Fixed Point Results for Weakly α-Admissible Pairs

Ljubomir Ćirića ${ }^{\text {, Vahid Parvaneh }}{ }^{\text {b }}$, Nawab Hussain ${ }^{\text {c }}$
${ }^{a}$ Faculty of Mechanical Engineering, Kraljice Marije 16, Belgrade, Serbia
${ }^{b}$ Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran
${ }^{c}$ Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

In this paper, we introduce the concepts of weakly and partially weakly α-admissible pair of mappings and obtain certain coincidence and fixed point theorems for classes of weakly α-admissible contractive mappings in a b-metric space. As an application, we derive some new coincidence and common fixed point results in a b-metric space endowed with a binary relation or a graph. Moreover, an example is provided here to illustrate the usability of the obtained results.

1. Introduction and Preliminaries

The concept of a weakly contractive mapping $(d(f x, f y) \leq d(x, y)-\varphi(d(x, y))$ for all $x, y \in X$, where φ is an altering distance function) was introduced by Alber and Guerre-Delabrere [5] in the setup of Hilbert spaces. Rhoades [34] proved that every weakly contractive mapping defined on a complete metric space has a unique fixed point.

Self mappings f and g on a metric space X are called generalized weakly contractions, if there exists a lower semicontinuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)>0$ for all $t>0$ such that

$$
d(f x, g y) \leq N(x, y)-\varphi(N(x, y))
$$

where,

$$
N(x, y)=\max \left\{d(x, y), d(x, f x), d(y, g y), \frac{1}{2}[d(x, g y)+d(y, f x)]\right\}
$$

for all $x, y \in X([33])$.
Theorem 1.1. [33] Let (X, d) be a complete metric space. If $f, g: X \rightarrow X$ are generalized weakly contractions, then there exists a unique point $u \in X$ such that $u=f u=g u$.

For more results in this direction we refer the reader to [8, 15].

[^0]Many researchers have obtained fixed point results in complete metric spaces endowed with a partial order (See, e.g., [1, 3, 9, 11, 23-27, 30]).

In 2012, Samet et al. [32] introduced the concepts of $\alpha-\psi$-contractive and α-admissible mappings and established various fixed point theorems for such mappings defined on complete metric spaces. Afterwards, Salimi et al. [31] and Hussain et al. [16-18] modified the notion of α-admissible mapping and established certain (common) fixed point theorems.

Definition 1.2. [32] Let T be a self-mapping on X and let $\alpha: X \times X \rightarrow[0,+\infty)$ be a function. We say that T is an α-admissible mapping if

$$
x, y \in X, \quad \alpha(x, y) \geq 1 \quad \Longrightarrow \quad \alpha(T x, T y) \geq 1
$$

Definition 1.3. Let f and g be two self-maps on a set X and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. A pair (f, g) is said to be,
(i) weakly α-admissible if $\alpha(f x, g f x) \geq 1$ and $\alpha(g x, f g x) \geq 1$ for all $x \in X$,
(ii) partially weakly α-admissible if $\alpha(f x, g f x) \geq 1$ for all $x \in X$.

Let X be a non-empty set and $f: X \rightarrow X$ be a given mapping. For every $x \in X$, let $f^{-1}(x)=\{u \in X: f u=x\}$.
Definition 1.4. Let X be a set, $f, g, h: X \rightarrow X$ are mappings such that $f X \cup g X \subseteq h X$ and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. The ordered pair (f, g) is said to be:
(a) weakly α-admissible with respect to h if and only iffor all $x \in X, \alpha(f x, g y) \geq 1$ for all $y \in h^{-1}(f x)$ and $\alpha(g x, f y) \geq 1$ for all $y \in h^{-1}(g x)$,
(b) partially weakly α-admissible with respect to hif $\alpha(f x, g y) \geq 1$ for all $y \in h^{-1}(f x)$.

Remark 1.5. In the above definition: (i) if $g=f$, we say that f is weakly α-admissible (partially weakly α-admissible) with respect to h, (ii) if $h=I_{X}$ (the identity mapping on X), then the above definition reduces to the concepts of weakly α-admissible (partially weakly α-admissible) mapping.
Definition 1.6. Let f and g be two self-maps on a set X and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. The weakly α admissible (partially weakly α-admissible) pair (f, g) is said to be triangular weakly α-admissible (triangular partially weakly α-admissible) if $\alpha(x, z) \geq 1$ and $\alpha(z, y) \geq 1$ implies $\alpha(x, y) \geq 1$ for all $x, y, z \in X$.

Definition 1.7. Let X be a set, $f, g, h: X \rightarrow X$ are mappings such that $f X \cup g X \subseteq h X$ and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. The ordered pair (f, g) is said to be triangular weakly α-admissible (triangular partially weakly α-admissible) with respect to h if it is weakly α-admissible (partially weakly α-admissible) with respect to h and if $\alpha(x, z) \geq 1$ and $\alpha(z, y) \geq 1$ imply $\alpha(x, y) \geq 1$ for all $x, y, z \in X$.
Example 1.8. Let $X=[0, \infty)$,

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
x, & 0 \leq x \leq 1, \\
1, & 1 \leq x \leq \infty,
\end{array} \quad g(x)= \begin{cases}\sqrt{x}, & 0 \leq x \leq 1 \\
1, & 1 \leq x \leq \infty\end{cases} \right. \\
& R(x)=\left\{\begin{array}{ll}
x^{3}, & 0 \leq x \leq 1, \\
1, & 1 \leq x \leq \infty,
\end{array} \quad S(x)= \begin{cases}x^{2}, & 0 \leq x \leq 1 \\
1, & 1 \leq x \leq \infty\end{cases} \right.
\end{aligned}
$$

and let $\alpha(x, y)=e^{y-x}$ for all $x, y \in[0, \infty)$. Then (f, g) is triangular weakly α-admissible with respect to R, and, (g, f) is a triangular weakly α-admissible pair with respect to S. Indeed, if $\left\{\begin{array}{l}\alpha(x, z) \geq 1 \\ \alpha(z, y) \geq 1\end{array}\right.$, then $\left\{\begin{array}{l}x-z \leq 0, \\ z-y \leq 0,\end{array}\right.$ that is, $x-y \leq 0$ and so, $\alpha(x, y)=e^{y-x} \geq 1$.

To prove that (f, g) is partially weakly α-admissible with respect to R, let $x, y \in X$ be such that $y \in R^{-1} f x$, that is, $R y=f x$. So, we have $x=y^{3}$ and hence, $y=\sqrt[3]{x}$. As $g y=g(\sqrt[3]{x})=\sqrt{\sqrt[3]{x}}=\sqrt[6]{x} \geq x=$ fx, for all $x \in[0,1]$, therefore, $\alpha(f x, g y)=e^{g y-f x}=e^{\sqrt[6]{x}-x} \geq 1$. Hence, (f, g) is partially weakly α-admissible with respect to R.

Also, (g, f) is partially weakly α-admissible with respect to S. Indeed, let $x, y \in X$ be such that $y \in S^{-1} g x$, that is, Sy $=g x$. Hence, we have $y^{2}=\sqrt{x}$. As $f y=f(\sqrt[4]{x})=\sqrt[4]{x} \geq \sqrt{x}=g x$, for all $x \in[0,1]$, therefore, $\alpha(g x, f y)=e^{f y-g x}=e^{\sqrt[4]{x}-\sqrt{x}} \geq 1$. Hence, (g, f) is partially weakly α-admissible with respect to S.

Recently, Hussain et al. [16] introduced the concept of α-completeness for a metric space which is weaker than the concept of completeness.

Definition 1.9. [16] Let (X, d) be a metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ be a mapping. The metric space X is said to be α-complete if and only if every Cauchy sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, converges in X.

Remark 1.10. If X is a complete metric space, then X is also an α-complete metric space. But, the converse is not true(see, Example 1.17 of [37]).

