Extending the Moore-Penrose Inverse

Nebojša Č. Dinčića ${ }^{\text {a }}$
${ }^{a}$ Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

Abstract

We show that it is possible to define generalized inverse similar to the Moore-Penrose inverse by slightly modified Penrose equations. Then we are investigating properties of this, so-called extended Moore-Penrose inverse.

1. Introduction

Let H and K be arbitrary Hilbert spaces, and let $\mathcal{L}(H, K)$ be the set of all bounded linear operators from H to K. If $H=K$, then we abbreviate $\mathcal{L}(H, H)=\mathcal{L}(H)$. For $A \in \mathcal{L}(H, K)$ by $\mathcal{R}(A), \mathcal{N}(A)$ and A^{*} we denote the range space, the null-space and adjoint, respectively.

Throughout the paper direct sum of the subspaces will be denoted by \oplus, and orthogonal direct sum by \oplus^{\perp}. An operator $P \in \mathcal{L}(H)$ is projection if $P^{2}=P$, and orthogonal projection if $P^{2}=P=P^{*}$. If $H=M \oplus N$, then $P_{M, N}$ denotes projection such that $\mathcal{R}\left(P_{M, N}\right)=M, \mathcal{N}\left(P_{M, N}\right)=N$. If $H=M \oplus^{\perp} N$, then we write P_{M} instead of $P_{M, N}$. Operator $A \in \mathcal{L}(H)$ is Hermitian (or selfadjoint) if $A=A^{*}$, normal if $A A^{*}=A^{*} A$, and unitary if $A A^{*}=A^{*} A=I$.

The Moore-Penrose inverse of $A \in \mathcal{L}(H, K)$, if it exists, is the unique operator $A^{+} \in \mathcal{L}(K, H)$ satisfying the following, so-called Penrose equations:

$$
\text { (I) } A A^{\dagger} A=A,(I I) A^{\dagger} A A^{\dagger}=A^{\dagger},(I I I)\left(A A^{\dagger}\right)^{*}=A A^{\dagger},(I V)\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

It is well-known that A^{+}exists for given A if and only if $\mathcal{R}(A)$ is closed in K. For detailed introduction to the theory of generalized inverses, the reader is reffered, for example, to [1], [2], [4].

Closed-range operator $A \in \mathcal{L}(H)$ is EP ("equal-projection") if one of the following equivalent conditions holds: $A A^{+}=A^{\dagger} A$, or $\mathcal{R}(A)=\mathcal{R}\left(A^{*}\right)$, or $\mathcal{N}(A)=\mathcal{N}\left(A^{*}\right)$.

In this paper we consider the following problem: for given closed-range operator $A \in \mathcal{L}(H, K)$ is there an operator $X \in \mathcal{L}(K, H)$ such that the following four Penrose-like equations are satisfied ($m, n \in \mathbb{N}$ are given):

$$
\begin{array}{ll}
\left(I_{m}\right) & (A X)^{m} A=A, \\
\left(I I_{n}\right) & X(A X)^{n}=X, \\
(I I I) & A X=(A X)^{*}, \\
(I V) & X A=(X A)^{*} .
\end{array}
$$

[^0]It is obvious that case $m=n=1$ reduces to well-known Moore-Penrose inverse.
Now we present some auxiliary results.
Lemma 1.1. Let $A \in \mathcal{L}(X, Y)$ have a closed range. Then A has the matrix decomposition with respect to the orthogonal decompositions of spaces $X=\mathcal{R}\left(A^{*}\right) \oplus \mathcal{N}(A)$ and $Y=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)$:

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}\left(A^{*}\right) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right]
$$

where A_{1} is invertible. Moreover,

$$
A^{+}=\left[\begin{array}{cc}
A_{1}^{-1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}\left(A^{*}\right) \\
\mathcal{N}(A)
\end{array}\right]
$$

Lemma 1.2. [3] Let $A \in \mathcal{L}(X, Y)$ have a closed range. Let X_{1} and X_{2} be closed and mutually orthogonal subspaces of X, such that $X=X_{1} \oplus X_{2}$. Let Y_{1} and Y_{2} be closed and mutually orthogonal subspaces of Y, such that $Y=Y_{1} \oplus Y_{2}$. Then the operator A has the following matrix representations with respect to the orthogonal sums of subspaces $X=X_{1} \oplus X_{2}=\mathcal{R}\left(A^{*}\right) \oplus \mathcal{N}(A)$, and $Y=\mathcal{R}(A) \oplus \mathcal{N}\left(A^{*}\right)=Y_{1} \oplus Y_{2}:$
(a)

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & 0
\end{array}\right]:\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right]
$$

where $D=A_{1} A_{1}^{*}+A_{2} A_{2}^{*}$ maps $\mathcal{R}(A)$ into itself and $D>0$ (meaning $D \geq 0$ invertible). Also,

$$
A^{+}=\left[\begin{array}{ll}
A_{1}^{*} D^{-1} & 0 \\
A_{2}^{*} D^{-1} & 0
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{ll}
A_{1} & 0 \\
A_{2} & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}\left(A^{*}\right) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]
$$

where $D=A_{1}^{*} A_{1}+A_{2}^{*} A_{2}$ maps $\mathcal{R}\left(A^{*}\right)$ into itself and $D>0$ (meaning $D \geq 0$ invertible). Also,

$$
A^{+}=\left[\begin{array}{cc}
D^{-1} A_{1}^{*} & D^{-1} A_{2}^{*} \\
0 & 0
\end{array}\right]
$$

Here A_{i} denotes different operators in any of these two cases.
Some properties of the Moore-Penrose inverse are collected in the following proposition.
Proposition 1.3. Let $A \in \mathcal{L}(H, K)$ be closed-range operator. Then:

1. $(\lambda A)^{\dagger}=\lambda^{\dagger} A^{\dagger}$, where $\lambda^{\dagger}=\lambda^{-1}$ if $\lambda \neq 0$ and $\lambda^{\dagger}=0$ if $\lambda=0$;
2. $\left(A^{\dagger}\right)^{\dagger}=A,\left(A^{*}\right)^{\dagger}=\left(A^{\dagger}\right)^{*}$;
3. $A^{*}=A^{\dagger} A A^{*}=A^{*} A A^{\dagger}, A=A A^{*}\left(A^{*}\right)^{\dagger}=\left(A^{*}\right)^{\dagger} A^{*} A$;
4. $A^{\dagger}=A^{*}\left(A A^{*}\right)^{\dagger}=\left(A^{*} A\right)^{\dagger} A^{*},\left(A A^{*}\right)^{\dagger}=\left(A^{*}\right)^{\dagger} A^{\dagger},\left(A^{*} A\right)^{\dagger}=A^{\dagger}\left(A^{*}\right)^{\dagger}$;
5. $\mathcal{R}(A)=\mathcal{R}\left(A A^{\dagger}\right)=\mathcal{R}\left(A A^{*}\right), \mathcal{R}\left(A^{\dagger}\right)=\mathcal{R}\left(A^{*}\right)=\mathcal{R}\left(A^{\dagger} A\right)=\mathcal{R}\left(A^{*} A\right)$;
6. $\mathcal{R}\left(I-A^{\dagger} A\right)=\mathcal{N}\left(A^{\dagger} A\right)=\mathcal{N}(A)=\mathcal{R}\left(A^{*}\right)^{\perp}$;
7. $\mathcal{R}\left(I-A A^{+}\right)=\mathcal{N}\left(A A^{+}\right)=\mathcal{N}\left(A^{\dagger}\right)=\mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp}$;
8. $(U A V)^{\dagger}=V^{*} A^{\dagger} U^{*}$, when $U \in \mathcal{L}(K)$ and $V \in \mathcal{L}(H)$ are unitary operators (see for example [3] for some general reverse order law results).

Theorem 1.4 ([5], Th. 12.29). Suppose E is the spectral decomposition of a normal $T \in \mathcal{L}(H), \lambda_{0} \in \sigma(T)$, and $E_{0}=E\left(\left\{\lambda_{0}\right\}\right)$. Then
(a) $\mathcal{N}\left(T-\lambda_{0} I\right)=\mathcal{R}\left(E_{0}\right)$,
(b) λ_{0} is an eigenvalue of T if and only if $E_{0} \neq 0$ and
(c) every isolated point of $\sigma(T)$ is an eigenvalue of T.
(d) Moreover, if $\sigma(T)=\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right\}$ is a countable set, then every $x \in H$ has a unique expansion of the form

$$
x=\sum_{i=1}^{\infty} x_{i}
$$

where $T x_{i}=\lambda_{i} x_{i}$. Also, $x_{i} \perp x_{j}$ whenever $i \neq j$.
Theorem 1.5 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let P_{M} and P_{N} be the orthogonal projections onto M and N, respectively.
(a) We have $0 \leq P_{M} \leq I$.
(b) The following statements are equivalent:

$$
\text { (i) } P_{M} \leq P_{N},\left(\text { ii) } P_{N} P_{M}=P_{M}, \text { (iii) } M \subset N \text {, (iv) } P_{M} P_{N}=P_{M}\right.
$$

Theorem 1.6 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let P_{M} and P_{N} be the orthogonal projections onto M and N, respectively.
(a) $P=P_{M} P_{N}$ is an orthogonal projection if and only if $P_{M} P_{N}=P_{N} P_{M}$ holds; then we have $P=P_{M \cap N}$. We have $M \perp N$ if and only if $P_{M} P_{N}=0\left(\right.$ or $\left.P_{N} P_{M}=0\right)$.
(b) $Q=P_{M}+P_{N}$ is an orthogonal projection if and only if $M \perp N$, then we have $Q=P_{M \oplus N}$.
(c) $R=P_{M}-P_{N}$ is an orthogonal projection if and only if $N \subset M$; then we have $R=P_{M \ominus N}$.

Remark 1.7. (See [6]) If H is a Hilbert space and T and T_{1} are closed subspaces such that $T_{1} \subset T$, then there exists exactly one closed subspace T_{2} such that $T_{2} \subset T, T_{2} \perp T_{1}$ and $T=T_{1} \oplus T_{2}$. For the uniquely defined subspace T_{2}, we write briefly $T_{2}=T \ominus T_{1}$. The subspace T_{2} is called the orthogonal complement of T_{1} with respect to T. For $T=H$ we obtain that $H \ominus T_{1}=T_{1}^{\perp}$.

2. Main result

Lemma 2.1. Let H be arbitrary Hilbert space and $T \in \mathcal{L}(H)$ closed-range operator such that $T^{n}=I, n \in \mathbb{N}$.
i) There exists $T^{-1} \in \mathcal{L}(H)$ and $T^{-k}=T^{n-k}, k=\overline{0, n}$.
ii) If $T=T^{*}$, then $\sigma(T)=\{1\}$ for odd n and $\sigma(T)=\{-1 ; 1\}$. Moreover, $T=I$ for odd n, and for even n there exist nontrivial closed subspaces $Y_{1}, Y_{2} \subset H$ such that $Y_{1} \oplus^{\perp} Y_{2}=H$ and

$$
T=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]:\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right] \mapsto\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]
$$

Proof. i) We have $\{0\}=\mathcal{N}(I)=\mathcal{N}\left(T^{n}\right) \supseteq \mathcal{N}(T) \supseteq \mathcal{N}(I)$, so $\mathcal{N}(T)=\{0\}$ and operator T is injective. Also, $H=\mathcal{R}(I)=\mathcal{R}\left(T^{n}\right) \subseteq \mathcal{R}(T) \subseteq H$ implies $\mathcal{R}(T)=H$, so T is surjective. Therefore, there exists T^{-1}.
From $I=T^{n}=T^{k} T^{n-k}=T^{n-k} T^{k}$ it follows $T^{-k}=T^{n-k}, k=\overline{0, n}$.
ii) Operator T is Hermitian, so its spectrum is real. By the spectral mapping theorem for polynomials, we have

$$
\{1\}=\sigma(I)=\sigma\left(T^{n}\right)=\left\{\lambda^{n}: \lambda \in \sigma(T)\right\} \Rightarrow \sigma(T)=\left\{\lambda \in \mathbb{R}: \lambda^{n}=1\right\} .
$$

