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Extending the Moore-Penrose Inverse

Nebojša Č. Dinčića

aFaculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

Abstract. We show that it is possible to define generalized inverse similar to the Moore-Penrose inverse
by slightly modified Penrose equations. Then we are investigating properties of this, so-called extended
Moore-Penrose inverse.

1. Introduction

Let H and K be arbitrary Hilbert spaces, and let L(H,K) be the set of all bounded linear operators from
H to K. If H = K, then we abbreviate L(H,H) = L(H). For A ∈ L(H,K) by R(A),N(A) and A∗ we denote the
range space, the null-space and adjoint, respectively.

Throughout the paper direct sum of the subspaces will be denoted by ⊕, and orthogonal direct sum by
⊕
⊥. An operator P ∈ L(H) is projection if P2 = P, and orthogonal projection if P2 = P = P∗. If H = M ⊕ N,

then PM,N denotes projection such thatR(PM,N) = M, N(PM,N) = N. If H = M⊕⊥N, then we write PM instead
of PM,N. Operator A ∈ L(H) is Hermitian (or selfadjoint) if A = A∗, normal if AA∗ = A∗A, and unitary if
AA∗ = A∗A = I.

The Moore-Penrose inverse of A ∈ L(H,K), if it exists, is the unique operator A† ∈ L(K,H) satisfying the
following, so-called Penrose equations:

(I) AA†A = A, (II) A†AA† = A†, (III) (AA†)∗ = AA†, (IV) (A†A)∗ = A†A.

It is well-known that A† exists for given A if and only if R(A) is closed in K. For detailed introduction to the
theory of generalized inverses, the reader is reffered, for example, to [1], [2], [4].

Closed-range operator A ∈ L(H) is EP (”equal-projection”) if one of the following equivalent conditions
holds: AA† = A†A, or R(A) = R(A∗), orN(A) = N(A∗).

In this paper we consider the following problem: for given closed-range operator A ∈ L(H,K) is there an
operator X ∈ L(K,H) such that the following four Penrose-like equations are satisfied (m,n ∈N are given):

(Im) (AX)mA = A,
(IIn) X(AX)n = X,
(III) AX = (AX)∗,
(IV) XA = (XA)∗.
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It is obvious that case m = n = 1 reduces to well-known Moore-Penrose inverse.
Now we present some auxiliary results.

Lemma 1.1. Let A ∈ L(X,Y) have a closed range. Then A has the matrix decomposition with respect to the orthogonal
decompositions of spaces X = R(A∗) ⊕N(A) and Y = R(A) ⊕N(A∗):

A =

[
A1 0
0 0

]
:
[
R(A∗)
N(A)

]
→

[
R(A)
N(A∗)

]
,

where A1 is invertible. Moreover,

A† =

[
A−1

1 0
0 0

]
:
[
R(A)
N(A∗)

]
→

[
R(A∗)
N(A)

]
.

Lemma 1.2. [3] Let A ∈ L(X,Y) have a closed range. Let X1 and X2 be closed and mutually orthogonal subspaces of
X, such that X = X1 ⊕ X2. Let Y1 and Y2 be closed and mutually orthogonal subspaces of Y, such that Y = Y1 ⊕ Y2.
Then the operator A has the following matrix representations with respect to the orthogonal sums of subspaces
X = X1 ⊕ X2 = R(A∗) ⊕N(A), and Y = R(A) ⊕N(A∗) = Y1 ⊕ Y2 :

(a)

A =

[
A1 A2
0 0

]
:
[

X1
X2

]
→

[
R(A)
N(A∗)

]
,

where D = A1A∗1 + A2A∗2 maps R(A) into itself and D > 0 (meaning D ≥ 0 invertible). Also,

A† =

[
A∗1D−1 0
A∗2D−1 0

]
.

(b)

A =

[
A1 0
A2 0

]
:
[
R(A∗)
N(A)

]
→

[
Y1
Y2

]
,

where D = A∗1A1 + A∗2A2 maps R(A∗) into itself and D > 0 (meaning D ≥ 0 invertible). Also,

A† =

[
D−1A∗1 D−1A∗2

0 0

]
.

