

Planar Torsion Graph of Modules

P. Malakooti Rad ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Islamic Azad University, Qazvin Branch, Qazvin, Iran.

Abstract

Let R be a commutative ring with identity. Let M be an R-module and $T(M)^{*}$ be the set of nonzero torsion elements. The set $T(M)^{*}$ makes up the vertices of the corresponding torsion graph, $\Gamma_{R}(M)$, with two distinct vertices $x, y \in T(M)^{*}$ forming an edge if $A n n(x) \cap A n n(y) \neq 0$. In this paper we study the case where the torsion graph $\Gamma_{R}(M)$ is planar.

1. Introduction

The idea of associating a graph with the zero-divisors of a commutative ring was introduced by Beck in [10], where the author talked about the colorings of such graphs. He lets every elements of R is a vertex in the graph, and two vertices x, y are adjacent if and only if $x y=0$. In [6], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are non-zero zero-divisors while $x-y$ is an edge whenever $x y=0$. Anderson and Badawi also introduced and investigated total graph of commutative ring in $[2,3]$. The concept of zero-divisor graph has been extended to non-commutative rings by Redmond [18], and has been extended to module by Ghalandarzadeh and Malakooti in [13]. The zero-divisor graph of a commutative ring and has been studied extensively by several authors [4, 5, 7, 9, 14-16].

Let $x \in M$. The residual of $R x$ by M denoted by $[x: M]=\{r \in R \mid r M \subseteq R x\}$. The annihilator of an R-module M, denoted by $A n n_{R}(M)=[0: M]$. If $m \in M$, then $\operatorname{Ann}(m)=\{r \in R \mid r m=0\}$. Let $T(M)=\{m \in M \mid A n n(m)=0\}$. It is clear that if R is an integral domain, then $T(M)$ is a submodule of M, which is called torsion submodule of M. If $T(M)=0$, then the module M is said torsion-free, and it is called a torsion module if $T(M)=M$.

An R-module M is a multiplication module if for every R-submodule K of M there is an ideal I of R such that $K=I M$. Note that $I \subseteq[N: M]$, hence $N=I M \subseteq[N: M] M \subseteq N$. So $N=[N: M] M$. An R-module M is called a cancellation module if $I M=J M$ for any ideals I and J of R implies that $I=J$. Also, an R-module M is a weak-cancellation module if $I M=J M$ for any ideals I and J of R implies that $I+A n n(M)=J+A n n(M)$. Finitely generated multiplication modules are weak cancellation, Theorem 3 [1].

Let R be a commutative ring with identity and M be a unitary R-module. In this paper, we investigate the concept of torsion-graph for module that was introduced by Malakooti and Yassemi in [17]. Here the torsion graph $\Gamma_{R}(M)$ of M is a simple graph whose vertices are non-zero torsion elements of M and two different elements x, y are adjacent if and only if $\operatorname{Ann}(x) \cap \operatorname{Ann}(y) \neq 0$. Thus $\Gamma_{R}(M)$ is an empty graph if and only if M is a torsion-free R-module. Clearly if R is a domain or $\operatorname{Ann}(M) \neq 0$, then $\Gamma_{R}(M)$ is complete. This study helps to illuminate the structure of $T(M)$, for example, let $M \cong M_{1} \times M_{2}$, if $\Gamma_{R}(M)$ is a planar graph,

[^0]then $|T(M)|=4$. Also, If M is a torsion module and $\Gamma_{R}(M)$ is a planar graph, then M is both Noetherian and Artinian.

