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Abstract. Based on a singular value study, lower and upper bounds for the condition number of the
matrix which generates search directions of the Hager-Zhang conjugate gradient method are obtained.
Then, based on the insight gained by our analysis, a modified version of the Hager-Zhang method is
proposed, using an adaptive switch form the Hager-Zhang method to the Hestenes-Stiefel method when
the mentioned condition number is large. A brief global convergence analysis is made for the uniformly
convex objective functions. Numerical comparisons between the implementations of the proposed method
and the Hager-Zhang method are made on a set of unconstrained optimization test problems of the CUTEr
collection, using the performance profile introduced by Dolan and Moré. Comparative testing results are
reported.

1. Introduction

Conjugate gradient (CG) methods comprise a class of unconstrained optimization algorithms charac-
terized by low memory requirements and strong global convergence properties [4, 12] which made them
popular for engineers and mathematicians engaged in solving large-scale problems in the following form:

min
x∈Rn

f (x),

where f : Rn
→ R is a smooth nonlinear function and its gradient is available. The iterative formula of a

CG method is given by

x0 ∈ Rn,
xk+1 = xk + sk, sk = αkdk, k = 0, 1, ..., (1)

where αk is a steplength to be computed by a line search procedure [20], and dk is the search direction
defined by

d0 = −10,
dk+1 = −1k+1 + βkdk, k = 0, 1, ..., (2)
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where 1k = ∇ f (xk), and βk is a scalar called the CG (update) parameter. The steplength αk in the CG methods
is often determined to satisfy some versions of Wolfe conditions [22]. The (standard) Wolfe conditions are

f (xk + αkdk) − f (xk) ≤ δαk∇ f (xk)Tdk, (3)
∇ f (xk + αkdk)Tdk ≥ σ∇ f (xk)Tdk, (4)

where 0 < δ < σ < 1. Also, the strong Wolfe conditions consist of (3) and the following strengthened version
of (4):

|∇ f (xk + αkdk)Tdk| ≤ −σ∇ f (xk)Tdk. (5)

Different choices for the CG parameter lead to different CG methods (see [12] and the references therein).
One of the recent essential CG methods has been proposed by Hager and Zhang [10], with the following
CG parameter:

βHZ
k =

yT
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dT
k yk︸ ︷︷ ︸
βHS
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−2
||yk||
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dT
k yk
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, (6)

where yk = 1k+1 − 1k, and βHS
k is the CG parameter proposed by Hestenes and Stiefel [13]. Also, ||.|| stands

for the Euclidean norm. The CG parameter βHZ
k is well-defined if the line search ensures that dT

k yk , 0, as
guaranteed by the (strong) Wolfe conditions.

As an important property, the HZ method satisfies the sufficient descent condition in the sense that

dT
k 1k ≤ −

7
8
||1k||

2, k = 0, 1, ...,

independent of the line search and the objective function convexity [1], and also, the method is globally
convergent when the line search fulfills the Wolfe or the Goldstien conditions [20]. In the perspective of
the numerical performance, the HZ method with an approximate Wolfe conditions outperforms the two
efficient unconstrained optimization algorithms of the limited memory BFGS (L-BFGS) method proposed
by Liu and Nocedal [14], and the PRP+ method, i.e. a CG method with the nonnegative restriction of the
CG parameter proposed by Polak, Ribière and Polyak [17, 18], which was firstly proposed in [19] and then
studied in [8]. Moreover, the HZ method can be considered as an adaptive version of the nonlinear CG
method proposed by Dai and Liao [6] as well as a member of the two-parameter family of descent CG
methods proposed by Babaie-Kafaki and Ghanbari [2].