Here Ai denotes different operators in any of these two cases.

Some properties of the Moore-Penrose inverse are collected in the following proposition.

Proposition 1.3. Let A ∈ L(H,K) be closed-range operator. Then:

1. (λA)† = λ†A†, where λ† = λ−1 if λ , 0 and λ† = 0 if λ = 0;
2. (A†)† = A, (A∗)† = (A†)∗;
3. A∗ = A†AA∗ = A∗AA†, A = AA∗(A∗)† = (A∗)†A∗A;
4. A† = A∗(AA∗)† = (A∗A)†A∗, (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;
5. R(A) = R(AA†) = R(AA∗), R(A†) = R(A∗) = R(A†A) = R(A∗A);
6. R(I − A†A) = N(A†A) = N(A) = R(A∗)⊥;
7. R(I − AA†) = N(AA†) = N(A†) = N(A∗) = R(A)⊥;
8. (UAV)† = V∗A†U∗, when U ∈ L(K) and V ∈ L(H) are unitary operators (see for example [3] for some general

reverse order law results).
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Theorem 1.4 ([5], Th. 12.29). Suppose E is the spectral decomposition of a normal T ∈ L(H), λ0 ∈ σ(T), and
E0 = E({λ0}). Then

(a) N(T − λ0I) = R(E0),

(b) λ0 is an eigenvalue of T if and only if E0 , 0 and

(c) every isolated point of σ(T) is an eigenvalue of T.

(d) Moreover, if σ(T) = {λ1, λ2, λ3, ...} is a countable set, then every x ∈ H has a unique expansion of the form

x =

∞∑
i=1

xi,

where Txi = λixi. Also, xi⊥x j whenever i , j.

Theorem 1.5 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let PM and PN be the orthogonal
projections onto M and N, respectively.

(a) We have 0 ≤ PM ≤ I.

(b) The following statements are equivalent:

(i) PM ≤ PN, (ii) PNPM = PM, (iii) M ⊂ N, (iv) PMPN = PM.

Theorem 1.6 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let PM and PN be the orthogonal
projections onto M and N, respectively.

(a) P = PMPN is an orthogonal projection if and only if PMPN = PNPM holds; then we have P = PM∩N. We have
M⊥N if and only if PMPN = 0 (or PNPM = 0).

(b) Q = PM + PN is an orthogonal projection if and only if M⊥N, then we have Q = PM⊕N.

(c) R = PM − PN is an orthogonal projection if and only if N ⊂M; then we have R = PM	N.

Remark 1.7. (See [6]) If H is a Hilbert space and T and T1 are closed subspaces such that T1 ⊂ T, then there exists
exactly one closed subspace T2 such that T2 ⊂ T, T2⊥T1 and T = T1 ⊕ T2. For the uniquely defined subspace T2, we
write briefly T2 = T 	 T1. The subspace T2 is called the orthogonal complement of T1 with respect to T. For T = H we
obtain that H 	 T1 = T⊥1 .

2. Main result

Lemma 2.1. Let H be arbitrary Hilbert space and T ∈ L(H) closed-range operator such that Tn = I, n ∈N.

i) There exists T−1
∈ L(H) and T−k = Tn−k, k = 0,n.

ii) If T = T∗, then σ(T) = {1} for odd n and σ(T) = {−1; 1}. Moreover, T = I for odd n, and for even n there exist
nontrivial closed subspaces Y1,Y2 ⊂ H such that Y1 ⊕

⊥ Y2 = H and

T =

[
I 0
0 −I

]
:
[

Y1
Y2

]
7→

[
Y1
Y2

]
.

Proof. i) We have {0} = N(I) = N(Tn) ⊇ N(T) ⊇ N(I), so N(T) = {0} and operator T is injective. Also,
H = R(I) = R(Tn) ⊆ R(T) ⊆ H implies R(T) = H, so T is surjective. Therefore, there exists T−1.