Recall that a simple graph is finite if its vertices set is finite, and we use the symbol $\left|\Gamma_{R}(M)\right|$ to denote the number of vertices in graph $\Gamma_{R}(M)$. Also, a graph G is connected if there is a path between any two distinct vertices. The distance, $d(x, y)$ between connected vertices x, y is the length of the shortest path from x to $y,(d(x, y)=\infty$ if there is no such path). An isolated vertex is a vertex that has no edges incident to it. A complete r-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph (2-partite graph) with part sizes m and n is denoted by $K_{m, n}$. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We use K_{n} for the complete graph with n vertices. The complement \bar{G} of G is the graph with vertex set $V(\bar{G})=V(G)$, and $E(\bar{G})=\{u v: u v \notin E(G)\}$. The complement of a complete graph is the null graph. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A remarkably simple characterization of planar graphs was given by Kuratowski in [11], p.153. Kuratowski's Theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$.

One may address two major problems in this area: characterization of the planar torsion graphs and realization of the connection between the structures of a module and the corresponding graph. The organization of this paper is as follows:

In section 2, we study the planar torsion graph of multiplication module, and show that if the torsion graph of multiplication R-module M is planar, then M is both Noetherian and Artinian.

In section 3, we study the number of maximal submodule of multiplication modules. It is shown that if $\Gamma_{R}(M)$ is a planar graph, then $|\operatorname{Max}(M)| \leq 4$. Also, we show that, if M be a multiplication R-module with $|\operatorname{Max}(M)| \neq 1$ and $\Gamma_{R}(M)$ is a planar graph, then $M \cong M_{1} \oplus M_{2}$

Throughout the paper, $\operatorname{Max}(M)$ is a set of the maximal submodules H of M, we use symbol $|\operatorname{Max}(M)|$ to denote the number of maximal submodule of M. As a consequence of Theorem 2.5 [12], for any non-zero multiplication R-module $\operatorname{Max}(M) \neq \emptyset$. Also, let $J(R)$ be the Jacobson radical of R and

$$
J(M):=\cap_{H \in \operatorname{Max}(M)} H
$$

We follow standard notation and terminology from graph theory [11] and module theory [8].

2. Planar Torsion Graph

This section is concerned with some basic and important results in the theory of planar torsion graphs over a module.

Lemma 2.1. Let M be a multiplication R-module. If $\Gamma_{R}(M)$ is a planar graph, then $\operatorname{Ann}(N) \neq 0$ for all prime submodules N of M.

Proof. Let N be a prime submodule of M such that $\operatorname{Ann}(N)=0$. So there exists $0 \neq x \in M$ such that $x \notin H$. If $x=\alpha x$ for some $\alpha \in[N: M]$, then $(1-\alpha) x=0 \in N$. Thus $(1-\alpha) \in[N: M]$, which is a contradiction. Hence $x \neq \alpha x$ for all $\alpha \in[N: M]$. Suppose $[N: M]^{i} x=[N: M]^{j} x$ for all integer $0<i<j$, then $R=[N: M]^{j-i}+A n n\left([N: M]^{i} x\right)$. Let $r[N: M]^{i} x=0$, thus $r[N: M]^{i-1}[x: M] N=0$. Since $[N: M] M=N$ and $\operatorname{Ann}(N)=0$, we have $r[x: M]=0$. Therefore

$$
R x=[N: M]^{j-i} x+\operatorname{Ann}\left([N: M]^{i} x\right) x=[N: M]^{j-i} x \subseteq[N: M] x \subseteq R x
$$

Which is a contradiction, and so $[N: M]^{i} x \neq[N: M]^{j} x$ for all $0<i<j$. Hence

$$
[N: M]^{4} x \subset[N: M]^{3} x \subset[N: M]^{2} x \subset[N: M] x \subset R x
$$

then there are five distinct vertices that form K_{5} as an induced subgraph, which is a contradiction. This contradiction leads to the conclusion that $\operatorname{Ann}(N) \neq 0$.

Proposition 2.2. Let M be an R-module with $[x: M] \neq 0$ for some $x \in T(M)^{*} . \Gamma_{R}(M)$ is null if and only if $M \cong M_{1} \oplus M_{2}$ with $|M| \leq 4$.