Therefore, for odd n we have $\sigma(T)=\{1\}$, while for even $n \in \mathbb{N}$ we have $\sigma(T)=\{-1 ; 1\}$.
It is clear that if $\sigma(T)=\{1\}$, then $T=I$. When the spectrum of the operator is a disjoint union of closed sets, then by Theorem 1.4.d there exist nontrivial closed subspaces $Y_{1}, Y_{2} \subset H$ such that $Y_{1} \oplus^{\perp} Y_{2}=H$ (the sum is orthogonal because T is Hermitian!) and

$$
T=\left[\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right]:\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right] \mapsto\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]
$$

Let H, K be arbitrary Hilbert spaces and $A \in \mathcal{L}(H, K)$ closed-range operator. Let us consider whether there is an operator $X \in \mathcal{L}(K, H)$ such that the following four Penrose-like equation are satisfied ($m, n \in \mathbb{N}$):

$$
\begin{array}{ll}
\left(I_{m}\right) & (A X)^{m} A=A, \\
\left(I I_{n}\right) & X(A X)^{n}=X, \\
(I I I) & A X=(A X)^{*} \\
(I V) & X A=(X A)^{*} .
\end{array}
$$

Theorem 2.2. Let H, K be arbitrary Hilbert spaces and $A \in \mathcal{L}(H, K)$ closed-range operator. Then we have

$$
\left\{\begin{array} { l l }
{ (I _ { m }) } & { (A X) ^ { m } A = A } \\
{ (I I _ { n }) } & { X (A X) ^ { n } = X }
\end{array} \Leftrightarrow \left\{\begin{array}{cc}
\left(I_{d}\right) & (A X)^{d} A=A \\
\left(I I_{d}\right) & X(A X)^{d}=X
\end{array}\right.\right.
$$

where $d=\operatorname{GCD}(m, n)$ is the greatest common divisor of $m, n \in \mathbb{N}$.
Proof. (\Leftarrow) : Obvious.
(\Rightarrow) : Without the loss of generality, we may assume that $m>n$. By the Euclidean algorithm for the greatest common divisor, we have the finite sequence:

$$
\begin{aligned}
& m=q_{0} n+r_{0}, 0 \leq r_{0}<n \\
& n=q_{1} r_{0}+r_{1}, 0 \leq r_{1}<r_{0} \\
& r_{0}=q_{2} r_{1}+r_{2}, 0 \leq r_{2}<r_{1} \\
& \quad \ldots \\
& r_{k-2}=q_{k} r_{k-1}+r_{k}, 0 \leq r_{k}<r_{k-1}, \\
& r_{k-1}=q_{k+1} r_{k}+0, d \equiv G C D(m, n)=r_{k} .
\end{aligned}
$$

So by $\left(I_{m}\right)$ and $\left(I I_{n}\right)$ we have

$$
\begin{aligned}
A & =(A X)^{m} A=(A X)^{q_{0} n+r_{0}} A=(A X)^{r_{0}-1} A X \underbrace{(A X)^{n} \ldots(A X)^{n}}_{q_{0} \text { times }} A= \\
& =(A X)^{r_{0}-1} A X \underbrace{(A X)^{n} \ldots(A X)^{n}}_{q_{0}-1 \text { times }} A=\ldots=(A X)^{r_{0}-1} A X A=(A X)^{r_{0}} A ; \\
X & =X(A X)^{n}=X(A X)^{q_{1} r_{0}+r_{1}}=X \underbrace{(A X)^{r_{0}} \ldots(A X)^{r_{0}}}_{q_{1} \text { times }} A X(A X)^{r_{1}-1}= \\
& =X \underbrace{(A X)^{r_{0}} \ldots(A X)^{r_{0}}}_{q_{1}-1 \text { times }} A X(A X)^{r_{1}-1}=\ldots=X A X(A X)^{r_{1}-1}=X(A X)^{r_{1}} .
\end{aligned}
$$

By proceeding along the Euclidean algorithm, we have the proof.

Therefore, it is enough to investigate the case $m=n$ in the sequel of the paper. Now we will consider the following four Penrose-like equations ($n \in \mathbb{N}$ given):

$\left(I_{n}\right)$	$(A X)^{n} A=A$,
$\left(I I_{n}\right)$	$X(A X)^{n}=X$,
$(I I I)$	$A X=(A X)^{*}$,
$(I V)$	$X A=(X A)^{*}$.

By the Lemma 1.1, operator A has the following matrix form according to the space decompositions:

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}\left(A^{*}\right) \\
\mathcal{N}(A)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right]
$$

We are looking for the operator X of the following form

$$
X=\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{R}(A) \\
\mathcal{N}\left(A^{*}\right)
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{R}\left(A^{*}\right) \\
\mathcal{N}(A)
\end{array}\right]
$$

By (III), the operator

$$
A X=\left[\begin{array}{cc}
A_{1} X_{1} & A_{1} X_{2} \\
0 & 0
\end{array}\right]
$$

is Hermitian, so by invertibility of A_{1} it follows that $X_{2}=0$ and $A_{1} X_{1}$ is Hermitian. On the similar matter, from (IV) it follows $X_{3}=0$ and $X_{1} A_{1}$ is Hermitian. From $\left(I I_{n}\right)$ we have $X_{4}=0$ and $X_{1}\left(A_{1} X_{1}\right)^{n}=X_{1}$, and from $\left(I_{n}\right)$ it follows $\left(A_{1} X_{1}\right)^{n} A_{1}=A_{1}$. Therefore,

$$
X=\left[\begin{array}{cc}
X_{1} & 0 \\
0 & 0
\end{array}\right], A X=\left[\begin{array}{cc}
A_{1} X_{1} & 0 \\
0 & 0
\end{array}\right], X A=\left[\begin{array}{cc}
X_{1} A_{1} & 0 \\
0 & 0
\end{array}\right]
$$