From I = Tn = TkTn−k = Tn−kTk it follows T−k = Tn−k, k = 0,n.
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ii) Operator T is Hermitian, so its spectrum is real. By the spectral mapping theorem for polynomials,
we have

{1} = σ(I) = σ(Tn) = {λn : λ ∈ σ(T)} ⇒ σ(T) = {λ ∈ R : λn = 1}.

Therefore, for odd n we have σ(T) = {1}, while for even n ∈Nwe have σ(T) = {−1; 1}.

It is clear that if σ(T) = {1}, then T = I. When the spectrum of the operator is a disjoint union of closed
sets, then by Theorem 1.4.d there exist nontrivial closed subspaces Y1,Y2 ⊂ H such that Y1 ⊕

⊥ Y2 = H
(the sum is orthogonal because T is Hermitian!) and

T =

[
I 0
0 −I

]
:
[

Y1
Y2

]
7→

[
Y1
Y2

]
.

Let H,K be arbitrary Hilbert spaces and A ∈ L(H,K) closed-range operator. Let us consider whether
there is an operator X ∈ L(K,H) such that the following four Penrose-like equation are satisfied (m,n ∈N):

(Im) (AX)mA = A,
(IIn) X(AX)n = X,
(III) AX = (AX)∗,
(IV) XA = (XA)∗.

Theorem 2.2. Let H,K be arbitrary Hilbert spaces and A ∈ L(H,K) closed-range operator. Then we have{
(Im) (AX)mA = A
(IIn) X(AX)n = X ⇔

{
(Id) (AX)dA = A
(IId) X(AX)d = X,

where d = GCD(m,n) is the greatest common divisor of m,n ∈N.

Proof. (⇐) : Obvious.
(⇒) : Without the loss of generality, we may assume that m > n. By the Euclidean algorithm for the

greatest common divisor, we have the finite sequence:

m = q0n + r0, 0 ≤ r0 < n,
n = q1r0 + r1, 0 ≤ r1 < r0,

r0 = q2r1 + r2, 0 ≤ r2 < r1,

...

rk−2 = qkrk−1 + rk, 0 ≤ rk < rk−1,

rk−1 = qk+1rk + 0, d ≡ GCD(m,n) = rk.

So by (Im) and (IIn) we have

A = (AX)mA = (AX)q0n+r0 A = (AX)r0−1AX (AX)n...(AX)n︸           ︷︷           ︸
q0 times

A =

= (AX)r0−1AX (AX)n...(AX)n︸           ︷︷           ︸
q0−1 times

A = ... = (AX)r0−1AXA = (AX)r0 A;

X = X(AX)n = X(AX)q1r0+r1 = X (AX)r0 ...(AX)r0︸            ︷︷            ︸
q1 times

AX(AX)r1−1 =

= X (AX)r0 ...(AX)r0︸            ︷︷            ︸
q1−1 times

AX(AX)r1−1 = ... = XAX(AX)r1−1 = X(AX)r1 .

By proceeding along the Euclidean algorithm, we have the proof.
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Therefore, it is enough to investigate the case m = n in the sequel of the paper. Now we will consider
the following four Penrose-like equations (n ∈N given):

(In) (AX)nA = A,
(IIn) X(AX)n = X,
(III) AX = (AX)∗,
(IV) XA = (XA)∗.

By the Lemma 1.1, operator A has the following matrix form according to the space decompositions:

A =

[
A1 0
0 0

]
:
[
R(A∗)
N(A)

]
→

[
R(A)
N(A∗)

]
,

We are looking for the operator X of the following form

X =

[
X1 X2
X3 X4

]
:
[
R(A)
N(A∗)

]
→

[
R(A∗)
N(A)

]
.

By (III), the operator

AX =

[
A1X1 A1X2

0 0

]
is Hermitian, so by invertibility of A1 it follows that X2 = 0 and A1X1 is Hermitian. On the similar matter,
from (IV) it follows X3 = 0 and X1A1 is Hermitian. From (IIn) we have X4 = 0 and X1(A1X1)n = X1, and
from (In) it follows (A1X1)nA1 = A1. Therefore,

X =

[
X1 0
0 0

]
, AX =

[
A1X1 0

0 0

]
, XA =

[
X1A1 0

0 0

]
.