Definition 1.11. [16] Let (X, d) be a metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ and $T: X \rightarrow X$ be mappings. We say that T is an α-continuous mapping on (X, d), if, for given $x \in X$ and sequence $\left\{x_{n}\right\}$,

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty \text { and } \alpha\left(x_{n}, x_{n+1}\right) \geq 1 \text { for all } n \in \mathbb{N} \Longrightarrow T x_{n} \rightarrow T x
$$

Example 1.12. [16] Let $X=[0, \infty)$ and $d(x, y)=|x-y|$ be a metric on X. Assume that $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0,+\infty)$ be defined by

$$
T x=\left\{\begin{array}{ll}
x^{5}, & \text { if } x \in[0,1], \\
\sin \pi x+2, & \text { if }(1, \infty),
\end{array} \quad \text { and } \quad \alpha(x, y)= \begin{cases}x^{2}+y^{2}+1, & \text { if } x, y \in[0,1] \\
0, & \text { otherwise }\end{cases}\right.
$$

Clearly, T is not continuous, but T is α-continuous on (X, d).
Motivated by [19] we introduce the following concept.
Definition 1.13. [19] Let (X, d) be a metric space and $f, g: X \rightarrow X$. The pair (f, g) is said to be α-compatible if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f x_{n}=$ $\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in X$.

Remark 1.14. If (f, g) is a compatible pair, then (f, g) is also an α-compatible pair. But, the converse is not true. The following example which is adapted from example 1.2 of [7] illustrates this fact.

Example 1.15. Let $X=[1, \infty)$ and $d(x, y)=|x-y|$. Assume that $f, g: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0,+\infty)$ be defined by

$$
f x=\left\{\begin{array}{ll}
2, & \text { if } x \in[1,2], \\
6, & \text { if }(2, \infty),
\end{array} \quad g x=\left\{\begin{array}{ll}
6-2 x, & \text { if } x \in[1,2], \\
7, & \text { if }(2, \infty),
\end{array} \text { and } \quad \alpha(x, y)= \begin{cases}1, & \text { if } x=y=2 \\
0, & \text { otherwise }\end{cases}\right.\right.
$$

Clearly, (f, g) is not compatible, but it is an α-compatible pair. Indeed, let $\left\{x_{n}\right\}$ be a sequence such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}$. Then, $x_{n}=2$ for all $n \in \mathbb{N}$. Then $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=2$ and $\lim _{n \rightarrow \infty} g f x_{n}=\lim _{n \rightarrow \infty} f g x_{n}=2$. Again, if we consider the sequence $y_{n}=2-\frac{1}{n}$, then $\lim _{n \rightarrow \infty} f y_{n}=\lim _{n \rightarrow \infty} g y_{n}=2$, $\lim _{n \rightarrow \infty} g f y_{n}=2$ and $\lim _{n \rightarrow \infty} f g y_{n}=6$. Thus, f and g are α-compatible but not compatible.

Definition 1.16. [20] Let $f, g: X \rightarrow X$ be given self-mappings on X. The pair (f, g) is said to be weakly compatible if f and g commute at their coincidence points (i.e., $f g x=g f x$, whenever $f x=g x$).

Definition 1.17. Let (X, d) be a metric space and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. We say that (X, d) is α-regular if the following conditions hold:
if $x_{n} \rightarrow x$, where $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, then $\alpha\left(x_{n}, x\right) \geq 1$ for all $n \in \mathbb{N}$.

The concept of b-metric space was introduced by Czerwik in [10]. Since then, several papers have been published on the fixed point theory of various classes of operators in b-metric spaces (see, also, $[4,6,12-$ 14, 21, 28, 29]).
Definition 1.18. [10] Let X be a (nonempty) set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is a b-metric iff, for all $x, y, z \in X$, the following conditions are satisfied:
b_{1}. $d(x, y)=0$ iff $x=y$,
$b_{2} . d(x, y)=d(y, x)$,
$b_{3} . d(x, z) \leq s[d(x, y)+d(y, z)]$.
The pair (X, d) is called a b-metric space.
Definition 1.19. Let X be a nonempty set. Then (X, d, \leq) is called a partially ordered b-metric space if and only if d is a b-metric on a partially ordered set (X, \leq).

Recently, Hussain et al. have presented an example of a b-metric which is not continuous (see, example 3 in [12]).

Since in general a b-metric is not continuous, we need the following simple lemma about the b-convergent sequences in the proof of our main result.
Lemma 1.20. [2] Let (X, d) be a b-metric space with $s \geq 1$ and suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are b-convergent to x and y, respectively. Then we have,

$$
\frac{1}{s^{2}} d(x, y) \leq \liminf _{n \longrightarrow \infty} d\left(x_{n}, y_{n}\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right) \leq s^{2} d(x, y)
$$

In particular, if $x=y$, then we have $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$. Moreover, for each $z \in X$, we have,

$$
\frac{1}{s} d(x, z) \leq \liminf _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{n}, z\right) \leq s d(x, z)
$$

Motivated by the works in [11, 17, 18, 23, 24], we prove some coincidence point results for weakly α admissible (ψ, φ)-contractive mappings in b-metric and partially ordered b-metric spaces. Our results extend and generalize certain recent results in the literature and provide main results in $[23,24]$ as corollaries.

2. Main Results

Let (X, d) be a b-metric space and let $f, g, R, S: X \rightarrow X$ be four self mappings. Throughout this paper, unless otherwise stated, for all $x, y \in X$, let

$$
M(x, y) \in\left\{d(S x, R y), \frac{d(S x, f x)+d(R y, g y)}{2 s}, \frac{d(S x, g y)+d(R y, f x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(S x, f x), d(S x, g y), d(R y, f x), d(R y, g y)\}
$$

Throughout this paper, $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ are altering distance functions and $\phi:[0, \infty) \rightarrow[0, \infty)$ is a bounded function. Recall that a function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function, if φ is continuous and nondecreasing and $\varphi(t)=0$ if and only if $t=0$ [22].
Theorem 2.1. Let (X, d) be an α-complete b-metric space and let $f, g, R, S: X \rightarrow X$ be four mappings such that $f(X) \subseteq R(X), g(X) \subseteq S(X)$ and $\alpha: X \times X \rightarrow[0, \infty)$ be a function. Suppose that for every $x, y \in X$ with $\alpha(S x, R y) \geq 1$,

$$
\begin{equation*}
\psi(\operatorname{sd}(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{1}
\end{equation*}
$$

Assume that f, g, R and S are α-continuous, the pairs (f, S) and (g, R) are α-compatible and the pairs (f, g) and (g, f) are triangular partially weakly α-admissible with respect to R and S, respectively. Then, the pairs (f, S) and (g, R) have a coincidence point z in X. Moreover, if $\alpha(S z, R z) \geq 1$, then z is a coincidence point of f, g, R and S.

Proof. Let x_{0} be an arbitrary point of X. Choose $x_{1} \in X$ such that $f x_{0}=R x_{1}$ and $x_{2} \in X$ such that $g x_{1}=S x_{2}$. Continuing this way, construct a sequence $\left\{z_{n}\right\}$ defined by:

$$
z_{2 n+1}=R x_{2 n+1}=f x_{2 n}
$$

and

$$
z_{2 n+2}=S x_{2 n+2}=g x_{2 n+1}
$$

for all $n \geq 0$.
As $x_{1} \in R^{-1}\left(f x_{0}\right)$ and $x_{2} \in S^{-1}\left(g x_{1}\right)$ and the pairs (f, g) and (g, f) are partially weakly α-admissible with respect to R and S, respectively, we have,

$$
\alpha\left(R x_{1}=f x_{0}, g x_{1}=S x_{2}\right) \geq 1
$$

and

$$
\alpha\left(g x_{1}=S x_{2}, f x_{2}=R x_{3}\right) \geq 1 .
$$

Repeating this process, we obtain $\alpha\left(R x_{2 n+1}, S x_{2 n+2}\right)=\alpha\left(z_{2 n+1}, z_{2 n+2}\right) \geq 1$ for all $n \geq 0$.
We will complete the proof in three steps.
Step I. We will prove that $\lim _{k \rightarrow \infty} d\left(z_{k}, z_{k+1}\right)=0$.
Define $d_{k}=d\left(z_{k}, z_{k+1}\right)$. Suppose that $d_{k_{0}}=0$ for some k_{0}. Then, $z_{k_{0}}=z_{k_{0}+1}$. If $k_{0}=2 n$, then $z_{2 n}=z_{2 n+1}$ gives $z_{2 n+1}=z_{2 n+2}$. Indeed,

$$
\begin{align*}
\psi\left(\operatorname{sd}\left(z_{2 n+1}, z_{2 n+2}\right)\right) & =\psi\left(\operatorname{sd}\left(f x_{2 n}, g x_{2 n+1}\right)\right) \\
& \leq \psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)-\varphi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)+\phi\left(N\left(x_{2 n}, x_{2 n+1}\right)\right) N\left(x_{2 n}, x_{2 n+1}\right) \tag{2}
\end{align*}
$$