Proof. Let x be a vertex of $\Gamma_{R}(M)$ such that $[x: M] \neq 0$. Since $\Gamma_{R}(M)$ is null, one can easily check that $R x=\{0, x\}$. Hence $x=\alpha x$ or $\alpha x=0$ for all non-zero elements $\alpha \in[x: M]$. If $x=\alpha x$, then $R=\operatorname{Ra}+\operatorname{Ann}(x)$. Thus $M=R x+\operatorname{Ann}(x) M$. Suppose that $y \in R x \cap A n n(x) M$. Then $y=r x=\sum_{i=1}^{n} \alpha_{i} m_{i}$ for some $r \in R$, $\alpha_{i} \in \operatorname{Ann}(x)$ and $m_{i} \in M$. Hence

$$
y=r x=r \alpha x=\sum_{i=1}^{n} \alpha_{i} m_{i} \alpha \subseteq A n n(x) x=0 .
$$

Therefore $M=R x \oplus \operatorname{Ann}(x) M$ with $|R x|=2$. Let $y, z \in \operatorname{Ann}(x) M$. So $0 \neq \alpha \in \operatorname{Ann}(z) \cap \operatorname{Ann}(y)$, implies that $y=z$ or $y=0$ or $z=0$. Therefore $|A n n(x) M|=2$. Suppose $\alpha x=0$ and $0 \neq m \in M$. If $\alpha m=0$, then $\alpha \in \operatorname{Ann}(x) \cap \operatorname{Ann}(m)$. Hence $m=x \in R x$. Now if $\alpha m \neq 0$, since $\alpha m \in R m=\{0, m\}$, we have $m=\alpha m \in R x=\{0, x\}$, so $M=R x$ with $|R x|=2$.

Corollary 2.3. Let M be a multiplication R-module. $\Gamma_{R}(M)$ is null if and only if $M \cong M_{1} \oplus M_{2}$ with $\left|M_{1}\right| \leq 2$ and $\left|M_{2}\right| \leq 2$.

Let M_{1} be an R_{1}-module and M_{2} an R_{2}-module; then $M=M_{1} \times M_{2}$ is an $R=R_{1} \times R_{2}$ module with this multiplication $R \times M \longrightarrow M$, defined by $\left(r_{1}, r_{2}\right)\left(m_{1}, m_{2}\right)=\left(r_{1} m_{1}, r_{2} m_{2}\right)$.
Theorem 2.4. $\Gamma_{R}\left(M_{1} \times M_{2}\right)$ is planar if and only if one of $\Gamma_{R}\left(M_{1}\right)$ or $\Gamma_{R}\left(M_{2}\right)$ is empty and another is null.
Proof. Let $\Gamma_{R}\left(M_{1}\right)$ not be null and $\Gamma_{R}\left(M_{2}\right)$ not be empty. So there exist $x_{1}, x_{2} \in T\left(M_{1}\right)^{*}$ and $y \in T\left(M_{2}\right)^{*}$ such that x_{1} is adjacent to x_{2}. Hence there is $0 \neq s \in \operatorname{Ann}\left(x_{1}\right) \cap \operatorname{Ann}\left(x_{2}\right)$. It follows that

$$
(0, s) \in \operatorname{Ann}\left(\left(x_{1}, 0\right)\right) \cap \operatorname{Ann}\left(\left(x_{2}, 0\right)\right) \cap \operatorname{Ann}\left(\left(x_{1}, y\right)\right) \cap \operatorname{Ann}\left(\left(x_{2}, y\right)\right) \cap \operatorname{Ann}((0, y)) .
$$

So $\Gamma_{R}\left(M_{1} \times M_{2}\right)$ has a K_{5} as an induced subgraph, which is a contradiction. Therefore one of $\Gamma_{R}\left(M_{1}\right)$ or $\Gamma_{R}\left(M_{2}\right)$ is empty and another is null.