From (A1X1)n = IR(A), (X1A1)n = IR(A∗), (A1X1)∗ = A1X1, (X1A1)∗ = X1A1 by Lemma 2.1 we have for odd n:

A1X1 = IR(A), X1A1 = IR(A∗) ⇒ X1 = A−1
1 ⇒ X = A†.

By the same lemma, for even n we have:

A1X1 =

[
−I 0
0 I

]
∈ L

( [
S

S⊥
R(A)

] )
, X1A1 =

[
−I 0
0 I

]
∈ L

( [
T

T⊥
R(A∗)

] )
,

where S ⊕⊥ S⊥
R(A) = R(A), T ⊕⊥ T⊥

R(A∗) = R(A∗) (clearly, S⊥
R(A) = R(A) 	 S, T⊥

R(A∗) = R(A∗) 	 T). Therefore,

A1X1 = IR(A) − 2PS, X1A1 = IR(A∗) − 2PT,

so we have
X1 = A−1

1 (IR(A) − 2PS) = (IR(A∗) − 2PT)A−1
1 ,

from where we see the relation between the subspaces T and S :

A−1
1 PS = PTA−1

1 ⇔ PSA1 = A1PT,

so those projections are similar. We can put

X1 = A−1
1 (IR(A) − 2PS) = (IR(A∗) − 2A−1

1 PSA1)A−1
1

When we return to the operator X, we have

X = A†(PR(A) − 2PS) = A† − 2A†PS = A†(I − 2PS),

and on similar way
X = (PR(A∗) − 2PT)A† = A† − 2PTA† = (I − 2PT)A†.

Also, A†PS = PTA†, or, equivalently, PSA = APT.
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Remark 2.3. If we suppose

A1 =

[
A11 A12
A13 A14

]
:
[

T
T⊥
R(A∗)

]
7→

[
S

S⊥
R(A)

]
,

from PSA1 = A1PT we have A12 = 0, A13 = 0, so the operator A1 must have the following form

A1 =

[
A11 0
0 A14

]
:
[

T
T⊥
R(A∗)

]
7→

[
S

S⊥
R(A)

]
,

where A11 and A14 are invertible operators.

We have seen that odd n case reduces to n = 1, which coincides with the Moore-Penrose inverse. As an
important result, because (A1X1)2 = IR(A) and (X1A1)2 = IR(A∗), we have that case n = 2k actually reduces to
n = 2. Therefore, we can define new generalized inverse which depends of some subspace(s).

Definition 2.4. Let H,K be arbitrary Hilbert spaces and A ∈ L(H,K) be closed-range operator. For fixed subspace
S ⊂ R(A) (or, equivalently, T ⊂ R(A∗), where S and T are related by

APT = PSA, or, equivalently, A†PS = PTA†. (1)

there exist unique operator denoted by A‡ ≡ A‡T,S such that the following four Penrose-like equations are satisfied:

(AA‡)2A = A, A‡(AA‡)2 = A‡, (AA‡)∗ = AA‡, (A‡A)∗ = A‡A. (2)

Such inverse will be called extended MP inverse, and can be explicitly given by

A‡T,S = A†(I − 2PS) = (I − 2PT)A†. (3)

The existence and the uniqueness of extended Moore-Penrose inverse follows immediately by preceding
construction. We use both subspaces in the index although they are uniquely related (PT = A−1

1 PSA1,where
A1 = A|R(A∗)), because it is convenient in various identities. Note that for trivial closed subspaces S = {0}
and S = R(A) we also have A‡

{0},{0} = A†(I − 2P{0}) = A† and A‡
R(A),R(A∗) = A†(I − 2PR(A)) = −A†.

3. Properties of EMP

It is very likely that properties of extended Moore-Penrose inverse strongly resemble to those of Moore-
Penrose inverse. Also, for given orthogonal projections PS and PT the operators I − 2PS and I − 2PT are
unitary and they are square roots of unit operators IR(A) and IR(A∗) on appropriate Hilbert spaces.