where,

$$
\begin{aligned}
& M\left(x_{2 n}, x_{2 n+1}\right) \\
& \in\left\{d\left(S x_{2 n}, R x_{2 n+1}\right), \frac{d\left(S x_{2 n}, f x_{2 n}\right)+d\left(R x_{2 n+1}, g x_{2 n+1}\right)}{2 s}, \frac{d\left(S x_{2 n}, g x_{2 n+1}\right)+d\left(R x_{2 n+1}, f x_{2 n}\right)}{2 s}\right\} \\
& =\left\{d\left(z_{2 n}, z_{2 n+1}\right), \frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}, \frac{d\left(z_{2 n}, z_{2 n+2}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)}{2 s}\right\} \\
& =\left\{0, \frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}, \frac{d\left(z_{2 n}, z_{2 n+2}\right)}{2 s}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(x_{2 n}, x_{2 n+1}\right) \\
& =\min \left\{d\left(S x_{2 n}, f x_{2 n}\right), d\left(S x_{2 n}, g x_{2 n+1}\right), d\left(R x_{2 n+1}, f x_{2 n}\right), d\left(R x_{2 n+1}, g x_{2 n+1}\right)\right\} \\
& =\min \left\{d\left(z_{2 n}, z_{2 n+1}\right), d\left(z_{2 n}, z_{2 n+2}\right), d\left(z_{2 n+1}, z_{2 n+1}\right), d\left(z_{2 n+1}, z_{2 n+2}\right)\right\}=0
\end{aligned}
$$

If $M\left(x_{2 n}, x_{2 n+1}\right)=\frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}$, then (2) will be,

$$
\begin{align*}
\psi\left(\operatorname{sd}\left(z_{2 n+1}, z_{2 n+2}\right)\right) & \leq \psi\left(\frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right)-\varphi\left(\frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right)+\phi(0) \times 0 \tag{3}\\
& \leq \psi\left(\operatorname{sd}\left(z_{2 n+1}, z_{2 n+2}\right)\right)-\varphi\left(\frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right)
\end{align*}
$$

which implies that $\varphi\left(\frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right)=0$, that is, $z_{2 n}=z_{2 n+1}=z_{2 n+2}$. Similarly, if $k_{0}=2 n+1$, then $z_{2 n+1}=z_{2 n+2}$ gives $z_{2 n+2}=z_{2 n+3}$. Continuing this process, we find that z_{k} is a constant sequence for $k \geq k_{0}$. Hence, $\lim _{k \rightarrow \infty} d\left(z_{k}, z_{k+1}\right)=0$ holds true.

Now, suppose that

$$
\begin{equation*}
d_{k}=d\left(z_{k}, z_{k+1}\right)>0 \tag{4}
\end{equation*}
$$

for each k. We claim that

$$
\begin{equation*}
d\left(z_{k+1}, z_{k+2}\right) \leq d\left(z_{k}, z_{k+1}\right) \tag{5}
\end{equation*}
$$

for each $k=1,2,3, \cdots$.
Let $k=2 n$ and for an $n \geq 0, d\left(z_{2 n+1}, z_{2 n+2}\right) \geq d\left(z_{2 n}, z_{2 n+1}\right)>0$. Then, as $\alpha\left(S x_{2 n}, R x_{2 n+1}\right) \geq 1$, using (1) we obtain that

$$
\begin{align*}
\psi\left(\operatorname{sd}\left(z_{2 n+1}, z_{2 n+2}\right)\right) & =\psi\left(\operatorname{sd}\left(f x_{2 n}, g x_{2 n+1}\right)\right) \\
& \leq \psi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)-\varphi\left(M\left(x_{2 n}, x_{2 n+1}\right)\right)+\phi\left(N\left(x_{2 n}, x_{2 n+1}\right)\right) N\left(x_{2 n}, x_{2 n+1}\right) \tag{6}
\end{align*}
$$

where,

$$
\begin{aligned}
& M\left(x_{2 n}, x_{2 n+1}\right) \\
& \in\left\{d\left(S x_{2 n}, R x_{2 n+1}\right), \frac{d\left(S x_{2 n}, f x_{2 n}\right)+d\left(R x_{2 n+1}, g x_{2 n+1}\right)}{2 s}, \frac{d\left(S x_{2 n}, g x_{2 n+1}\right)+d\left(R x_{2 n+1}, f x_{2 n}\right)}{2 s}\right\} \\
& =\left\{d\left(z_{2 n}, z_{2 n+1}\right), \frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}, \frac{d\left(z_{2 n}, z_{2 n+2}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)}{2 s}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(x_{2 n}, x_{2 n+1}\right) \\
& =\min \left\{d\left(S x_{2 n}, f x_{2 n}\right), d\left(S x_{2 n}, g x_{2 n+1}\right), d\left(R x_{2 n+1}, f x_{2 n}\right), d\left(R x_{2 n+1}, g x_{2 n+1}\right)\right\} \\
& =\min \left\{d\left(z_{2 n}, z_{2 n+1}\right), d\left(z_{2 n}, z_{2 n+2}\right), d\left(z_{2 n+1}, z_{2 n+1}\right), d\left(z_{2 n+1}, z_{2 n+2}\right)\right\}=0
\end{aligned}
$$

If

$$
M\left(x_{2 n}, x_{2 n+1}\right)=\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s} \leq \frac{d\left(z_{2 n+1}, z_{2 n+2}\right)}{s}
$$

as $d\left(z_{2 n+1}, z_{2 n+2}\right) \geq d\left(z_{2 n}, z_{2 n+1}\right)$, then from (6), we have,

$$
\begin{align*}
& \psi\left(s d\left(z_{2 n+1}, z_{2 n+2}\right)\right) \\
& \leq \psi\left(\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right)-\varphi\left(\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right) \tag{7}\\
& \leq \psi\left(\operatorname{sd}\left(z_{2 n+1}, z_{2 n+2}\right)\right)-\varphi\left(\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right)
\end{align*}
$$

which implies that, $\varphi\left(\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}\right) \leq 0$, this is possible only if

$$
\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}=0
$$

that is, $d\left(z_{2 n}, z_{2 n+1}\right)=0$, a contradiction to (4). Hence, $d\left(z_{2 n+1}, z_{2 n+2}\right) \leq d\left(z_{2 n}, z_{2 n+1}\right)$ for all $n \geq 0$.
Therefore, (5) is proved for $k=2 n$.
Similarly, it can be shown that,

$$
\begin{equation*}
d\left(z_{2 n+2}, z_{2 n+3}\right) \leq d\left(z_{2 n+1}, z_{2 n+2}\right) \tag{8}
\end{equation*}
$$

for all $n \geq 0$.

Analogously, for other values of $M\left(x_{2 n}, x_{2 n+1}\right)$, we can see that $\left\{d\left(z_{k}, z_{k+1}\right)\right\}$ is a nondecreasing sequence of nonnegative real numbers. Therefore, there is an $r \geq 0$ such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(z_{k}, z_{k+1}\right)=r \tag{9}
\end{equation*}
$$

We know that,

$$
\begin{aligned}
& M\left(x_{2 n}, x_{2 n+1}\right) \\
& \in\left\{d\left(z_{2 n}, z_{2 n+1}\right), \frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2 s}, \frac{d\left(z_{2 n}, z_{2 n+2}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)}{2 s}\right\} .
\end{aligned}
$$

Substituting the values of $M\left(x_{2 n}, x_{2 n+1}\right)$ in (6) and then taking the limit as $n \rightarrow \infty$ in (6), we obtain that $r=0$. For instance, let

$$
M\left(x_{2 n}, x_{2 n+1}\right)=\frac{d\left(z_{2 n}, z_{2 n+2}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)}{2 s}
$$

So, from (6) we have

$$
\begin{align*}
& \psi\left(s d\left(z_{2 n+1}, z_{2 n+2}\right)\right) \\
& \leq \psi\left(\frac{d\left(z_{2 n}, z_{2 n+2}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)}{2 s}\right)-\varphi\left(\frac{d\left(z_{2 n}, z_{2 n+2}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)}{2 s}\right) \\
& =\psi\left(\frac{d\left(z_{2 n}, z_{2 n+2}\right)}{2 s}\right)-\varphi\left(\frac{d\left(z_{2 n}, z_{2 n+2}\right)}{2 s}\right) \tag{10}\\
& \leq \psi\left(\frac{d\left(z_{2 n}, z_{2 n+1}\right)+d\left(z_{2 n+1}, z_{2 n+2}\right)}{2}\right)-\varphi\left(\frac{d\left(z_{2 n}, z_{2 n+2}\right)}{2 s}\right)
\end{align*}
$$