As an immediate consequence, we obtain the following results.
Corollary 2.5. If $\Gamma_{R}\left(M_{1} \times M_{2}\right)$ is planar, then $|T(M)|=4$.
Corollary 2.6. $\Gamma_{R}\left(M_{1} \times M_{2} \times M_{3}\right)$ is planar if and only if M_{i} is a simple R_{i} module for $i \in\{1,2,3\}$.
Proof. Let $\Gamma_{R}\left(M_{1} \times M_{2} \times M_{3}\right)$ be a planar graph and M_{3} not be a simple R_{3} - module. So there exists $0 \neq N<M_{3}$. Suppose $0 \neq x \in M_{3}$ such that $x \notin N$ and let $y \in N$. By Theorem $2.4, \Gamma_{R}\left(M_{2} \times M_{3}\right)$ is null or empty. But $(1,0) \in \operatorname{Ann}((0, x)) \cap \operatorname{Ann}((0, y))$, which is a contradiction. Therefore M_{i} is a simple R_{i} module for $i \in\{1,2,3\}$.

Theorem 2.7. Let M be a multiplication R-module. If $\Gamma_{R}(M)$ is a planar graph, then M is both Noetherian and Artinian.

Proof. Let $N_{1} \subset N_{2} \subset N_{3} \subset N_{4} \subset N_{5}$ be a chine of nontrivial proper submodule of M. Then there is distinct element $x_{i} \in N_{i}, 1 \leq i \leq 5$. By Theorem 2.5 of [12], M has a maximal submodule H such that $N_{5} \subseteq H$. Then $\operatorname{Ann}(H) \subseteq \operatorname{Ann}\left(N_{5}\right)$ and by Lemma $2.1,0 \neq \operatorname{Ann}(H) \subseteq \operatorname{Ann}\left(N_{5}\right)$. Thus $\operatorname{Ann}\left(x_{i}\right) \cap \operatorname{Ann}\left(x_{j}\right) \neq 0$ for all distinct element $i, j \in\{1,2, \ldots, 5\}$. So $x_{i}, 1 \leq i \leq 5$ form K_{5} as an induced subgraph, which is a contradiction. Therefore M is both Noetherian and Artinian.

Corollary 2.8. Let M be a multiplication R-module. If $\Gamma_{R}(M)$ is a planar graph, then M is cyclic.
Proof. Let $\Gamma_{R}(M)$ be a planar graph. By Proposition 2.7, M is an Artinian module. And so by Corollary 2.9 of [12], M is a cyclic R-module.

3. $\Gamma_{R}(M)$ and Maximal Submodules of Multiplication Module

Our theorems in this section are somewhat more delicate in their characterization of a multiplication R-module.

Proposition 3.1. Let M be a multiplication R-module. If $\Gamma_{R}(M)$ is a planar graph, then $1 \leq|\operatorname{Max}(M)| \leq 4$.
Proof. Let $\Gamma_{R}(M)$ be a planar graph. Suppose $|\operatorname{Max}(M)| \geq 5$ and $H_{1}, H_{2}, \ldots H_{5}$ be distinct maximal submodules of M, such that $H_{1} \cap H_{2} \cap H_{3} \cap H_{4}=0$. Then $\left[H_{1}: M\right]\left[H_{2}: M\right]\left[H_{3}: M\right] H_{4}=0 \subseteq H_{5}$. Sine every maximal submodule of multiplication modules is prime, we have $\left[H_{1}: M\right]\left[H_{2}: M\right]\left[H_{3}: M\right] \subseteq\left[H_{5}: M\right]$. One can easily check that $\left[H_{5}: M\right]$ is a prime ideal of R. Hence $\left[H_{i}: M\right]=\left[H_{5}: M\right]$ for some $i \in\{1,2,3,4\}$. It follows that $H_{i}=H_{5}$ for some $i \in\{1,2,3,4\}$, which is a contradiction. Therefore $H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \neq 0$. Hence

$$
H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \subset H_{1} \cap H_{2} \cap H_{3} \subset H_{1} \cap H_{2} \subset H_{1}
$$

and

$$
H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \subset H_{1} \cap H_{2} \cap H_{4} \subset H_{1} \cap H_{2} \subset H_{1} .
$$