Theorem 3.1. Let A ∈ L(H,K) be closed-range operator, let S ⊂ R(A) and T ⊂ R(A∗) be nontrivial closed subsets.

1. A‡T,SPS = −A†PS, PTA‡T,S = −PTA†, PTA‡T,SPS = −PTA†PS;

2. AA‡T,S = PR(A) − 2PS, A‡T,SA = PR(A∗) − 2PT; those operators are Hermitian, but they are not idempotents. Also
we have:

PS =
1
2

(PR(A) − AA‡T,S), PT =
1
2

(PR(A∗) − A‡T,SA);

3. A‡T,S = A†AA‡T,S = A‡T,SAA† = A†AA‡T,SAA†;

4. A† − A‡T,S = 2A†PS = 2PTA†, so ||A† − A‡T,S|| ≤ 2||A†||.

Proof. It follows from (3), with S ⊂ R(A)⇔ PR(A)PS = PS and T ⊂ R(A∗)⇔ PTPR(A∗) = PT (Th. 1.5.b).
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By the definition, for fixed S ⊂ R(A) and T ⊂ R(A∗), related by (1), there exists unique A‡T,S. By the

preceding theorem, part 2, for given A‡T,S one can reconstruct subspaces T and S, and the relation (1) holds.
Some properties of extended Moore-Penrose inverse, similar to those of the ordinary Moore-Penrose

inverse, are presented in the next theorem (cf. Proposition 1.3).

Theorem 3.2. Let A ∈ L(H,K) be closed-range operator, and S ⊂ R(A) and T ⊂ R(A∗) nontrivial closed subspaces.
Then we have:

1. (λA)‡T,S = λ†A‡T,S, where λ† = λ−1 if λ , 0 and λ† = 0 if λ = 0;

2. (AA‡T,S)2 = PR(A), (A‡T,SA)2 = PR(A∗);

3. A∗(AA‡T,S)2 = A∗ = (A‡T,SA)2A∗, A∗ − A∗AA‡T,S = 2A∗PS, A∗ − A‡T,SAA∗ = 2PTA∗;

4. (A‡T,S)∗ = (A∗)‡S,T;

5. A‡T,S = A∗(AA∗)‡S,S, A‡T,S = (A∗A)‡T,TA∗;

6. (A∗)‡S,TA‡T,S = (AA∗)†, A‡T,S(A∗)‡S,T = (A∗A)†;

7. A − AA‡T,SA = 2PSA = 2APT , 0;

8. R(A‡T,S) = R(A∗), N(A‡T,S) = N(A∗);

9. (A‡T,S)‡S,T = A;

10. (A‡T,S)† = (I − 2PS)A = A(I − 2PT) = (A†)‡S,T.

Proof. Recall, V ⊂W ⇔ PVPW = PWPV = PV, by Theorem 1.5.b.

1. (λA)‡T,S = (λA)†(I − 2PS) = λ†A†(I − 2PS) = λ†A‡T,S;

2. We have (AA‡T,S)2 = (AA†(I − 2PS))2 = (PR(A) − 2PS)2 = PR(A) and (A‡T,SA)2 = (PR(A∗) − 2PT)2 = PR(A∗).

3. By 2. and Proposition 1.3.3, we have A∗PR(A) = A∗ = PR(A∗)A. The second part is due to A∗ −A∗AA‡T,S =

A∗ − A∗(PR(A) − 2PS) = 2A∗PS and A∗ − A‡T,SAA∗ = A∗ − (PR(A∗) − 2PT)A∗ = 2PTA∗.

4. (A‡T,S)∗ = (A†(I − 2PS))∗ = (I − 2PS)(A†)∗ = (I − 2PS)(A∗)† = (A∗)‡S,T; also A∗PS = (PSA)∗ = (APT)∗ = PTA∗.