It is remarkable that, from (2) and (6), search directions of the HZ method can be written as:

dk+1 = −Qk+11k+1, k = 0, 1, ...,

where

Qk+1 = I −
skyT

k

sT
k yk

+ 2
||yk||

2

sT
k yk

sksT
k

sT
k yk

. (7)

So, the HZ method can be considered as a quasi-Newton method [20] in which the inverse Hessian in each
iteration is approximated by the nonsymmetric matrix Qk+1. Since Qk+1 is determined based on a rank-two
update, its determinant can be computed by

det(Qk+1) = 2
||sk||

2
||yk||

2

(sT
k yk)2

, (8)

(see equality (1.2.70) of [20]) and so, from Cauchy-Schwarz inequality we have

det(Qk+1) ≥ 2,
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which ensures that Qk+1 is nonsingular.
Here, based on a singular value study on the matrix Qk+1, we make a modification on the HZ method.

The remainder of this work is organized as follows. In Section 2, we propose our adaptive nonlinear CG
method and discuss its global convergence. In Section 3, we numerically compare our method with the HZ
method and report comparative testing results. Finally, we make conclusions in Section 4.

2. An Adaptive Nonlinear Conjugate Gradient Method

In this section, after computing the singular values of the matrix Qk+1 defined by (7), we study its
condition number and consequently, we propose an adaptive CG method as a modified version of the HZ
method.

One essential factor which plays an important role in the sensitivity analysis of a numerical problem
related to a matrix is the matrix condition number. For an arbitrary nonsingular matrix A, the scalar κ(A)
defined by

κ(A) = ||A||||A−1
||,

is called the condition number of A. The matrix A with a large condition number is called an ill-conditioned
matrix since instability may occur in the computations related to this matrix. Here, the following theorem
is needed.

Theorem 2.1. [21] Let A ∈ Rn×n be a nonsingular matrix with the singular values σ1 ≥ σ2 ≥ ... ≥ σn > 0. Then

κ(A) =
σ1

σn
. (9)

To compute the singular values of Qk+1, firstly note that since sT
k yk , 0, there exists a set of mutually

orthonormal vectors {ui
k}

n−2
i=1 such that

sT
k ui

k = yT
k ui

k = 0, i = 1, 2, ...,n − 2,

which leads to

Qk+1ui
k = QT

k+1ui
k = ui

k, i = 1, 2, ...,n − 2.

That is, Qk+1 has n − 2 singular values being equal to 1. Now, we find the two remaining singular values of
Qk+1 namely σ−k and σ+

k .
Since ||Qk+1||

2
F is equal to tr(QT

k+1Qk+1), and also, is equal to sum of squares of the singular values of Qk+1,
we can write

tr(QT
k+1Qk+1) = n − 2 +
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Also, from (8) and since |det(A)| =
n∏

i=1

σi, we have
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Hence,

σ−k σ
+
k = 2
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. (11)

Now, from (10) and (11), after some algebraic manipulations we obtain the singular values σ−k and σ+
k as

follows:
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In what follows, we obtain lower and upper bounds for the singular values σ−k and σ+
k . In this context,

note that the singular value σ−k can be written as:
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Therefore, from Cauchy-Schwarz inequality we can write
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Also, from (10), (11), and Cauchy-Schwarz inequality we have

σ−k = 2
||sk||

2
||yk||

2

(sT
k yk)2

1
σ+

k
≥ 2

||sk||
2
||yk||

2

(sT
k yk)2

1√
σ−

2

k + σ+2

k

=
2||sk||

2
||yk||

2√
||sk||

2||yk||
2(sT

k yk)2 + 4||sk||
4||yk||

4

≥
2
√

5
≈ 0.8944. (14)

Hence, from (13) and (14) we have

2
√

5
≤ σ−k ≤

4
3
. (15)

For the singular value σ+
k , although for general functions from Cauchy-Schwarz inequality we have the

following lower bound:

σ+
k ≥ 2, (16)

here it is possible to obtain an upper bound when the function is uniformly convex. So, the following
theorem is now necessary.