From $\left(A_{1} X_{1}\right)^{n}=I_{\mathcal{R}(A)},\left(X_{1} A_{1}\right)^{n}=I_{\mathcal{R}\left(A^{*}\right)},\left(A_{1} X_{1}\right)^{*}=A_{1} X_{1},\left(X_{1} A_{1}\right)^{*}=X_{1} A_{1}$ by Lemma 2.1 we have for odd n :

$$
A_{1} X_{1}=I_{\mathcal{R}(A)}, X_{1} A_{1}=I_{\mathcal{R}\left(A^{*}\right)} \Rightarrow X_{1}=A_{1}^{-1} \Rightarrow X=A^{+}
$$

By the same lemma, for even n we have:

$$
A_{1} X_{1}=\left[\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right] \in \mathcal{L}\left(\left[\begin{array}{c}
S \\
S_{\mathcal{R}(A)}^{\perp}
\end{array}\right]\right), X_{1} A_{1}=\left[\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right] \in \mathcal{L}\left(\left[\begin{array}{c}
T \\
T_{\mathcal{R}\left(A^{*}\right)}^{\perp}
\end{array}\right]\right)
$$

where $S \oplus^{\perp} S_{\mathcal{R}(A)}^{\perp}=\mathcal{R}(A), T \oplus^{\perp} T_{\mathcal{R}\left(A^{*}\right)}^{\perp}=\mathcal{R}\left(A^{*}\right)$ (clearly, $\left.S_{\mathcal{R}(A)}^{\perp}=\mathcal{R}(A) \ominus S, T_{\mathcal{R}\left(A^{*}\right)}^{\perp}=\mathcal{R}\left(A^{*}\right) \ominus T\right)$. Therefore,

$$
A_{1} X_{1}=I_{\mathcal{R}(A)}-2 P_{S}, X_{1} A_{1}=I_{\mathcal{R}\left(A^{*}\right)}-2 P_{T}
$$

so we have

$$
X_{1}=A_{1}^{-1}\left(I_{\mathcal{R}(A)}-2 P_{S}\right)=\left(I_{\mathcal{R}\left(A^{*}\right)}-2 P_{T}\right) A_{1}^{-1}
$$

from where we see the relation between the subspaces T and S :

$$
A_{1}^{-1} P_{S}=P_{T} A_{1}^{-1} \Leftrightarrow P_{S} A_{1}=A_{1} P_{T}
$$

so those projections are similar. We can put

$$
X_{1}=A_{1}^{-1}\left(I_{\mathcal{R}(A)}-2 P_{S}\right)=\left(I_{\mathcal{R}\left(A^{*}\right)}-2 A_{1}^{-1} P_{S} A_{1}\right) A_{1}^{-1}
$$

When we return to the operator X, we have

$$
X=A^{\dagger}\left(P_{\mathcal{R}(A)}-2 P_{S}\right)=A^{\dagger}-2 A^{\dagger} P_{S}=A^{\dagger}\left(I-2 P_{S}\right)
$$

and on similar way

$$
X=\left(P_{R\left(A^{*}\right)}-2 P_{T}\right) A^{\dagger}=A^{\dagger}-2 P_{T} A^{\dagger}=\left(I-2 P_{T}\right) A^{\dagger}
$$

Also, $A^{\dagger} P_{S}=P_{T} A^{\dagger}$, or, equivalently, $P_{S} A=A P_{T}$.

Remark 2.3. If we suppose

$$
A_{1}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
A_{13} & A_{14}
\end{array}\right]:\left[\begin{array}{c}
T \\
T_{\mathcal{R}\left(A^{*}\right)}^{\perp}
\end{array}\right] \mapsto\left[\begin{array}{c}
S \\
S_{\mathcal{R}(A)}^{\perp}
\end{array}\right]
$$

from $P_{S} A_{1}=A_{1} P_{T}$ we have $A_{12}=0, A_{13}=0$, so the operator A_{1} must have the following form

$$
A_{1}=\left[\begin{array}{cc}
A_{11} & 0 \\
0 & A_{14}
\end{array}\right]:\left[\begin{array}{c}
T \\
T_{\mathcal{R}\left(A^{*}\right)}^{\perp}
\end{array}\right] \mapsto\left[\begin{array}{c}
S \\
S_{\mathcal{R}(A)}^{\perp}
\end{array}\right]
$$

where A_{11} and A_{14} are invertible operators.
We have seen that odd n case reduces to $n=1$, which coincides with the Moore-Penrose inverse. As an important result, because $\left(A_{1} X_{1}\right)^{2}=I_{\mathcal{R}(A)}$ and $\left(X_{1} A_{1}\right)^{2}=I_{\mathcal{R}\left(A^{*}\right)}$, we have that case $n=2 k$ actually reduces to $n=2$. Therefore, we can define new generalized inverse which depends of some subspace(s).

Definition 2.4. Let H, K be arbitrary Hilbert spaces and $A \in \mathcal{L}(H, K)$ be closed-range operator. For fixed subspace $S \subset \mathcal{R}(A)$ (or, equivalently, $T \subset \mathcal{R}\left(A^{*}\right)$, where S and T are related by

$$
\begin{equation*}
A P_{T}=P_{S} A, \text { or, equivalently, } A^{\dagger} P_{S}=P_{T} A^{\dagger} \tag{1}
\end{equation*}
$$

there exist unique operator denoted by $A^{\ddagger} \equiv A_{T, S}^{\ddagger}$ such that the following four Penrose-like equations are satisfied:

$$
\begin{equation*}
\left(A A^{\ddagger}\right)^{2} A=A, A^{\ddagger}\left(A A^{\ddagger}\right)^{2}=A^{\ddagger},\left(A A^{\ddagger}\right)^{*}=A A^{\ddagger},\left(A^{\ddagger} A\right)^{*}=A^{\ddagger} A . \tag{2}
\end{equation*}
$$