Letting $n \rightarrow \infty$ in (10), using (9) and the continuity of ψ and φ, we have,

$$
\varphi\left(\lim _{n \rightarrow \infty} \frac{d\left(z_{2 n}, z_{2 n+2}\right)}{2 s}\right)=0
$$

Hence, $\lim _{n \rightarrow \infty} \frac{d\left(z_{2 n}, z_{2 n+2}\right)}{2 s}=0$, from our assumptions about φ.
Now, taking into account (10) and letting $n \rightarrow \infty$, we find that $\psi(s r) \leq \psi(0)-\varphi(0)$. Hence, $r=0$. In general, for the other values of $M\left(x_{2 n}, x_{2 n+1}\right)$ we can show that,

$$
\begin{equation*}
r=\lim _{k \rightarrow \infty} d\left(z_{k}, z_{k+1}\right)=\lim _{n \rightarrow \infty} d\left(z_{2 n}, z_{2 n+1}\right)=0 \tag{11}
\end{equation*}
$$

Step II. We will show that $\left\{z_{n}\right\}$ is a b-Cauchy sequence in X. Assume on contrary that, there exists $\varepsilon>0$ for which we can find subsequences $\left\{z_{2 m(k)}\right\}$ and $\left\{z_{2 n(k)}\right\}$ of $\left\{z_{2 n}\right\}$ such that $n(k)>m(k) \geq k$ and

$$
\begin{equation*}
d\left(z_{2 m(k)}, z_{2 n(k)}\right) \geq \varepsilon \tag{12}
\end{equation*}
$$

and $n(k)$ is the smallest number such that the above condition holds; i.e.,

$$
\begin{equation*}
d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)<\varepsilon \tag{13}
\end{equation*}
$$

From triangle inequality and (12) and (13), we have,

$$
\begin{equation*}
\varepsilon \leq d\left(z_{2 m(k)}, z_{2 n(k)}\right) \leq s\left[d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)+d\left(z_{2 n(k)-1}, z_{2 n(k)}\right)\right] . \tag{14}
\end{equation*}
$$

Taking the limit as $k \rightarrow \infty$ in (14), from (11) we obtain that,

$$
\begin{equation*}
\varepsilon \leq \limsup _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)}\right) \leq s \varepsilon \tag{15}
\end{equation*}
$$

Using triangle inequality again we have,

$$
d\left(z_{2 m(k)}, z_{2 n(k)}\right) \leq s\left[d\left(z_{2 m(k)}, z_{2 m(k)+1}\right)+d\left(z_{2 m(k)+1}, z_{2 n(k)}\right)\right]
$$

Making $k \rightarrow \infty$ in the above inequality, we have,

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(z_{2 m(k)+1}, z_{2 n(k)}\right) \tag{16}
\end{equation*}
$$

Finally,

$$
d\left(z_{2 m(k)+1}, z_{2 n(k)-1}\right) \leq s\left[d\left(z_{2 m(k)+1}, z_{2 m(k)}\right)+d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)\right]
$$

Letting $k \rightarrow \infty$, and using (15), we have,

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} d\left(z_{2 m(k)+1}, z_{2 n(k)-1}\right) \leq s \varepsilon \tag{17}
\end{equation*}
$$

We know that $2 n(k)-1 \geq 2 m(k)$ and $\alpha\left(S x_{2 n+2}, R x_{2 n+1}\right)=\alpha\left(g x_{2 n+1}, f x_{2 n}\right) \geq 1$ for all $n \in \mathbb{N}$. On the other hand, the pairs (f, g) and (g, f) are triangular partially weakly α-admissible with respect to R and S, respectively. So, $\alpha\left(R x_{2 n(k)-1}, S x_{2 n(k)-2}\right) \geq 1$ and $\alpha\left(S x_{2 n(k)-2}, R x_{2 n(k)-3}\right) \geq 1$ implies $\alpha\left(R x_{2 n(k)-1}, R x_{2 n(k)-3}\right) \geq 1$. Also, $\alpha\left(R x_{2 n(k)-1}, R x_{2 n(k)-3}\right) \geq 1$ and $\alpha\left(R x_{2 n(k)-3}, S x_{2 n(k)-4}\right) \geq 1$ implies that $\alpha\left(R x_{2 n(k)-1}, S x_{2 n(k)-4}\right) \geq 1$. Continuing this manner, we obtain that $\alpha\left(R x_{2 n(k)-1}, S x_{2 m(k)}\right) \geq 1$. Now we can apply (1), to obtain that

$$
\begin{align*}
\psi\left(s d\left(z_{2 m(k)+1}, z_{2 n(k)}\right)\right) & =\psi\left(s d\left(f x_{2 m(k)}, g x_{2 n(k)-1}\right)\right) \\
& \leq \psi\left(M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right)-\varphi\left(M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right) \tag{18}\\
& +\phi\left(N\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right) N\left(x_{2 m(k)}, x_{2 n(k)-1}\right)
\end{align*}
$$

where,

$$
\begin{aligned}
& M\left(x_{2 m(k)}, x_{2 n(k)-1}\right) \\
& \in\left\{d\left(S x_{2 m(k)}, R x_{2 n(k)-1}\right), \frac{d\left(S x_{2 m(k)}, f x_{2 m(k)}\right)+d\left(R x_{2 n(k)-1}, g x_{2 n(k)-1}\right)}{2 s},\right. \\
& \left.\frac{d\left(S x_{2 m(k)}, g x_{2 n(k)-1}\right)+d\left(R x_{2 n(k)-1}, f x_{2 m(k)}\right)}{2 s}\right\} \\
& =\left\{d\left(z_{2 m(k)}, z_{2 n(k)-1}\right), \frac{d\left(z_{2 m(k)}, z_{2 m(k)+1}\right)+d\left(z_{2 n(k)-1}, z_{2 n(k)}\right)}{2 s},\right. \\
& \left.\frac{d\left(z_{2 m(k)}, z_{2 n(k)}\right)+d\left(z_{2 n(k)-1}, z_{2 m(k)+1}\right)}{2 s}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(x_{2 m(k)}, x_{2 n(k)-1}\right) \\
& =\min \left\{d\left(S x_{2 m(k)}, f x_{2 m(k)}\right), d\left(S x_{2 m(k)}, g x_{2 n(k)-1}\right), d\left(R x_{2 n(k)-1}, f x_{2 m(k)}\right), d\left(R x_{2 n(k)-1}, g x_{2 n(k)-1}\right)\right\} \\
& =\min \left\{d\left(z_{2 m(k)}, z_{2 m(k)+1}\right), d\left(z_{2 m(k)}, z_{2 n(k)}\right), d\left(z_{2 n(k)-1}, z_{2 m(k)+1}\right), d\left(z_{2 n(k)-1}, z_{2 n(k)}\right)\right\} .
\end{aligned}
$$

From (11), clearly $N\left(x_{2 m(k)}, x_{2 n(k)-1}\right) \longrightarrow 0$.
If

$$
M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)=\frac{d\left(z_{2 m(k)}, z_{2 m(k)+1}\right)+d\left(z_{2 n(k)-1}, z_{2 n(k)}\right)}{2 s}
$$

then from (11), we get that $\lim _{k \rightarrow \infty} M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)=0$. Hence, according to (18) we have, $\lim _{k \rightarrow \infty} d\left(z_{2 m(k)+1}, z_{2 n(k)}\right)=$ 0 , which contradicts (16). If

$$
M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)=\frac{d\left(z_{2 m(k)}, z_{2 n(k)}\right)+d\left(z_{2 n(k)-1}, z_{2 m(k)+1}\right)}{2 s}
$$

then from (15) and (17), we get that,

$$
\limsup _{k \rightarrow \infty} M\left(x_{2 m(k)}, x_{2 n(k)-1}\right) \leq \frac{s \varepsilon+s \varepsilon}{2 s}=\varepsilon
$$