Theorem 2.2. [20] Let S ⊂ Rn be a nonempty open convex set and consider the differentiable function f : S → R.
The function f is uniformly convex on S if and only if its gradient is uniformly monotone on S, i.e. there exists a
positive constant µ such that(

∇ f (x) − ∇ f (y)
)T (x − y) ≥ µ||x − y||2, ∀x, y ∈ S. (17)
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In our analysis, we need to make the following standard assumptions on the objective function.

Assumptions 2.1. The level setL = {x| f (x) ≤ f (x0)}, with x0 to be the starting point of the iterative method (1)-(2),
is bounded. Also, in a neighborhoodN ofL, f is continuously differentiable and its gradient is Lipschitz continuous;
that is, there exists a positive constant L such that

||∇ f (x) − ∇ f (y)|| ≤ L||x − y||, ∀x, y ∈ N . (18)

Note that these assumptions imply that there exists a positive constant γ such that

||∇ f (x)|| ≤ γ, ∀x ∈ L (see Proposition 3.1 of [3]).

Since search directions of the HZ method are descent directions, inequality (3) ensures that the sequence
{xk}k≥0 generated by the HZ method is a subset of the level setL. Hence, if f is a uniformly convex function
on the neighborhoodN of L, then from (17) we have

sT
k yk ≥ µ||sk||

2. (19)

Also, from (18) we have

||yk|| ≤ L||sk||. (20)

Now, from (12), (19) and (20), we get
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So, from (16) and (21) we have

2 ≤ σ+
k ≤

5
2

L2

µ2 . (22)

As mentioned in Section 1, the HZ method can be considered as a quasi-Newton method in which
the nonsingular matrix Qk+1 is used to approximate the inverse Hessian in each iteration. Numerical
performance of the quasi-Newton methods is much influenced by condition number of the successive
approximations of the (inverse) Hessian [20]. As an important result, from (9), (15) and (22), we conclude
that the condition number of Qk+1 is bounded in the sense that

3
2
≤ κ(Qk+1) ≤

5
√

5
4

L2

µ2 ≈ 2.7951
L2

µ2 , ∀k ≥ 0. (23)

Here, by the following approximations for the uniformly convex function f :

L ≈ max
x∈L
||∇

2 f (x)||,

µ ≈ min
x∈L
||∇

2 f (x)||,

which are obtained based on the mean-value theorem, i.e.,

yk = ∇2 f (ξkxk + (1 − ξk)xk+1)sk,
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for some ξk ∈ (0, 1), it can be stated that if µ ≈ L, or equivalently, the Hessian ∇2 f is not ill-conditioned on
the level set L, then from (23) the matrix Qk+1 is a well-conditioned matrix and as a result, the HZ method
have a nice numerical behavior.

Now, based on the insight gained by the above singular value analysis, we make a modification on the
HZ method and propose a nonlinear CG method in which the CG parameter is adaptively switched from
βHZ

k to βHS
k when encountering to a point xk with an ill-conditioned Hessian ∇2 f (xk).

Since inequality (15) shows that σ−k is bounded below, κ(Qk+1) is large when σ+
k is large. Also, note that

from (21) it can be seen that a large value of
||sk||

2
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2

(sT
k yk)2

, arisen from the third term of Qk+1 in (7), makes the

value of σ+
k to be a large number, or equivalently, makes Qk+1 to be an ill-conditioned matrix. Motivated by

this, we suggest a modified form of Qk+1 as follows:
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,

where tk ∈ [0, 1] is a scalar embedded to control the values of κ(QM
k+1), for all k ≥ 0. (Recently, similar study

on the Perry’s CG method [16] has been made by Liu et al. [15].) Here, tk is computed by

tk =


1,

||sk||
2
||yk||

2

(sT
k yk)2

< τ,

0, otherwise,

(24)

with a positive constant τ. In other words, we propose an adaptive version of the HZ method, namely
AHZ, with the following CG parameter:

βAHZ
k = βHS

k − 2tk
||yk||

2

dT
k yk

dT
k 1k+1

dT
k yk

,

in which tk is computed by (24). Note that if tk = 1, then βAHZ
k = βHZ

k , and if tk = 0, then βAHZ
k = βHS

k . Hence,
βAHZ

k can be considered as an extension of βHZ
k and βHS

k . Also, since the AHZ method can be regarded
as an adaptive version of the Dai-Liao method [6], if the search directions are descent directions and the
steplengthes are determined to satisfy the strong Wolfe conditions (3) and (5), then Theorem 3.3 of [6]
ensures global convergence of the method for uniformly convex objective functions.

Remark 2.1. Recently, Dai and Kou [5] proposed an efficient family of CG methods with the following parameter:

βk(τk) = βHS
k −

τk +
||yk||

2

sT
k yk
−
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||sk||
2

 1T
k+1sk

dT
k yk

,

where τk is a parameter corresponding to scaling factor in the scaled memoryless BFGS method [20] for which an
effective choice has been given as follows:

τk =
sT

k yk

||sk||
2 . (25)

Considering the similarity between the CG parameter βk(τk) with the choice (25) for τk and the CG parameter βHZ
k ,

a similar singular value analysis can be made for the Dai-Kou method and consequently, an adaptive version of the
Dai-Kou can be proposed.
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3. Numerical experiments

Here, we present some numerical results obtained by applying C++ implementations of the CG methods
of AHZ and HZ. The codes were run on a computer with 3.2 GHz of CPU, 1 GB of RAM and Centos 6.2
server Linux operation system. Furthermore, the experiments were performed on a set of 145 unconstrained
optimization test problems of the CUTEr collection [9], with default dimensions as given in Hager’s home
page: ‘http://www.math.ufl.edu/∼hager/’.

In our experiments, we used the approximate Wolfe conditions proposed by Hager and Zhang [10, 11]
in the line search procedure, with the same parameter values as suggested in [11]. For the AHZ method,
among the different values τ ∈ {5k}30

k=1 in (24), we set τ = 70 because of its promising numerical results.
Although the descent condition may not always hold for the AHZ method, uphill search direction seldom
occurred in our experiments; when encountering, we restarted the algorithm with dk = −1k [6]. Also, all
attempts to solve the test problems were terminated when ||1k||∞ < 10−6(1 + | f (xk)|).

Efficiency comparisons were made using the performance profile introduced by Dolan and Moré [7],
on the CPU time and the total number of function and gradient evaluations [11], here denoted by NT and
defined by NT = N f + 3N1, where N f and N1 respectively denote the number of function and gradient
evaluations. Performance profile gives, for every ω ≥ 1, the proportion p(ω) of the test problems that each
considered algorithmic variant has a performance within a factor of ω of the best. Comparisons results
have been demonstrated by Figures 1 and 2. As the figures show, the AHZ method outperforms the HZ
method both in the perspectives of the total number of function and gradient evaluations, and the CPU
time. Thus, our modified version of the HZ method turns out to be practically efficient.

Figure 1: Total number of function and gradient evaluations performance profiles for AHZ and HZ
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Figure 2: CPU time performance profiles for AHZ and HZ

4. Conclusions

In order to control the condition number of the matrix which generates search directions of the nonlinear
conjugate gradient method proposed by Hager and Zhang [10], we suggested a modified version of
the Hager-Zhang method based on an adaptive switch form the Hager-Zhang method to the Hestenes-
Stiefel method [13] when the mentioned condition number is large. Under proper conditions, we briefly
showed that our method is globally convergent for uniformly convex objective functions. Using a set
of unconstrained optimization test problems of the CUTEr collection [9], a numerical comparison of the
implementations of our adaptive method (AHZ) and the Hager-Zhang method (HZ) has been made. The
results showed that our adaptive approach seems to be practically effective.
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