Such inverse will be called extended MP inverse, and can be explicitly given by

$$
\begin{equation*}
A_{T, S}^{\ddagger}=A^{\dagger}\left(I-2 P_{S}\right)=\left(I-2 P_{T}\right) A^{\dagger} \tag{3}
\end{equation*}
$$

The existence and the uniqueness of extended Moore-Penrose inverse follows immediately by preceding construction. We use both subspaces in the index although they are uniquely related ($P_{T}=A_{1}^{-1} P_{S} A_{1}$, where $\left.A_{1}=\left.A\right|_{\mathcal{R}\left(A^{*}\right)}\right)$, because it is convenient in various identities. Note that for trivial closed subspaces $S=\{0\}$ and $S=\mathcal{R}(A)$ we also have $A_{\{0,, 0\}}^{\ddagger}=A^{\dagger}\left(I-2 P_{\{0\}}\right)=A^{\dagger}$ and $A_{\mathcal{R}(A), \mathcal{R}\left(A^{+}\right)}^{\ddagger}=A^{\dagger}\left(I-2 P_{\mathcal{R}(A)}\right)=-A^{\dagger}$.

3. Properties of EMP

It is very likely that properties of extended Moore-Penrose inverse strongly resemble to those of MoorePenrose inverse. Also, for given orthogonal projections P_{S} and P_{T} the operators $I-2 P_{S}$ and $I-2 P_{T}$ are unitary and they are square roots of unit operators $I_{\mathcal{R}(A)}$ and $I_{\mathcal{R}\left(A^{*}\right)}$ on appropriate Hilbert spaces.

Theorem 3.1. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, let $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}\left(A^{*}\right)$ be nontrivial closed subsets.

1. $A_{T, S}^{\ddagger} P_{S}=-A^{\dagger} P_{S}, P_{T} A_{T, S}^{\ddagger}=-P_{T} A^{\dagger}, P_{T} A_{T, S}^{\ddagger} P_{S}=-P_{T} A^{\dagger} P_{S}$;
2. $A A_{T, S}^{\ddagger}=P_{\mathcal{R}(A)}-2 P_{S}, A_{T, S}^{\ddagger} A=P_{\mathcal{R}\left(A^{*}\right)}-2 P_{T}$; those operators are Hermitian, but they are not idempotents. Also we have:

$$
P_{S}=\frac{1}{2}\left(P_{\mathcal{R}(A)}-A A_{T, S}^{\ddagger}\right), P_{T}=\frac{1}{2}\left(P_{\mathcal{R}\left(A^{*}\right)}-A_{T, S}^{\ddagger} A\right) ;
$$

3. $A_{T, S}^{\ddagger}=A^{\dagger} A A_{T, S}^{\ddagger}=A_{T, S}^{\ddagger} A A^{\dagger}=A^{\dagger} A A_{T, S}^{\ddagger} A A^{\dagger}$;
4. $A^{\dagger}-A_{T, S}^{\ddagger}=2 A^{\dagger} P_{S}=2 P_{T} A^{\dagger}$, so $\left\|A^{\dagger}-A_{T, S}^{\ddagger}\right\| \leq 2\left\|A^{\dagger}\right\|$.

Proof. It follows from (3), with $S \subset \mathcal{R}(A) \Leftrightarrow P_{\mathcal{R}(A)} P_{S}=P_{S}$ and $T \subset \mathcal{R}\left(A^{*}\right) \Leftrightarrow P_{T} P_{\mathcal{R}\left(A^{*}\right)}=P_{T}$ (Th. 1.5.b).

By the definition, for fixed $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}\left(A^{*}\right)$, related by (1), there exists unique $A_{T, S}^{\ddagger}$. By the preceding theorem, part 2, for given $A_{T, S}^{\ddagger}$ one can reconstruct subspaces T and S, and the relation (1) holds.

Some properties of extended Moore-Penrose inverse, similar to those of the ordinary Moore-Penrose inverse, are presented in the next theorem (cf. Proposition 1.3).

Theorem 3.2. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}\left(A^{*}\right)$ nontrivial closed subspaces. Then we have:

1. $(\lambda A)_{T, S}^{\ddagger}=\lambda^{\dagger} A_{T, S^{\prime}}^{\ddagger}$ where $\lambda^{\dagger}=\lambda^{-1}$ if $\lambda \neq 0$ and $\lambda^{\dagger}=0$ if $\lambda=0$;
2. $\left(A A_{T, S}^{\ddagger}\right)^{2}=P_{\mathcal{R}(A)},\left(A_{T, S}^{\ddagger} A\right)^{2}=P_{\mathcal{R}\left(A^{*}\right)}$;
3. $A^{*}\left(A A_{T, S}^{\ddagger}\right)^{2}=A^{*}=\left(A_{T, S}^{\ddagger} A\right)^{2} A^{*}, A^{*}-A^{*} A A_{T, S}^{\ddagger}=2 A^{*} P_{S}, A^{*}-A_{T, S}^{\ddagger} A A^{*}=2 P_{T} A^{*}$;
4. $\left(A_{T, S}^{\ddagger}\right)^{*}=\left(A^{*}\right)_{S, T}^{\ddagger}$;
5. $A_{T, S}^{\ddagger}=A^{*}\left(A A^{*}\right)_{S, S^{\prime}}^{\ddagger} A_{T, S}^{\ddagger}=\left(A^{*} A\right)_{T, T}^{\ddagger} A^{*}$;
6. $\left(A^{*}\right)_{S, T}^{\ddagger} A_{T, S}^{\ddagger}=\left(A A^{*}\right)^{\dagger}, A_{T, S}^{\ddagger}\left(A^{*}\right)_{S, T}^{\ddagger}=\left(A^{*} A\right)^{\dagger}$;
7. $A-A A_{T, S}^{\ddagger} A=2 P_{S} A=2 A P_{T} \neq 0$;
8. $\mathcal{R}\left(A_{T, S}^{\ddagger}\right)=\mathcal{R}\left(A^{*}\right), \mathcal{N}\left(A_{T, S}^{\ddagger}\right)=\mathcal{N}\left(A^{*}\right)$;
9. $\left(A_{T, S}^{\ddagger}\right)_{S, T}^{\ddagger}=A$;
10. $\left(A_{T, S}^{\ddagger}\right)^{\dagger}=\left(I-2 P_{S}\right) A=A\left(I-2 P_{T}\right)=\left(A^{\dagger}\right)_{S, T}^{\ddagger}$.