5. We have A∗(AA∗)‡S,S = A∗(AA∗)†(I − 2PS) = A†(I − 2PS) = A‡T,S, and (A∗A)‡T,TA∗ = (I − 2PT)(A∗A)†A∗ =

(I − 2PT)A† = A‡T,S. Note that S ⊂ R(AA∗) = R(A) and T ⊂ R(A∗A) = R(A∗).

6. (A∗)‡S,TA‡T,S = (A‡T,S)∗A‡T,S = ((I − 2PT)A†)∗(I − 2PT)A† = (A†)∗(I − 2PT)2A† = (A∗)†A† = (AA∗)†, and

A‡T,S(A∗)‡S,T = A†(I − 2PS)(A†(I − 2PS))∗ = A†(I − 2PS)2(A†)∗ = A†(A∗)† = (A∗A)†.
7. S ⊂ R(A)⇒ PSA , 0, so this difference cannot be zero.
8. The operators I − 2PS and I − 2PT are unitary, hence invertible, so R(A‡T,S) = R(A†(I − 2PS)) = A†((I −

2PS)(K)) = A†(K) = R(A†) = R(A∗),N(A‡T,S) = N((I − 2PT)A†) = N(A†) = N(A∗) = R(A)⊥.

9. Let us note that the reverse order law (A†(I − 2PS))† = (I − 2PS)A holds, because I − 2PS is unitary
operator (hence Hermitian and invertible). Now we have

(A‡T,S)‡S,T = (A‡T,S)†(I − 2PT) = (A†(I − 2PS))†(I − 2PT) = (I − 2PS)A(I − 2PT) = A,

because APT = PSA ⇒ APT = PSAPT. Also, A‡T,SPS = PTA‡T,S ⇔ A†(I − 2PS)PS = PT(I − 2PT)A† ⇔
A†PS = PTA†.

10. Because of (A‡T,S)† = (A†(I − 2PS))† = (I − 2PS)A, and (A†)‡S,T = (A†)†(I − 2PT) = A(I − 2PT), we have the

proof. Note that 8. implies the existence of (A‡T,S)†.
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Unlike the ordinary Moore-Penrose inverse, the extended Moore-Penrose inverse depends on some
subspaces, and we present some related properties.

Theorem 3.3. Let A ∈ L(H,K) be closed-range operator, and S,S1,S2 ⊂ R(A), T,T1,T2 ⊂ R(A∗) be nontrivial
closed subsets. Then we have

1. A‡T1,S1
AA‡T2,S2

= A†(I − 2PS1 − 2PS2 + 4PS1 PS2 ).

• S1 ∩ S2 = {0} ⇒ A‡T1,S1
AA‡T2,S2

= A†(I − 2(PS1 + PS2 ));

• S1 ⊕
⊥ S2 = R(A)⇒ A‡T1,S1

AA‡T2,S2
= −A†;

• S1⊥S2 ⇒ A‡T1,S1
AA‡T2,S2

= A‡T1⊕T2,S1⊕S2
.

2. A‡T1,S1
− A‡T2,S2

= 2A†(PS2 − PS1 ); particularly, if S1 ⊂ S2 then A‡T1,S1
− A‡T2,S2

= A† − A‡T2	T1,S2	S1
;

3. AA‡T1,S1
− AA‡T2,S2

= 2(PS2 − PS1 ); particularly, if S1 ⊂ S2 then AA‡T1,S1
− AA‡T2,S2

= 2PT2	T1,S2	S1 ;

4. A‡T1,S1
A − A‡T2,S2

A = 2(PT2 − PT1 ); particularly, if T1 ⊂ T2 then A‡T1,S1
A − A‡T2,S2

A = 2PT2	T1,S2	S1 ;

5. A,B ∈ L(H,K), R(A) = R(B) ) S, then (A‡T,S − B‡T,S)† = (A† − B†)‡S,T.

Proof.

1. A‡T1,S1
AA‡T2,S2

= A†(I − 2PS1 )AA†(I − 2PS2 ) = A†(I − 2PS1 )PR(A)(I − 2PS2 ) = A†(I − 2PS1 − 2PS2 + 4PS1 PS2 ).