Taking the limit as $k \rightarrow \infty$ in (18), we have,

$$
\begin{align*}
\psi(\varepsilon) & =\psi\left(s \cdot \frac{\varepsilon}{s}\right) \\
& \leq \psi\left(s \limsup _{k \rightarrow \infty} d\left(z_{m(k)+1}, z_{n(k)}\right)\right) \\
& \leq \psi\left(\limsup _{k \rightarrow \infty} M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right)-\varphi\left(\liminf _{k \rightarrow \infty} M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right) \tag{19}\\
& +\limsup _{k \rightarrow \infty} \phi\left(N\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right) N\left(x_{2 m(k)}, x_{2 n(k)-1}\right) \\
& \leq \psi(\varepsilon)-\varphi\left(\liminf _{k \rightarrow \infty} M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right)+0,
\end{align*}
$$

which implies that $\varphi\left(\liminf _{k \rightarrow \infty} M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)\right) \leq 0$. Hence, $\liminf _{k \rightarrow \infty} d\left(x_{2 m(k)}, x_{2 n(k)}\right)=0$, a contradiction to (15).
If

$$
M\left(x_{2 m(k)}, x_{2 n(k)-1}\right)=d\left(x_{2 m(k)}, x_{2 n(k)-1}\right)
$$

then from (13), by taking the limit as $k \rightarrow \infty$ in (18), we have,

$$
\begin{align*}
\psi(\varepsilon) & =\psi\left(s \cdot \frac{\varepsilon}{s}\right) \\
& \leq \psi\left(s \limsup _{k \rightarrow \infty} d\left(z_{m(k)+1}, z_{n(k)}\right)\right) \\
& \leq \psi\left(\limsup _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)\right)-\varphi\left(\liminf _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)\right) \tag{20}\\
& \leq \psi(\varepsilon)-\varphi\left(\liminf _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)\right)
\end{align*}
$$

which implies that $\varphi\left(\liminf _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)\right) \leq 0$. Hence, $\liminf _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)-1}\right)=0$. Therefore, from triangular inequality we can conclude that $\liminf _{k \rightarrow \infty} d\left(z_{2 m(k)}, z_{2 n(k)}\right)=0$ which contradicts (15).

Hence $\left\{z_{n}\right\}$ is a b-Cauchy sequence.
Step III. We will show that f, g, R and S have a coincidence point.
Since $\left\{z_{n}\right\}$ is a b-Cauchy sequence in the α-complete b-metric space X and $\alpha\left(z_{k}, z_{k+1}\right) \geq 1$, then there exists $z \in X$ such that,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z_{2 n+1}, z\right)=\lim _{n \rightarrow \infty} d\left(R x_{2 n+1}, z\right)=\lim _{n \rightarrow \infty} d\left(f x_{2 n}, z\right)=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z_{2 n}, z\right)=\lim _{n \rightarrow \infty} d\left(S x_{2 n}, z\right)=\lim _{n \rightarrow \infty} d\left(g x_{2 n-1}, z\right)=0 \tag{22}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
S x_{2 n} \rightarrow z \text { and } f x_{2 n} \rightarrow z, \quad \text { as } n \rightarrow \infty \tag{23}
\end{equation*}
$$

As (f, S) is α-compatible and $\alpha\left(z_{2 n}, z_{2 n+2}\right) \geq 1$, so,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(S f x_{2 n}, f S x_{2 n}\right)=0 \tag{24}
\end{equation*}
$$

Moreover, from $\lim _{n \rightarrow \infty} d\left(f x_{2 n}, z\right)=0, \lim _{n \rightarrow \infty} d\left(S x_{2 n}, z\right)=0$ and the α-continuity of S and f, we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(S f x_{2 n}, S z\right)=0=\lim _{n \rightarrow \infty} d\left(f S x_{2 n}, f z\right) \tag{25}
\end{equation*}
$$

By the triangle inequality, we have,

$$
\begin{align*}
d(S z, f z) & \leq s\left[d\left(S z, S f x_{2 n}\right)+d\left(S f x_{2 n}, f z\right)\right] \\
& \leq s d\left(S z, S f x_{2 n}\right)+s^{2}\left[d\left(S f x_{2 n}, f S x_{2 n}\right)+d\left(f S x_{2 n}, f z\right)\right] \tag{26}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (26), we obtain that

$$
d(S z, f z) \leq 0
$$

which yields that $f z=S z$, that is, z is a coincidence point of f and S.
Similarly, it can be proved that $g z=R z$. Now, let $\alpha(R z, S z) \geq 1$. From (1) we have,

$$
\begin{equation*}
\psi(\operatorname{sd}(f z, g z)) \leq \psi(M(z, z))-\varphi(M(z, z))+\phi(N(z, z)) N(z, z) \tag{27}
\end{equation*}
$$

where,

$$
\begin{aligned}
M(z, z) & \in\left\{d(S z, R z), \frac{d(S z, f z)+d(R z, g z)}{2 s}, \frac{d(S z, g z)+d(R z, f z)}{2 s}\right\} \\
& =\left\{d(f z, g z), 0, \frac{d(f z, g z)}{s}\right\}
\end{aligned}
$$

and

$$
N(z, z)=\min \{d(S z, f z), d(S z, g z), d(R z, f z), d(R z, g z)\}=0
$$

In all three cases, (27) yields that $f z=g z=S z=R z$.
In the following theorem, we omit the assumption of α-continuity of f, g, R and S and replace the α-compatibility of the pairs (f, S) and (g, R) by weak compatibility of the pairs.

Theorem 2.2. Let (X, d) be an α-regular α-complete b-metric space, $f, g, R, S: X \rightarrow X$ be four mappings such that $f(X) \subseteq R(X)$ and $g(X) \subseteq S(X)$ and $R X$ and $S X$ are b-closed subsets of X. Suppose that

$$
\begin{equation*}
\psi(s d(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{28}
\end{equation*}
$$

for all x and y with $\alpha(S x, R y) \geq 1$. Then, the pairs (f, S) and (g, R) have a coincidence point z in X provided that the pairs (f, S) and (g, R) are weakly compatible and the pairs (f, g) and (g, f) are triangular partially weakly α-admissible with respect to R and S, respectively. Moreover, if $\alpha(S z, R z) \geq 1$, then $z \in X$ is a coincidence point of f, g, R and S.

Proof. Following the proof of Theorem 2.1, there exists $z \in X$ such that:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(z_{k}, z\right)=0 \tag{29}
\end{equation*}
$$

Since $R(X)$ is b-closed and $\left\{z_{2 n+1}\right\} \subseteq R(X)$, therefore $z \in R(X)$. Hence, there exists $u \in X$ such that $z=R u$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z_{2 n+1}, R u\right)=\lim _{n \rightarrow \infty} d\left(R x_{2 n+1}, R u\right)=0 \tag{30}
\end{equation*}
$$

Similarly, there exists $v \in X$ such that $z=R u=S v$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z_{2 n}, S v\right)=\lim _{n \rightarrow \infty} d\left(S x_{2 n}, S v\right)=0 \tag{31}
\end{equation*}
$$

Now, we prove that v is a coincidence point of f and S.
Since $R x_{2 n+1} \rightarrow z=S v$, as $n \rightarrow \infty$, from α-regularity of $X, \alpha\left(R x_{2 n+1}, S v\right) \geq 1$. Therefore, from (28), we have

$$
\begin{equation*}
\psi\left(s d\left(f v, g x_{2 n+1}\right)\right) \leq \psi\left(M\left(v, x_{2 n+1}\right)\right)-\varphi\left(M\left(v, x_{2 n+1}\right)\right)+\phi\left(N\left(v, x_{2 n+1}\right)\right) N\left(v, x_{2 n+1}\right) \tag{32}
\end{equation*}
$$

where,

$$
\begin{aligned}
& M\left(v, x_{2 n+1}\right) \\
& \in\left\{d\left(S v, R x_{2 n+1}\right), \frac{d(S v, f v)+d\left(R x_{2 n+1}, g x_{2 n+1}\right)}{2 s}, \frac{d\left(S v, g x_{2 n+1}\right)+d\left(R x_{2 n+1}, f v\right)}{2 s}\right\} \\
& =\left\{d\left(z, z_{2 n+1}\right), \frac{d(z, f v)+d\left(z_{2 n+1}, z_{2 n}\right)}{2 s}, \frac{d\left(z, z_{2 n}\right)+d\left(z_{2 n+1}, f v\right)}{2 s}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& N\left(v, x_{2 n+1}\right) \\
& =\min \left\{d(S v, f v), d\left(S v, g x_{2 n+1}\right), d\left(R x_{2 n+1}, f v\right), d\left(R x_{2 n+1}, g x_{2 n+1}\right)\right\} \\
& =\min \left\{d(z, f v), d\left(z, z_{2 n}\right), d\left(z_{2 n+1}, f v\right), d\left(z_{2 n+1}, z_{2 n}\right)\right\} \rightarrow 0 .
\end{aligned}
$$

From Lemma 1.20,

$$
\frac{d(z, f v)}{2 s^{2}} \leq \liminf _{n} M\left(v, x_{2 n+1}\right) \leq \underset{n}{\lim \sup } M\left(v, x_{2 n+1}\right) \leq \frac{d(z, f v)}{2}
$$

Taking the limit as $n \rightarrow \infty$ in (32), using Lemma 1.20 and the continuity of ψ and φ, we can obtain that $f v=z=S v$.