Proof. Recall, $V \subset W \Leftrightarrow P_{V} P_{W}=P_{W} P_{V}=P_{V}$, by Theorem 1.5.b.

1. $(\lambda A)_{T, S}^{\ddagger}=(\lambda A)^{\dagger}\left(I-2 P_{S}\right)=\lambda^{\dagger} A^{\dagger}\left(I-2 P_{S}\right)=\lambda^{\dagger} A_{T, S}^{\ddagger} ;$
2. We have $\left(A A_{T, S}^{\ddagger}\right)^{2}=\left(A A^{\dagger}\left(I-2 P_{S}\right)\right)^{2}=\left(P_{\mathcal{R}(A)}-2 P_{S}\right)^{2}=P_{\mathcal{R}(A)}$ and $\left(A_{T, S}^{\ddagger} A\right)^{2}=\left(P_{\mathcal{R}\left(A^{*}\right)}-2 P_{T}\right)^{2}=P_{\mathcal{R}\left(A^{*}\right)}$.
3. By 2. and Proposition 1.3.3, we have $A^{*} P_{\mathcal{R}(A)}=A^{*}=P_{\mathcal{R}\left(A^{*}\right)} A$. The second part is due to $A^{*}-A^{*} A A_{T, S}^{\ddagger}=$ $A^{*}-A^{*}\left(P_{\mathcal{R}(A)}-2 P_{S}\right)=2 A^{*} P_{S}$ and $A^{*}-A_{T, S}^{\ddagger} A A^{*}=A^{*}-\left(P_{\mathcal{R}\left(A^{*}\right)}-2 P_{T}\right) A^{*}=2 P_{T} A^{*}$.
4. $\left(A_{T, S}^{\ddagger}\right)^{*}=\left(A^{\dagger}\left(I-2 P_{S}\right)\right)^{*}=\left(I-2 P_{S}\right)\left(A^{\dagger}\right)^{*}=\left(I-2 P_{S}\right)\left(A^{*}\right)^{\dagger}=\left(A^{*}\right)_{S, T}^{\ddagger} ;$ also $A^{*} P_{S}=\left(P_{S} A\right)^{*}=\left(A P_{T}\right)^{*}=P_{T} A^{*}$.
5. We have $A^{*}\left(A A^{*}\right)_{S, S}^{\ddagger}=A^{*}\left(A A^{*}\right)^{\dagger}\left(I-2 P_{S}\right)=A^{\dagger}\left(I-2 P_{S}\right)=A_{T, S^{\prime}}^{\ddagger}$ and $\left(A^{*} A\right)_{T, T}^{\ddagger} A^{*}=\left(I-2 P_{T}\right)\left(A^{*} A\right)^{\dagger} A^{*}=$ $\left(I-2 P_{T}\right) A^{+}=A_{T, S}^{\ddagger}$. Note that $S \subset \mathcal{R}\left(A A^{*}\right)=\mathcal{R}(A)$ and $T \subset \mathcal{R}\left(A^{*} A\right)=\mathcal{R}\left(A^{*}\right)$.
6. $\left(A^{*}\right)_{S, T}^{\ddagger} A_{T, S}^{\ddagger}=\left(A_{T, S}^{\ddagger}\right)^{*} A_{T, S}^{\ddagger}=\left(\left(I-2 P_{T}\right) A^{\dagger}\right)^{*}\left(I-2 P_{T}\right) A^{\dagger}=\left(A^{\dagger}\right)^{*}\left(I-2 P_{T}\right)^{2} A^{\dagger}=\left(A^{*}\right)^{\dagger} A^{\dagger}=\left(A A^{*}\right)^{\dagger}$, and $A_{T, S}^{\ddagger}\left(A^{*}\right)_{S, T}^{\ddagger}=A^{\dagger}\left(I-2 P_{S}\right)\left(A^{\dagger}\left(I-2 P_{S}\right)\right)^{*}=A^{\dagger}\left(I-2 P_{S}\right)^{2}\left(A^{\dagger}\right)^{*}=A^{\dagger}\left(A^{*}\right)^{\dagger}=\left(A^{*} A\right)^{\dagger}$.
7. $S \subset \mathcal{R}(A) \Rightarrow P_{S} A \neq 0$, so this difference cannot be zero.
8. The operators $I-2 P_{S}$ and $I-2 P_{T}$ are unitary, hence invertible, so $\mathcal{R}\left(A_{T, S}^{\ddagger}\right)=\mathcal{R}\left(A^{\dagger}\left(I-2 P_{S}\right)\right)=A^{\dagger}((I-$ $\left.\left.2 P_{S}\right)(K)\right)=A^{\dagger}(K)=\mathcal{R}\left(A^{\dagger}\right)=\mathcal{R}\left(A^{*}\right), \mathcal{N}\left(A_{T, S}^{\ddagger}\right)=\mathcal{N}\left(\left(I-2 P_{T}\right) A^{\dagger}\right)=\mathcal{N}\left(A^{\dagger}\right)=\mathcal{N}\left(A^{*}\right)=\mathcal{R}(A)^{\perp}$.
9. Let us note that the reverse order law $\left(A^{\dagger}\left(I-2 P_{S}\right)\right)^{\dagger}=\left(I-2 P_{S}\right) A$ holds, because $I-2 P_{S}$ is unitary operator (hence Hermitian and invertible). Now we have

$$
\left(A_{T, S}^{\ddagger}\right)_{S, T}^{\ddagger}=\left(A_{T, S}^{\ddagger}\right)^{\dagger}\left(I-2 P_{T}\right)=\left(A^{\dagger}\left(I-2 P_{S}\right)\right)^{\dagger}\left(I-2 P_{T}\right)=\left(I-2 P_{S}\right) A\left(I-2 P_{T}\right)=A,
$$