Thus there are distinct elements $x_{1} \in H_{1}, x_{2} \in H_{1} \cap H_{2}, x_{3} \in H_{1} \cap H_{2} \cap H_{3}, x_{4} \in H_{1} \cap H_{2} \cap H_{4}$ and $x_{5} \in H_{1} \cap H_{2} \cap H_{3} \cap H_{4}$. By Lemma 2.1, $\operatorname{Ann}\left(H_{1}\right) \neq 0$. It implies that $x_{i}, 1 \leq i \leq 5$ form K_{5} as an induced subgraph, which is a contradiction. Therefore $|\operatorname{Max}(M)| \leq 4$.

Proposition 3.2. Let M be a multiplication R-module with $|\operatorname{Max}(M)|=4$ and $\Gamma_{R}(M)$ be planar then $M \cong M_{1} \oplus M_{2}$.
Proof. Let $H_{i}, 1 \leq i \leq 4$ be distinct maximal submodules of M. Suppose that $H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \neq 0$. It is clear that

$$
H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \subset H_{1} \cap H_{2} \cap H_{3} \subset H_{1} \cap H_{2} \subset H_{1}
$$

and

$$
H_{1} \cap H_{2} \cap H_{3} \cap H_{4} \subset H_{1} \cap H_{2} \cap H_{4} \subset H_{1} \cap H_{2} \subset H_{1}
$$

Thus there are distinct elements $x_{1} \in H_{1}, x_{2} \in H_{1} \cap H_{2}, x_{3} \in H_{1} \cap H_{2} \cap H_{3}, x_{4} \in H_{1} \cap H_{2} \cap H_{4}$ and $x_{5} \in H_{1} \cap H_{2} \cap H_{3} \cap H_{4}$. By Lemma 2.1, $\operatorname{Ann}\left(H_{1}\right) \neq 0$. It follows that $x_{i}, 1 \leq i \leq 5$ form K_{5} as an induced subgraph, which is a contradiction. So $H_{1} \cap H_{2} \cap H_{3} \cap H_{4}=0$. Let $H_{1} \cap H_{2} \cap H_{3} \subseteq H_{4}$. It follows that [$\left.H_{1}: M\right]\left[H_{2}: M\right] H_{3} \subseteq H_{4}$. Since H_{3} is a maximal submodule of M, we have $\left[H_{1}: M\right] \subseteq\left[H_{4}: M\right.$] or $\left[H_{1}: M\right] \subseteq\left[H_{4}: M\right]$. Therefore $H_{1}=H_{4}$ or $H_{2}=H_{4}$, which is a contradiction. Hence $H_{1} \cap H_{2} \cap H_{3} \nsubseteq H_{4}$. Consequently $M=H_{1} \cap H_{2} \cap H_{3} \oplus H_{4}$.

Corollary 3.3. Let M be a multiplication R-module with $|\operatorname{Max}(M)|=4$. Then $\Gamma_{R}(M)$ is a planar graph if and only if $M \cong M_{1} \times M_{2} \times M_{3}$ where M_{i} is a simple R module for $i \in\{1,2,3\}$

Proof. Let $\Gamma_{R}(M)$ is a planar graph. By Proposition 3.7, $M \cong M_{1} \times M_{2}$. And by Theorem 2.4, M_{1} or M_{2} is empty another is null. Then by Corollary $2.3, M \cong M_{1} \times M_{2} \times M_{3}$ and by Corollary 2.6, the result follows.