As f and S are weakly compatible, we have $f z=f S v=S f v=S z$. Thus, z is a coincidence point of f and S.

Similarly, it can be shown that z is a coincidence point of the pair (g, R). The rest of the proof follows from similar arguments as in Theorem 2.1.

Taking $S=R$ in Theorem 2.1, we obtain the following result.
Corollary 2.3. Let (X, d) be an α-complete b-metric space and let $f, g, R: X \rightarrow X$ be three mappings such that $f(X) \cup g(X) \subseteq R(X)$ and R is α-continuous. Suppose that for every $x, y \in X$ with $\alpha(R x, R y) \geq 1$, we have,

$$
\begin{equation*}
\psi(\operatorname{sd}(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{33}
\end{equation*}
$$

where,

$$
M(x, y) \in\left\{d(R x, R y), \frac{d(R x, f x)+d(R y, g y)}{2 s}, \frac{d(R x, g y)+d(R y, f x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(R x, f x), d(R x, g y), d(R y, f x), d(R y, g y)\}
$$

Then, f, g and R have a coincidence point in X provided that the pair (f, g) is triangular weakly α-admissible with respect to R and either,
a. the pair (f, R) is α-compatible and f is α-continuous, or,
b. the pair (g, R) is α-compatible and g is α-continuous.
Taking $R=S$ and $f=g$ in Theorem 2.1, we obtain the following coincidence point result:
Corollary 2.4. Let (X, d) be an α-complete b-metric space and let $f, R: X \rightarrow X$ be two mappings such that $f(X) \subseteq R(X)$. Suppose that for every $x, y \in X$ with $\alpha(R x, R y) \geq 1$, we have,

$$
\begin{equation*}
\psi(s d(f x, f y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{34}
\end{equation*}
$$

where,

$$
M(x, y) \in\left\{d(R x, R y), \frac{d(R x, f x)+d(R y, f y)}{2 s}, \frac{d(R x, f y)+d(R y, f x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(R x, f x), d(R x, f y), d(R y, f x), d(R y, f y)\}
$$

Then, the pair (f, R) has a coincidence point in X provided that f and R are α-continuous, the pair (f, R) is α-compatible and f is triangular weakly α-admissible with respect to R.

Example 2.5. Let $X=[0, \infty)$, the metric d on X be given by $d(x, y)=|x-y|^{2}$,for all $x, y \in X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be given by $\alpha(x, y)=e^{x-y}$. Define self-maps f, g, S and R on X by

$$
\begin{array}{ll}
f x=\ln (1+x), & R x=e^{x}-1 \\
g x=\ln \left(1+\frac{x}{2}\right), & S x=e^{2 x}-1
\end{array}
$$

To prove that (f, g) is partially weakly α-admissible with respect to R, let $x, y \in X$ be such that $y \in R^{-1} f x$, that is, $R y=f x$. By the definition of f and R, we have e $e^{y}-1=\ln (1+x)$ and so, $y=\ln (1+\ln (1+x))$. Therefore,

$$
f x=\ln (1+x) \geq \ln \left(1+\frac{\ln (1+\ln (1+x))}{2}\right)=\ln \left(1+\frac{y}{2}\right)=g y .
$$

Therefore, $\alpha(f x, g y) \geq 1$. Hence (f, g) is partially weakly α-admissible with respect to R.
To prove that (g, f) is partially weakly α-admissible with respect to S, let $x, y \in X$ be such that $y \in S^{-1} g x$, that is, $S y=g x$. Hence, we have $e^{2 y}-1=\ln \left(1+\frac{x}{2}\right)$ and so, $y=\frac{\ln \left(1+\ln \left(1+\frac{x}{2}\right)\right)}{2}$. Therefore,

$$
g x=\ln \left(1+\frac{x}{2}\right) \geq \ln \left(1+\frac{\frac{\ln \left(1+\ln \left(1+\frac{x}{2}\right)\right)}{2}}{2}\right)=\ln (1+y)=f y .
$$

Therefore, $\alpha(g x, f y) \geq 1$.
Furthermore, $f X=g X=S X=R X=[0, \infty)$.
Define $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ as $\psi(t)=$ bt and $\varphi(t)=(b-1) t$ for all $t \in[0, \infty)$, where $1<b \leq 22$.
Using the mean value theorem, for all x and y with $\alpha(S x, R y) \geq 1$ we have,

$$
\begin{aligned}
\psi(2 d(f x, g y)) & =2 b|f x-g y|^{2} \\
& =2 b\left|\ln (1+x)-\ln \left(1+\frac{y}{2}\right)\right|^{2} \\
& \leq 2 b\left|x-\frac{y}{2}\right|^{2} \\
& \leq 2 b \frac{|2 x-y|^{2}}{4} \\
& \leq \frac{2 b}{4}\left|e^{2 x}-1-\left(e^{y}-1\right)\right|^{2} \\
& \leq|S x-R y|^{2} \\
& =d(S x, R y) \\
& =\psi(d(S x, R y))-\varphi(d(S x, R y))+\phi(N(x, y)) N(x, y)
\end{aligned}
$$

Thus, (1) is true for all $x, y \in X$ and $M(x, y)=d(S x, R y)$. Therefore, all the conditions of Theorem 2.1 are satisfied. Moreover, 0 is a coincidence point of f, g, R and S.

Corollary 2.6. Let (X, d) be an α-regular b-metric space, $f, g, R: X \rightarrow X$ be three mappings such that $f(X) \subseteq R(X)$ and $g(X) \subseteq R(X)$ and $R X$ is a b-closed subset of X. Suppose that for all elements x and y with $\alpha(R x, R y) \geq 1$, we have,

$$
\begin{equation*}
\psi(s d(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{35}
\end{equation*}
$$

where

$$
M(x, y) \in\left\{d(R x, R y), \frac{d(R x, f x)+d(R y, g y)}{2 s}, \frac{d(R x, g y)+d(R y, f x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(R x, f x), d(R x, g y), d(R y, f x), d(R y, g y)\}
$$

Then, the pairs (f, R) and (g, R) have a coincidence point z in X provided that the pairs (f, R) and (g, R) are weakly compatible and the pair (f, g) is triangular weakly α-admissible with respect to R. Moreover, if $\alpha(R z, R z) \geq 1$, then $z \in X$ is a coincidence point of f, g and R.
Corollary 2.7. Let (X, d) be an α-regular b-metric space, $f, R: X \rightarrow X$ be two mappings such that $f(X) \subseteq R(X)$ and $R X$ is a b-closed subset of X. Suppose that for all elements x and y with $\alpha(R x, R y) \geq 1$, we have,

$$
\begin{equation*}
\psi(s d(f x, f y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{36}
\end{equation*}
$$

where

$$
M(x, y) \in\left\{d(R x, R y), \frac{d(R x, f x)+d(R y, f y)}{2 s}, \frac{d(R x, f y)+d(R y, f x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(R x, f x), d(R x, f y), d(R y, f x), d(R y, f y)\} .
$$

Then, the pair (f, R) have a coincidence point z in X provided that the pair (f, R) is weakly compatible and f is triangular weakly α-admissible with respect to R.