If S1 ∩ S2 = {0}, then PS1 PS2 = 0, so A‡T1,S1
AA‡T2,S2

= A†(I − 2(PS1 + PS2 )). When S1 ⊕
⊥ S2 = R(A), then

A‡T1,S1
AA‡T2,S2

= −A†. For S1⊥S2, by Theorem 1.6 we have PS1 PS2 = 0 and PS1 + PS2 = PS1⊕S2 , therefore

A‡T1,S1
AA‡T2,S2

= A†(I − 2PS1⊕S2 ) = A‡T1⊕T2,S1⊕S2
.

2. A‡T1,S1
− A‡T2,S2

= A†(I − 2PS1 ) − A†(I − 2PS2 ) = 2A†(PS2 − PS1 ). When S1 ⊂ S2, by Theorem 1.6 it follows
PS2 − PS1 = PS2	S1 is orthogonal projection, therefore

A‡T1,S1
− A‡T2,S2

= 2A†PS2	S1 = A†(I − (I − 2PS2	S1 )) = A† − A‡T2	T1,S2	S1
.

Note that S1 ⊂ S2 ⇔ PS1 PS2 = PS2 PS1 = PS1 ⇔ PS1 PS2 A = PS2 PS1 A = PS1 A ⇔ PS1 APT2 = PS2 APT1 =
APT1 ⇔ APT1 PT2 = APT2 PT1 = APT1 ⇔ A†APT1 PT2 = A†APT2 PT1 = A†APT1 ⇔ PT1 PT2 = PT2 PT1 = PT1 ⇔

T1 ⊂ T2.

3. AA‡T1,S1
− AA‡T2,S2

= 2AA†(PS2 − PS1 ) = 2(PS2 − PS1 ); the rest of the proof as in the second part.
4. Analogous to the proof of part 3.
5. By part 10 of Theorem 3.2 and part 8 of Proposition 1.1, we have

((A† − B†)‡S,T)† = ((A† − B†)†(I − 2PT))† = (I − 2PT)(A† − B†) = A‡T,S − B‡T,S.

Theorem 3.4. Let A ∈ L(H,K) be closed-range operator, and Si, i = 1,n, n ≥ 2, be closed subspaces of R(A), such
that R(A) is their orthogonal direct sum (i.e. R(A) = S1 ⊕

⊥ S2 ⊕
⊥ ... ⊕⊥ Sn). Then:

n∑
k=1

A‡Tk ,Sk
= (n − 2)A†.

Here Tk, k = 1,n, are related to Sk, k = 1,n, by (1).
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Proof. Because of
S1 ⊕

⊥ S2 ⊕
⊥ . . . ⊕⊥ Sn = R(A)⇔ PS1 + PS2 + . . . + PSn = IR(A),

we have

n∑
k=1

A‡Tk ,Sk
= A†

n∑
k=1

(I − 2PSk ) = A†
( n−1∑

k=1

(I − 2PSk ) + I − 2
(
PR(A) − 2

n−1∑
k=1

PSk

))
= A†(nI − 2PR(A)) = (n − 2)A†.

In the case when there are just two subspaces, the following corollary holds.

Corollary 3.5. Let A ∈ L(H,K) be closed-range operator and S ⊂ R(A) nontrivial closed subspace. Then we have

A‡T⊥,S⊥ = −A‡T,S,

where S⊥
R(A) is closed subspace such that S ⊕⊥ S⊥

R(A) = R(A). Here T ⊂ R(A∗) is related to S by (1).

Next result establishes the connection between extended Moore-Penrose equation and some other
generalized inverses:

Theorem 3.6. Let A ∈ L(H,K) be closed-range operator, and S ⊂ R(A) and T ⊂ R(A∗) nontrivial closed subspaces.
Then we have:

1. A† = A‡T,S(I − 2PS) = (I − 2PT)A‡T,S;

2. A‡T,SAA‡T,S = A†;

3. A‡T,S is EP if and only if A is EP.

Proof. Recall that V ⊂W ⇔ PVPW = PWPV = PV, by Theorem 1.5.b.