Theorem 3.4. Let M be a multiplication R-module with $|\operatorname{Max}(M)|=3$. Then $\Gamma_{R}(M)$ is a planar graph if and only if $M \cong M_{1} \oplus M_{2}$ such that $\Gamma_{R}\left(M_{1}\right)$ or $\Gamma_{R}\left(M_{2}\right)$ is empty another is null.

Proof. Let $H_{i}, 1 \leq i \leq 3$ be distinct maximal submodules of M. First suppose that $\left[H_{1}: M\right] H_{1} \cap\left[H_{2}\right.$: $M] H_{2} \cap\left[H_{3}: M\right] H_{3} \neq 0$. Then $H_{1} \cap H_{2} \cap H_{3} \neq 0$. It is clear that $H_{1} \cap H_{2} \cap H_{3} \subset H_{1} \cap H_{2} \subset H_{1}$ and $H_{1} \cap H_{2} \cap H_{3} \subset H_{1} \cap H_{3} \subset H_{1}$. So there are distinct elements $x_{1} \in H_{1}, x_{2} \in H_{1} \cap H_{2}, x_{3} \in H_{1} \cap H_{3}$ and $x \in H_{1} \cap H_{2} \cap H_{3}$ such that $x_{1}, x_{2}, x_{3} \notin H_{1} \cap H_{2} \cap H_{3}$. If $[x: M] x=R x$, then $R=[x: M]+\operatorname{Ann}(x)$. One can easily check that $M=R x \oplus A n n(x) M$ and by Theorem $2.4, \Gamma_{R}(R x)$ or $\Gamma_{R}(A n n(x) M)$ is empty another is null. Let $[x: M] x \neq R x$. Then $x \neq \alpha x$ for all $\alpha \in[x: M]$. It follows that $\alpha x \notin\left\{x, x_{1}, x_{2}, x_{3}\right\}$. By Lemma 2.1, $\operatorname{Ann}\left(H_{1}\right) \neq 0$. Therefore $x, \alpha x, x_{1}, x_{2}, x_{3}$ form K_{5} as an induced subgraph, which is a contradiction. So $\left[H_{1}: M\right] H_{1} \cap\left[H_{2}: M\right] H_{2} \cap\left[H_{3}: M\right] H_{3}=0$. Assume $\left[H_{1}: M\right] H_{1}+\left[H_{2}: M\right] H_{2} \cap\left[H_{3}: M\right] H_{3} \neq M$. By Theorem 2.5 of [12], M has a maximal submodule H such that $\left[H_{1}: M\right] H_{1}+\left[H_{2}: M\right] H_{2} \cap\left[H_{3}: M\right] H_{3} \subseteq H$. One can
easily check that $H \neq H_{2}$ and $H \neq H_{3}$. Let $H=H_{1}$. Then $\left[H_{1}: M\right] H_{1}+\left[H_{2}: M\right] H_{2} \cap\left[H_{3}: M\right] H_{3} \subseteq H_{1}$, that is $\left[H_{2}: M\right]^{2}\left[H_{3}: M\right]^{2} \subseteq\left[H_{1}: M\right]$. Since $\left[H_{1}: M\right]$ is a prime ideal of R, we have $\left[H_{2}: M\right] \subseteq\left[H_{1}: M\right]$ or $\left[H_{3}: M\right] \subseteq\left[H_{1}: M\right]$, that is $H_{2}=H_{1}$ or $H_{3}=H_{1}$, which is a contradiction. So [$\left.H_{1}: M\right] H_{1}+\left[H_{2}: M\right] H_{2} \cap\left[H_{3}:\right.$ $M] H_{3}=M$. Consequently $M \cong M_{1} \oplus M_{2}$ and by Theorem 2.4, the result follows.