Taking $R=S=I_{X}$ (the identity mapping on X) in Theorems 2.1 and 2.2, we obtain the following common fixed point result.
Corollary 2.8. Let (X, d) be an α-complete b-metric space and let $f, g: X \rightarrow X$ be two mappings. Suppose that for every elements $x, y \in X$ with $\alpha(x, y) \geq 1$,

$$
\begin{equation*}
\psi(s d(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y) \tag{37}
\end{equation*}
$$

where,

$$
M(x, y) \in\left\{d(x, y), d(x, f x), d(y, g y), \frac{d(x, g y)+d(y, f x)}{2 s}\right\}
$$

and

$$
N(x, y)=\min \{d(x, f x), d(x, g y), d(y, f x), d(y, g y)\} .
$$

Then, the pair (f, g) have a common fixed point z in X provided that the pair (f, g) is triangular weakly α-admissible and either,
a. f or g is α-continuous, or,
b. X is α-regular.

Remark 2.9. 1. In all obtained results in this paper, we can replace $M(x, y)$ by $O(x, y)$, where,

$$
O(x, y)=\max \left\{d(S x, R y), d(S x, f x), d(R y, g y), \frac{d(S x, g y)+d(R y, f x)}{2 s}\right\}
$$

2.In all obtained results in this paper, we can replace $N(x, y)$ by $P(x, y)$, where,

$$
P(x, y)=d(R x, f x) \times d(R x, g y) \times d(R y, f x) \times d(R y, g y)
$$

3. Consequences in Partially Ordered b-Metric Spaces

In this section, we give some common fixed point results on metric spaces endowed with an arbitrary binary relation, specially a partial order relation which can be regarded as consequences of the results presented in the previous section.

In the sequel, let (X, d) be a metric space and let \mathcal{R} be a transitive binary relation over X.
Definition 3.1. Let f and g be two selfmaps on X and \mathcal{R} be a binary relation over X. A pair (f, g) is said to be,
(i) weakly \mathcal{R}-increasing if $f x \mathcal{R g} f x$ and $g x \mathcal{R} f g x$ for all $x \in X$,
(ii) partially weakly \mathcal{R}-increasing if fxRgfx for all $x \in X$.

Definition 3.2. Let \mathcal{R} be a binary relation over X and let $f, g, h: X \rightarrow X$ are mappings such that $f X \cup g X \subseteq h X$. The ordered pair (f, g) is said to be:
(a) weakly \mathcal{R}-increasing with respect to h if and only if for all $x \in X, f x \mathcal{R} g y$ for all $y \in h^{-1}(f x)$ and gx尺 fy for all $y \in h^{-1}(g x)$,
(b) partially weakly \mathcal{R}-increasing with respect to h if $f x \mathcal{R} g y$ for all $y \in h^{-1}(f x)$.

Let \mathcal{R} be a binary relation over X and let

$$
\alpha(x, y)= \begin{cases}1, & x \mathcal{R} y \\ 0, & \text { otherwise } .\end{cases}
$$

By this assumption, we see that the above definitions are special cases from the definition of weak α admissibility and partially weak α-admissibility.

Definition 3.3. [37] Let (X, d) be a metric space. The metric space X is said to be \mathcal{R}-complete if and only if every Cauchy sequence $\left\{x_{n}\right\}$ in X with $x_{n} \mathcal{R} x_{n+1}$ for all $n \in \mathbb{N}$, converges in X.

Definition 3.4. [37] Let (X, d) be a metric space and let $T: X \rightarrow X$ be a mapping. We say that T is an \mathcal{R}-continuous mapping on (X, d), if, for given $x \in X$ and sequence $\left\{x_{n}\right\}$ with $x_{n} \mathcal{R} x_{n+1}$ for all $n \in \mathbb{N}$,

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty \text { for all } n \in \mathbb{N} \Longrightarrow T x_{n} \rightarrow T x
$$

Definition 3.5. Let (X, d) be a metric space and let $f, g: X \rightarrow X$. The pair (f, g) is said to be \mathcal{R}-compatible if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \mathcal{R} x_{n+1}$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in X$.

Definition 3.6. Let \mathcal{R} be a binary relation over X and let d be a metric on X. We say that (X, d, \mathcal{R}) is \mathcal{R}-regular if the following condition hold:
if a sequence $x_{n} \rightarrow x$ where where $x_{n} \mathcal{R} x_{n+1}$ for all $n \in \mathbb{N}$, then $x_{n} \mathcal{R} x$ for all $n \in \mathbb{N}$.
Taking $\mathcal{R}=\leq$ where \leq is a partial order on the non-empty set X, we have
Corollary 3.7. a) Theorem 2.1 of [24] is a special case of Corollary 2.3.
b) Theorem 2.2 of [24] is a special case of Corollary 2.6.
c) Corollary 2.1 of [24] is a special case of Corollary 2.8.
d) Corollary 2.2 of [24] is a special case of Corollary 2.8.
e) Theorem 2.4 of [23] is a special case of Corollary 2.4.
f) Theorem 2.6 of [23] is a special case of Corollary 2.7.
g) Corollary 2.7 of [23] is a special case of Corollary 2.3 with $R=I_{X}$.

4. Contractive Mappings on b-Metric Spaces Endowed with a Graph

Consistent with Jachymski [35], let (X, d) be a b-metric space and Δ denotes the diagonal of the Cartesian product $X \times X$. Consider a directed graph G such that the set $V(G)$ of its vertices coincides with X, and the set $E(G)$ of its edges contains all loops, that is, $E(G) \supseteq \Delta$. We assume that G has no parallel edges, so we can identify G with the pair $(V(G), E(G))$. Moreover, we may treat G as a weighted graph (see [36], p. 309) by assigning to each edge the distance between its vertices. If x and y are vertices in a graph G, then a path in G from x to y of length $N(N \in \mathbb{N})$ is a sequence $\left\{x_{i}\right\}_{i=0}^{N}$ of $N+1$ vertices such that $x_{0}=x, x_{N}=y$ and $\left(x_{i-1}, x_{i}\right) \in E(G)$ for $i=1, \ldots, N$.

Recently, some results have appeared in the setting of metric spaces which are endowed with a graph. The first result in this direction was given by Jachymski [35].

Definition 4.1. Let f and g be two selfmaps on graphic b-metric space (X, d). The pair (f, g) is said to be,
(i) weakly G-increasing if $(f x, g f x) \in E(G)$ and $(g x, f g x) \in E(G)$ for all $x \in X$,
(ii) partially weakly G-increasing if $(f x, g f x) \in E(G)$ for all $x \in X$.

Definition 4.2. Let (X, d) be a graphic b-metric space and let $f, g, h: X \rightarrow X$ are mappings such that $f X \cup g X \subseteq h X$. The ordered pair (f, g) is said to be:
(a) weakly G-increasing with respect to h if and only if for all $x \in X,(f x, g y) \in E(G)$ for all $y \in h^{-1}(f x)$ and $(g x, f y) \in E(G)$ for all $y \in h^{-1}(g x)$,
(b) partially weakly G-increasing with respect to h if $(f x, g y) \in E(G)$ for all $y \in h^{-1}(f x)$.

Let (X, d) be a graphic b-metric space and let

$$
\alpha(x, y)= \begin{cases}1, & (x, y) \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

By this assumption, we see that the above definitions are special cases from the definition of weak α admissibility and partially weak α-admissibility.

Definition 4.3. [37] Let (X, d) be a graphic metric space. (X, d) is said to be G-complete if and only if every Cauchy sequence $\left\{x_{n}\right\}$ in X with $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in \mathbb{N}$, converges in X.

Definition 4.4. [37] Let (X, d) be a graphic metric space and let $T: X \rightarrow X$ be a mapping. We say that T is an G-continuous mapping on (X, d), if, for given $x \in X$ and sequence $\left\{x_{n}\right\}$ with $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in \mathbb{N}$,

$$
x_{n} \rightarrow x \text { as } n \rightarrow \infty \text { for all } n \in \mathbb{N} \Longrightarrow T x_{n} \rightarrow T x
$$

Definition 4.5. Let (X, d) be a graphic metric space and let $f, g: X \rightarrow X$. The pair (f, g) is said to be Gcompatible if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\left(x_{n}, x_{n+1}\right) \in E(G)$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in X$.