1. Operator I − 2PS is unitary, therefore A‡T,S = A†(I − 2PS)⇔ A† = A‡T,S(I − 2PS).

2. A‡T,SAA‡T,S = A‡T,S(PR(A) − 2PS) = A†(I − 2PS)(PR(A) − 2PS) = A†PR(A) = A†;
3. The proof follows from the following equivalence chain:

A‡T,S(A‡T,S)† = (A‡T,S)†A‡T,S ⇔ A†(I − 2PS)(A†(I − 2PS))† = ((I − 2PT)A†)†(I − 2PT)A† ⇔

⇔ A†(I − 2PS)2A = A(I − 2PT)2A† ⇔ A†A = AA†.

Theorem 3.7. Let A ∈ L(H,K) be closed range operators and S ⊂ R(A), T ⊂ R(A∗) nontrivial closed subsets. Then
we have the following norm estimates:

1. ||A‡T,S|| = ||A
†
||;

2. ||A − AA‡T,SA|| ≤ 2||A||;

Proof. 1. From (3) we have
||A‡T,S|| = ||A

†(I − 2PS)|| ≤ ||A†||,

while from Theorem 3.6, part 1, it follows

||A†|| = ||A‡T,S(I − 2PS)|| ≤ ||A‡T,S||.

2. It follows from A − AA‡T,SA = 2PSA, because ||PS|| = 1.
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Proposition 3.8. Consider the operator equation Ax = b. We have the following possibilities:

• b < R(A) : AA‡T,Sb = (PR(A) − 2PS)b = 0,

• b ∈ R(A) \ S : AA‡T,Sb = (PR(A) − 2PS)b = b,

• b ∈ S : AA‡T,Sb = (PR(A) − 2PS)b = −b.

Therefore, x = A‡T,Sb is a solution when b ∈ R(A) \ S, and x = −A‡T,Sb is solution for b ∈ S.

4. Some examples

• It is obvious that A = 0⇔ A‡ = 0.

• For A = I ∈ L(H) and given subspace S ⊂ H we have X∗ = X and X2 = I, so I‡T,S = I − 2PS = I − 2PT.

• Suppose A ∈ L(H) is invertible, and S,T ⊂ H are given. By the equations, we have

(AX)2 = I = (XA)2, (AX)∗ = AX, (XA)∗ = XA.

The reasonings similar to those preceding the definition gives us AX = I−2PS, XA = I−2PT.Therefore,

A‡T,S = A−1(I − 2PS) = (I − 2PT)A−1, where A−1PS = PTA−1.

So, the subspaces S,T are similar PT = A−1PSA. Also in this case we have

PS =
1
2

(I − AA‡S), PT =
1
2

(I − A‡SA).

• Let R and L be the right shift and left shift operator, respectively, defined on separable Hilbert space
`2 with canonical basis ({e1, e2, ...}) on usual way

R(x1, x2, x3, . . .) = (0, x1, x2, . . .), L(x1, x2, x3, . . .) = (x2, x3, x4, . . .).

It is not hard to see that R† = R∗ = L and R(R) = lin{e2, e3, . . .}.

Let S1 = lin{e3, e5, . . .} and S2 = {e2, e4, . . .} be given subspaces of R(R) such that S1 ⊕
⊥ S2 = R(R). Then

we have for any x ∈ `2:

R‡T1,S1
x = R†(I − 2PS1 )x = R†(x − 2(0, 0, x3, 0, x5, 0, . . .)) = L(x1, x2,−x3, x4,−x5, . . .) = (x2,−x3, x4,−x5, . . .),

R‡T2,S2
x = R†(I − 2PS2 )x = R†(x − 2(0, x2, 0, x4, 0, . . .)) = L(x1,−x2, x3,−x4, x5, . . .) = (−x2, x3,−x4, x5, . . .).

It is obvious that RT1,S1 x + RT2,S2 x = 0, therefore RT1,S1 + RT2,S2 = 0.

Acknowledgement: The author would like to express his gratitude to Professor Dragan S. Djordjević
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