Lemma 3.5. Let M be a faithful finitely generated multiplication R-module. Then $J(R) M=J(M)$.
Proof. Let M be a faithful finitely generated multiplication R-module and H be a maximal submodule of M. By Theorem 3.1 of [12], $h M \neq M$ for all maximal ideal h of M. Also, by Theorem 2.5 of [12], $H=h M$ for some maximal ideal h of M. On the other hand by Lemma 3.5,

$$
J(M)=\cap_{H \in \operatorname{Max}(M)} H=\cap_{h \in \operatorname{Max}(R)}(h M)=\left(\cap_{h \in \operatorname{Max}(R)} h\right) M=J(R) M
$$

Theorem 3.6. Let M be a multiplication R-module with $|\operatorname{Max}(M)|=2$. Then $\Gamma_{R}(M)$ is a planar graph if and only if $M \cong\left[H_{1}: M\right]^{4} M \oplus\left[H_{2}: M\right]^{4} M$ such that $\Gamma_{R}\left(\left[H_{1}: M\right]^{4} M\right)$ or $\Gamma_{R}\left(\left[H_{1}: M\right]^{4} M\right)$ is empty another is null, where H_{1}, H_{2} are maximal submodule of M.

Proof. Let H_{1} and H_{2} be distinct maximal submodules of M. Suppose that $\left[H_{1}: M\right]^{4} M+\left[H_{2}: M\right]^{4} M \neq M$. By Theorem 2.5 of [12], there is a maximal submodule H of M such that $\left[H_{1}: M\right]^{4} M+\left[H_{2}: M\right]^{4} M \subseteq H$. Since $|\operatorname{Max}(M)|=2$, we have $H=H_{1}$ or $H=H_{2}$. It follows that $\left[H_{1}: M\right]^{4} M \subseteq H_{2}$ or $\left[H_{2}: M\right]^{4} M \subseteq H_{1}$. Thus $H_{1}=H_{2}$, which is a contradiction. So $M=\left[H_{1}: M\right]^{4} M+\left[H_{2}: M\right]^{4} M$. Assume $\left[H_{1}: M\right]^{4} M \cap\left[H_{2}: M\right]^{4} M \neq 0$. Hence $H_{1} \cap H_{2} \neq 0$. If M is not a faithful. Then $\Gamma_{R}(M)$ is a complete graph and by Corollary 2.8, there are non-zero distinct elements $x, y, z, w \in M$ such that $M=R x, H_{1}=R y, H_{2}=R z$ and $H_{1} \cap H_{2}=R w$. It is clear that $y+w \notin\{x, y, z, w\}$, thus $x, y, z, w, y+w$ form K_{5} as an induced subgraph, which is a contradiction. Therefore M is a faithful R-module. On the other hand By Theorem 1.6 [12],

$$
\left[H_{1}: M\right]^{i} M \cap\left[H_{2}: M\right]^{i} M=\left(\left[H_{1}: M\right]^{i} \cap\left[H_{2}: M\right]^{i}\right) M
$$

for all positive integer i. Since M is a cyclic faithful multiplication module, by Lemma 3.5, we have $J(R) M=J(M)$. Now Nakayama's lemma follows that

$$
\left(\left[H_{1}: M\right]^{4} \cap\left[H_{2}: M\right]^{4}\right) M \subset \ldots \subset\left(\left[H_{1}: M\right] \cap\left[H_{2}: M\right]\right) M \subset H_{1}
$$

Hence there exist distinct elements $x_{1} \in H_{1}, x_{2} \in\left[H_{1}: M\right] M \cap\left[H_{2}: M\right] M, x_{3} \in\left[H_{1}: M\right]^{2} M \cap\left[H_{2}: M\right]^{2} M$, $x_{4} \in\left[H_{1}: M\right]^{3} M \cap\left[H_{2}: M\right]^{3} M$ and $x_{5} \in\left[H_{1}: M\right]^{4} M \cap\left[H_{2}: M\right]^{4} M$. By Lemma 2.1, Ann $\left(H_{1}\right) \neq 0$. It follows that $x_{i}, 1 \leq i \leq 5$ form K_{5} as an induced subgraph, which is a contradiction. Therefore $\left[H_{1}: M\right]^{4} M \cap\left[H_{2}\right.$: $M]^{4} M=0$. Consequently $M \cong\left[H_{1}: M\right]^{4} M \oplus\left[H_{2}: M\right]^{4} M$ and by Theorem 2.4, the result follows.