because $A P_{T}=P_{S} A \Rightarrow A P_{T}=P_{S} A P_{T}$. Also, $A_{T, S}^{\ddagger} P_{S}=P_{T} A_{T, S}^{\ddagger} \Leftrightarrow A^{\dagger}\left(I-2 P_{S}\right) P_{S}=P_{T}\left(I-2 P_{T}\right) A^{\dagger} \Leftrightarrow$ $A^{\dagger} P_{S}=P_{T} A^{\dagger}$.
10. Because of $\left(A_{T, S}^{\ddagger}\right)^{\dagger}=\left(A^{\dagger}\left(I-2 P_{S}\right)\right)^{\dagger}=\left(I-2 P_{S}\right) A$, and $\left(A^{\dagger}\right)_{S, T}^{\ddagger}=\left(A^{\dagger}\right)^{\dagger}\left(I-2 P_{T}\right)=A\left(I-2 P_{T}\right)$, we have the proof. Note that 8. implies the existence of $\left(A_{T, S}^{\ddagger}\right)^{\dagger}$.

Unlike the ordinary Moore-Penrose inverse, the extended Moore-Penrose inverse depends on some subspaces, and we present some related properties.

Theorem 3.3. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S, S_{1}, S_{2} \subset \mathcal{R}(A), T, T_{1}, T_{2} \subset \mathcal{R}\left(A^{*}\right)$ be nontrivial closed subsets. Then we have

1. $A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}\left(I-2 P_{S_{1}}-2 P_{S_{2}}+4 P_{S_{1}} P_{S_{2}}\right)$.

- $S_{1} \cap S_{2}=\{0\} \Rightarrow A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}\left(I-2\left(P_{S_{1}}+P_{S_{2}}\right)\right)$;
- $S_{1} \oplus^{\perp} S_{2}=\mathcal{R}(A) \Rightarrow A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=-A^{\dagger}$;
- $S_{1} \perp S_{2} \Rightarrow A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=A_{T_{1} \oplus T_{2}, S_{1} \oplus S_{2}}^{\ddagger}$.

2. $A_{T_{1}, S_{1}}^{\ddagger}-A_{T_{2}, S_{2}}^{\ddagger}=2 A^{\dagger}\left(P_{S_{2}}-P_{S_{1}}\right)$; particularly, if $S_{1} \subset S_{2}$ then $A_{T_{1}, S_{1}}^{\ddagger}-A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}-A_{T_{2} \ominus T_{1}, S_{2} \ominus S_{1}}^{\ddagger}$;
3. $A A_{T_{1}, S_{1}}^{\ddagger}-A A_{T_{2}, S_{2}}^{\ddagger}=2\left(P_{S_{2}}-P_{S_{1}}\right)$; particularly, if $S_{1} \subset S_{2}$ then $A A_{T_{1}, S_{1}}^{\ddagger}-A A_{T_{2}, S_{2}}^{\ddagger}=2 P_{T_{2} \ominus T_{1}, S_{2} \ominus S_{1}}$;
4. $A_{T_{1}, S_{1}}^{\ddagger} A-A_{T_{2}, S_{2}}^{\ddagger} A=2\left(P_{T_{2}}-P_{T_{1}}\right)$; particularly, if $T_{1} \subset T_{2}$ then $A_{T_{1}, S_{1}}^{\ddagger} A-A_{T_{2}, S_{2}}^{\ddagger} A=2 P_{T_{2} \ominus T_{1}, S_{2} \ominus S_{1}}$;
5. $A, B \in \mathcal{L}(H, K), \mathcal{R}(A)=\mathcal{R}(B) \supsetneq S$, then $\left(A_{T, S}^{\ddagger}-B_{T, S}^{\ddagger}\right)^{\dagger}=\left(A^{\dagger}-B^{\dagger}\right)_{S, T}^{\ddagger}$.

Proof.

1. $A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}\left(I-2 P_{S_{1}}\right) A A^{\dagger}\left(I-2 P_{S_{2}}\right)=A^{\dagger}\left(I-2 P_{S_{1}}\right) P_{R(A)}\left(I-2 P_{S_{2}}\right)=A^{\dagger}\left(I-2 P_{S_{1}}-2 P_{S_{2}}+4 P_{S_{1}} P_{S_{2}}\right)$. If $S_{1} \cap S_{2}=\{0\}$, then $P_{S_{1}} P_{S_{2}}=0$, so $A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}\left(I-2\left(P_{S_{1}}+P_{S_{2}}\right)\right)$. When $S_{1} \oplus^{\perp} S_{2}=\mathcal{R}(A)$, then $A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=-A^{\dagger}$. For $S_{1} \perp S_{2}$, by Theorem 1.6 we have $P_{S_{1}} P_{S_{2}}=0$ and $P_{S_{1}}+P_{S_{2}}=P_{S_{1} \oplus S_{2}}$, therefore $A_{T_{1}, S_{1}}^{\ddagger} A A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}\left(I-2 P_{S_{1} \oplus S_{2}}\right)=A_{T_{1} \oplus T_{2}, S_{1} \oplus S_{2}}^{\ddagger}$.
2. $A_{T_{1}, S_{1}}^{\ddagger}-A_{T_{2}, S_{2}}^{\ddagger}=A^{\dagger}\left(I-2 P_{S_{1}}\right)-A^{\dagger}\left(I-2 P_{S_{2}}\right)=2 A^{\dagger}\left(P_{S_{2}}-P_{S_{1}}\right)$. When $S_{1} \subset S_{2}$, by Theorem 1.6 it follows $P_{S_{2}}-P_{S_{1}}=P_{S_{2} \Theta S_{1}}$ is orthogonal projection, therefore

$$
A_{T_{1}, S_{1}}^{\ddagger}-A_{T_{2}, S_{2}}^{\ddagger}=2 A^{\dagger} P_{S_{2} \ominus S_{1}}=A^{\dagger}\left(I-\left(I-2 P_{S_{2} \ominus S_{1}}\right)\right)=A^{\dagger}-A_{T_{2} \ominus T_{1}, S_{2} \ominus S_{1}}^{\ddagger}
$$

