modified Lagrangian function
M(x, y).

4. Infinite-Dimensional Convex Optimization Problem in Mechanics

Consider the Signorini problem in mechanics (cf. [2, 4, 9, 11])
J(v) = 1

2

∫
Ω

|∇v|2dΩ −
∫
Ω

f vdΩ −min,

v ∈ K = {ω ∈ H1(Ω) : − γω ≤ 0 on Γ},
(11)

where Ω ⊂ Rm(n = 2, 3) is a bounded domain with sufficiently smooth boundary Γ, f ∈ L2(Ω) is a given
function, and γv ∈ H1/2(Γ) is the trace of a function v ∈ H1(Ω) on Γ.

Since the functional J(v) is not strongly convex on H1(Ω), problem (11) may have no solution. However,
if the condition∫

Ω

f dΩ < 0 (12)

is satisfied, then for any v ∈ K we have J(v) −→ +∞ as ‖v‖H1(Ω) −→ ∞, and, hence, problem (11) is solvable.
Moreover, condition (12) provides a unique solution of problem (11). In this section, we assume that (12) is
satisfied.

For simplicity, the trace operator symbol γwill be omitted. For an arbitrary m ∈ L2(Γ), we introduce the
set

Km = {v ∈ H1(Ω) : − v ≤ m on Γ},
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and define the sensitivity functional

χ̃(v) =

 inf
v∈Km

J(v), if Km , ∅,

+∞, otherwise,

for any function m ∈ L2(Γ).
It is easy to see that if a function m ∈ L2(Γ) is bounded below on Γ, the corresponding set Km is

not empty and inf
v∈Km

J(v) > −∞, see [2]. The set Km can be empty if m ∈ L2(Γ) \ H1/2(Γ) and m is not

bounded below on Γ, see [7, 8]. Then χ(m) is a proper convex functional on L2(Γ), but its effective domain
domχ = {m ∈ L2(Γ) : χ(m) < +∞} does not coincide with L2(Γ). Notice that domχ is a convex but not closed
set. In this case, domχ = L2(Γ).

We define the following functional on the space H1(Ω) × L2(Γ) × L2(Γ) :

K̃(v, l,m) =


J(v) + 1

2r

∫
Γ

((l + m)2
− l2)dΓ, if −γv ≤ m on Γ,

+∞, otherwise,

and the modified Lagrangian functional M̃(v, l) on the space H1(Ω) × L2(Γ)

M̃(v, l) = inf
m

K̃(v, l,m) = J(v) +
1
2r

∫
Γ

((
(l − rv)+

)2

− l2
)
dΓ.

Let us introduce the modified dual functional

M̃(l) = inf
v

M̃(v, l) = inf
v

J(v) +
1
2r

∫
Γ

((
(l − rv)+

)2

− l2
)
dΓ

 . (13)

The functional M̃(l) can have another presentation given by (cf. [9, 11])

M̃(l) = inf
m

{
χ(m) +

∫
Γ

lmdΓ +
r
2

∫
Γ

m2dΓ}. (14)

Definition 4.1. A point (v, l) ∈ H1(Ω)× L2(Γ) is called a saddle point of the modified Lagrangian functional M̃(v, l)
if the following inequalities hold:

M̃(v, l) ≤ M̃(v, l) ≤ M̃(v, l), ∀v ∈ H1(Ω), ∀l ∈ L2(Γ).

If (v, l) is a saddle point of M̃(v, l), then v is a solution of Signorini problem (11) and l is a solution of the
dual problem (cf. [9])M̃(l) −max,

l ∈ L2(Γ).
(15)

Theorem 4.2. ([11]) The sensitivity functional χ̃(m) is a weakly lower semicontinuous on L2(Γ) .

For an arbitrary fixed l ∈ L2(Γ), consider the functional

F̃l(m) = χ̃(m) +

∫
Γ

lmdΓ +
r
2

∫
Γ

m2dΓ,

where r > 0 is a constant.
The functional F̃l(m) is very important in studying the duality methods based on modified Lagrangian

functionals (cf. [9, 11, 12]). It is obvious that F̃l(m) is also a weakly lower semicontinuous on L2(Γ).
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Theorem 4.3. ([9]) For any l ∈ L2(Γ), there exists a unique element

m(l) = argmin
m∈L2(Γ)

F̃l(m).

Theorem 4.4. ([9, 11]) The functional M̃(l) is Gateaux differentiable on L2(Γ) and its derivative ∇M̃(l) is equal to
m(l). Moreover, m(l) satisfies the Lipschitz condition with a constant 1

r ; that is,

‖m(l1) −m(l2)‖L2(Γ) ≤
1
r
‖l1 − l2‖L2(Γ), ∀l1, l2 ∈ L2(Γ).

To solve problem (15) one can use the iterative method (cf. [9, 11, 12])

(i) uk+1 = argmin
v∈H1(Ω)

{
J(v) + 1

2r

∫
Γ

{(
(lk − rv)+

)2
− (lk)2

}
dΓ

}
, l0 ∈ L2(Γ),

(ii) lk+1 = (lk + ruk+1)+.

(16)

Algorithm (16) converges with respect to the functional; that is,

lim
k→∞

J(uk) = min
v∈K

J(v) = J(u),

where u is a solution of problem (11).
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