Proposition 3.7. Let M be a multiplication R-module with $|\operatorname{Max}(M)|=1$. If $\Gamma_{R}(M)$ is a planar graph then $|M| \leq 5$ or $[H: M]^{5} M=0$ where H is a maximal submodule of M.

Proof. Suppose M be a faithful multiplication R-module. By Lemma 3.5, R is a local ring with unique maximal ideal $[H: M]$. By Nakayama's lemma, we have $[H: M]^{i} M \neq[H: M]^{j} M$ for all positive integer $i \neq j$. Since $\Gamma_{R}(M)$ is a planar graph then $[H: M]^{5} M=0$. If M is not faithful, then $\Gamma_{R}(M)$ is a complete graph. Hence $|M| \leq 5$.

Now we obtain the central results of this section.
Corollary 3.8. Let M be a multiplication R-module with $|\operatorname{Max}(M)| \neq 1$. If $\Gamma_{R}(M)$ is a planar graph, then $M \cong$ $M_{1} \oplus M_{2}$

References

[1] D. D. Anderson, Multiplication ideals, multiplication rings and the ring R(X), Canad. J. Math 28 (1976), 260-768.
[2] D. F. Anderson, A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
[3] D. F. Anderson, A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719.
[4] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring, II. in, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York 220 (2001) 61-72.
[5] D. F. Anderson, Sh. Ghalandarzadeh, S. Shirinkam, P. Malakooti Rad, On the diameter of the graph $\Gamma_{\operatorname{Ann}(M)}(R)$, Filomat 26 (2012) 623-629.
[6] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447.
[7] D. F. Anderson, S. Shirinkam, Some Remarks on the Graph $\Gamma_{I}(R)$, Comm. Algebra To appear.
[8] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra Addison-Wesley, Reading, MA, 1969.
[9] A. Badawi, D. F. Anderson, Divisibility conditions in commutative rings with zero divisors, Comm. Algebra 38 (2002) 4031-4047.
[10] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[11] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976
[12] Z. A. El-Bast, P. F. Smith, Multiplication modules, comm. Algebra 16 (1988) 755-779.
[13] Sh. Ghalandarzadeh, P. Malakooti Rad, Torsion graph over multiplication modules, Extracta Mathematicae 24 (2009) $281-299$.
[14] Sh. Ghalandarzadeh, S. Shirinkam, P. Malakooti Rad, Annihilator Ideal-Based Zero-Divisor Graphs Over Multiplication Modules, Communications in Algebra 41 (2013) 1134-1148.
[15] D. C. Lu, T. S. Wu, On bipartite zero-divisor graphs, Discrete Math 309 (2009) 755-762.
[16] P. Malakooti Rad, Sh. Ghalandarzadeh, S. Shirinkam, On The Torsion Graph and Von Numann Regular Rings, Filomat 26 (2012) 47-53.
[17] P. Malakooti Rad, S. Yassemi, Sh. Ghalandarzadeh, P. Safari, Diameter and girth of Torsion Graph, Analele Stiintifice ale Universitatii Ovidius Constanta 22(3) (2014) 127-136.
[18] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (2002) 203-211.

[^0]: 2010 Mathematics Subject Classification. 13A99; 05C99;13C99
 Keywords. (Multiplication modules, Planar Graph, Torsion Graph)
 Received: 05 March 2014; Accepted: 19 April 2014
 Communicated by Miroslav Ćirić
 Email address: pmalakooti@dena.kntu.ac.ir and pmalakoti@gmail.com (P. Malakooti Rad)