Definition 4.6. Let \mathcal{R} be a binary relation over X and let d be a metric on X. We say that (X, d, \mathcal{R}) is \mathcal{R}-regular if the following condition hold:
if a sequence $x_{n} \rightarrow x$ where where $x_{n} \mathcal{R} x_{n+1}$ for all $n \in \mathbb{N}$, then $x_{n} \mathcal{R} x$ for all $n \in \mathbb{N}$.
Definition 4.7. Let (X, d) be a graphic b-metric space. We say that (X, d) is G-regular if the following condition holds:
if a sequence $x_{n} \rightarrow x$ with $\left(x_{n}, x_{n+1}\right) \in E(G)$, then $\left(x_{n}, x\right) \in E(G)$ for all $n \in \mathbb{N}$.
In the following theorems, we assume that:
for all $(x, y) \in E(G)$ and $(y, z) \in E(G)$, we have $(x, z) \in E(G)$.

Theorem 4.8. Let (X, G, d) be a G-complete graphic b-metric space. Let $f, g, R, S: X \rightarrow X$ be four mappings such that $f(X) \subseteq R(X)$ and $g(X) \subseteq S(X)$. Suppose that for every $x, y \in X$ such that $(S x, R y) \in E(G)$, we have,

$$
\psi(s d(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y)
$$

Let f, g, R and S are G-continuous, the pairs (f, S) and (g, R) are G-compatible and the pairs (f, g) and (g, f) are partially weakly G-increasing with respect to R and S, respectively. Then, the pairs (f, S) and (g, R) have a coincidence point z in X. Moreover, if $(S z, R z) \in E(G)$, then z is a coincidence point of f, g, R and S.

Theorem 4.9. Let (X, G, d) be a G-regular G-complete graphic b-metric space, $f, g, R, S: X \rightarrow X$ be four mappings such that $f(X) \subseteq R(X)$ and $g(X) \subseteq S(X)$ and $R X$ and $S X$ are b-closed subsets of X. Suppose that

$$
\psi(\operatorname{sd}(f x, g y)) \leq \psi(M(x, y))-\varphi(M(x, y))+\phi(N(x, y)) N(x, y)
$$

for all x and y for which $(S x, R y) \in E(G)$. Then, the pairs (f, S) and (g, R) have a coincidence point z in X provided that the pairs (f, S) and (g, R) are weakly compatible and the pairs (f, g) and (g, f) are partially weakly G-increasing with respect to R and S, respectively. Moreover, if $(S z, R z) \in E(G)$, then $z \in X$ is a coincidence point of f, g, R and S.

5. Conclusion

As we know, the concepts of α-complete metric space, α-continuity of a mapping and α-compatibility of a pair of mappings are weaker than the concepts of complete metric space, continuity of a mapping and compatibility of a pair of mappings, respectively. Therefore, Theorems 2.1 and 2.2 are more general than the corresponding results in [38].

Acknowledgement. The third author is grateful to KACST, Riyad, for supporting research project ARP-32-34.

References

[1] M. Abbas, T. Nazir and S. Radenović, Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Letter., 24 (2011), 1520-1526.
[2] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Mathematica Slovaca, 4 (2014), 941-960.
[3] A. Aghajani, S. Radenović, J.R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S, T)contractive condition in partially ordered metric spaces, Appl. Math. Comput. 218 (2012) 5665-5670.
[4] M. Akkouchi, Common fixed point theorems for two selfmappings of a b-metric space under an implicit relation, Hacettepe Journalof Mathematics and Statistics,Volume 40 (6) (2011), 805-810.
[5] Ya. I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds), New Results in Operator Theory, in: Advances and Appl., vol. 98, Birkhäuser Verlag, Basel. 1997, pp. 7-22.
[6] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two $b-$ metrics, Studia Univ., "BabesBolyai", Mathematica, Volume LIV, Number 3, (2009).
[7] R.K. Bisht and N. Shahzad, Faintly compatible mappings and common fixed points, Fixed Point Theory and Applications, 2013, 2013:156.
[8] L. Ćirić, N. Hussain, and N. Cakic, Common fixed points for Ćirić type f-weak contraction with applications, Publ. Math. Debrecen, 76/1-2 (2010), 31-49.
[9] L. Ćirić, M. Abbas, R. Saadati, and N. Hussain, Common fixed points of almost generalized contractive mappings in ordered metric spaces, Applied Mathematics and Computation, 217 (2011) 5784-5789.
[10] S. Czerwik, Nonlinear set-valued contraction mappings in $b-$ metric spaces, Atti Sem. Mat. Fis. Univ. Modena., 46 (2) (1998), 263-276.
[11] J. Esmaily, S. M. Vaezpour and B.E. Rhoades, Coincidence point theorem for generalized weakly contractions in ordered metric spaces, Appl. Math. Comput., 219 (2012) 1536-1548.
[12] N. Hussain, D. Dorić, Z. Kadelburg and S. Radenović, Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl, doi:10.1186/1687-1812-2012-126, 2012.
[13] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl, 62 (2011), 1677-1684.
[14] N. Hussain, Reza Saadati, Ravi P Agarwal, On the topology and wt-distance on metric type spaces, Fixed Point Theory and Applications 2014, 2014:88.
[15] N. Hussain, M.H. Shah, and S. Radenovic, Fixed points of weakly contractions through occasionally weak compatibility, J. Computational Analysis and Applications, 13(2011), 532-543.
[16] N. Hussain, M. A. Kutbi and P.Salimi, Fixed point theory in α-complete metric spaces with applications, Abstract and Applied Analysis, Vol. 2014, Article ID 280817, 11 pp.
[17] N. Hussain, M. A. Kutbi, S. Khaleghizadeh and P. Salimi, Discussions on recent results for α - ψ-contractive mappings, Abstract and Applied Analysis, Vol. 2014, Article ID 456482, 13 pp.
[18] N. Hussain, M. Arshad, A. Shoaib and Fahimuddin, Common Fixed Point results for α - ψ-contractions on a metric space endowed with graph, Journal of Inequalities and Applications, 2014, 2014:136.
[19] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (1986) 771-779.
[20] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4(1996), 199-215.
[21] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Analysis, 73 (2010) 3123-3129.
[22] M. S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distancces between the points, Bull. Aust. Math. Soc., 30 (1984) 1-9.
[23] H. K. Nashine and B. Samet, Fixed point results for mappings satisfying (ψ, φ)-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 2201-2209.
[24] W, Shatanawi and B. Samet, On (ψ, ϕ)-weakly contractive condition in partially ordered metric spaces, Comput. Math. Appl., 62 (2011) 3204-3214.
[25] J. J. Nieto and R. R. López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223-239.
[26] J. J. Nieto, R. L. Pouso and R. Rodríguez-López, Fixed point theorems in ordered abstract sets, Proc. Amer. Math. Soc., 135 (2007), 2505-2517.
[27] J. J. Nieto and R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), 23 (2007), 2205-2212.
[28] M. O. Olatinwo, Some results on multi-valued weakly jungck mappings in b-metric space, Cent. Eur. J. Math, 6 (4) (2008), 610-621.
[29] M. Pacurar, Sequences of almost contractions and fixed points in b - metric spaces, Analele Universitatii de Vest, Timisoara Seria Matematica Informatica XLVIII, 3 (2010), 125-137.
[30] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132 (2004), 1435-1443.
[31] P.Salimi, A.Latif, N.Hussain, Modified $\alpha-\psi$-contractive mappings with applications, Fixed Point Theory and Applications 2013, 2013:151.
[32] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75 (2012) $2154-2165$.
[33] Q. Zhang and Y. Song, Fixed point theory for generalized φ-weak contractions, Appl. Math. Letter, 22 (2009), 75-78.
[34] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683-2693.
[35] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 1 (136) (2008) 1359-1373.
[36] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Inc., New Jersey, 1997.
[37] M. A. Kutbi and W. Sintunavarat, On new fixed point results for (α, ψ, ξ)-contractive multi-valued mappings on α-complete metric spaces and their consequences, Fixed Point Theory and Applications, 2015, 2015:2.
[38] J.R Roshan, V. Parvaneh, S.Radenović and Miloje Rajović, Some coincidence point results for generalized (ψ, φ)-weakly contractions in ordered b-metric spaces, Fixed Point Theory and Applications (2015) 2015:68.

[^0]: 2010 Mathematics Subject Classification. Primary 47H10; Secondary 54H25.
 Keywords. b-metric space, coincidence point, weakly increasing mapping.
 Received: 08 October 2014; Accepted: 17 March 2015
 Communicated by Dragan S. Djordjević
 Email addresses: lciric@rcub.bg.ac.rs (Ljubomir Ćirić), zam.dalahoo@gmail.com (Vahid Parvaneh), nhusain@kau. edu.sa (Nawab Hussain)