Note that $S_{1} \subset S_{2} \Leftrightarrow P_{S_{1}} P_{S_{2}}=P_{S_{2}} P_{S_{1}}=P_{S_{1}} \Leftrightarrow P_{S_{1}} P_{S_{2}} A=P_{S_{2}} P_{S_{1}} A=P_{S_{1}} A \Leftrightarrow P_{S_{1}} A P_{T_{2}}=P_{S_{2}} A P_{T_{1}}=$ $A P_{T_{1}} \Leftrightarrow A P_{T_{1}} P_{T_{2}}=A P_{T_{2}} P_{T_{1}}=A P_{T_{1}} \Leftrightarrow A^{\dagger} A P_{T_{1}} P_{T_{2}}=A^{\dagger} A P_{T_{2}} P_{T_{1}}=A^{\dagger} A P_{T_{1}} \Leftrightarrow P_{T_{1}} P_{T_{2}}=P_{T_{2}} P_{T_{1}}=P_{T_{1}} \Leftrightarrow$ $T_{1} \subset T_{2}$.
3. $A A_{T_{1}, S_{1}}^{\ddagger}-A A_{T_{2}, S_{2}}^{\ddagger}=2 A A^{\dagger}\left(P_{S_{2}}-P_{S_{1}}\right)=2\left(P_{S_{2}}-P_{S_{1}}\right)$; the rest of the proof as in the second part.
4. Analogous to the proof of part 3.
5. By part 10 of Theorem 3.2 and part 8 of Proposition 1.1, we have

$$
\left(\left(A^{\dagger}-B^{\dagger}\right)_{S, T}^{\ddagger}\right)^{\dagger}=\left(\left(A^{\dagger}-B^{\dagger}\right)^{\dagger}\left(I-2 P_{T}\right)\right)^{\dagger}=\left(I-2 P_{T}\right)\left(A^{\dagger}-B^{\dagger}\right)=A_{T, S}^{\ddagger}-B_{T, S}^{\ddagger} .
$$

Theorem 3.4. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S_{i}, i=\overline{1, n}, n \geq 2$, be closed subspaces of $\mathcal{R}(A)$, such that $\mathcal{R}(A)$ is their orthogonal direct sum (i.e. $\mathcal{R}(A)=S_{1} \oplus^{\perp} S_{2} \oplus^{\perp} \ldots \oplus^{\perp} S_{n}$). Then:

$$
\sum_{k=1}^{n} A_{T_{k}, S_{k}}^{\ddagger}=(n-2) A^{\dagger}
$$

Here $T_{k}, k=\overline{1, n}$, are related to $S_{k}, k=\overline{1, n}$, by (1).

Proof. Because of

$$
S_{1} \oplus^{\perp} S_{2} \oplus^{\perp} \ldots \oplus^{\perp} S_{n}=\mathcal{R}(A) \Leftrightarrow P_{S_{1}}+P_{S_{2}}+\ldots+P_{S_{n}}=I_{\mathcal{R}(A)}
$$

we have

$$
\sum_{k=1}^{n} A_{T_{k}, S_{k}}^{\ddagger}=A^{\dagger} \sum_{k=1}^{n}\left(I-2 P_{S_{k}}\right)=A^{+}\left(\sum_{k=1}^{n-1}\left(I-2 P_{S_{k}}\right)+I-2\left(P_{\mathcal{R}(A)}-2 \sum_{k=1}^{n-1} P_{S_{k}}\right)\right)=A^{\dagger}\left(n I-2 P_{\mathcal{R}(A)}\right)=(n-2) A^{\dagger}
$$

In the case when there are just two subspaces, the following corollary holds.
Corollary 3.5. Let $A \in \mathcal{L}(H, K)$ be closed-range operator and $S \subset \mathcal{R}(A)$ nontrivial closed subspace. Then we have

$$
A_{T^{ \pm}, S^{\perp}}^{\ddagger}=-A_{T, S^{\prime}}^{\ddagger}
$$

where $S_{\mathcal{R}(A)}^{\perp}$ is closed subspace such that $S \oplus^{\perp} S_{\mathcal{R}(A)}^{\perp}=\mathcal{R}(A)$. Here $T \subset \mathcal{R}\left(A^{*}\right)$ is related to S by (1).
Next result establishes the connection between extended Moore-Penrose equation and some other generalized inverses:

Theorem 3.6. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}\left(A^{*}\right)$ nontrivial closed subspaces. Then we have:

1. $A^{\dagger}=A_{T, S}^{\ddagger}\left(I-2 P_{S}\right)=\left(I-2 P_{T}\right) A_{T, S}^{\ddagger}$;
2. $A_{T, S}^{\ddagger} A A_{T, S}^{\ddagger}=A^{\dagger}$;
3. $A_{T, S}^{\ddagger}$ is $E P$ if and only if A is $E P$.

Proof. Recall that $V \subset W \Leftrightarrow P_{V} P_{W}=P_{W} P_{V}=P_{V}$, by Theorem 1.5.b.

1. Operator $I-2 P_{S}$ is unitary, therefore $A_{T, S}^{\ddagger}=A^{\dagger}\left(I-2 P_{S}\right) \Leftrightarrow A^{\dagger}=A_{T, S}^{\ddagger}\left(I-2 P_{S}\right)$.
2. $A_{T, S}^{\ddagger} A A_{T, S}^{\ddagger}=A_{T, S}^{\ddagger}\left(P_{\mathcal{R}(A)}-2 P_{S}\right)=A^{\dagger}\left(I-2 P_{S}\right)\left(P_{\mathcal{R}(A)}-2 P_{S}\right)=A^{\dagger} P_{\mathcal{R}(A)}=A^{\dagger}$;
3. The proof follows from the following equivalence chain:

$$
\begin{aligned}
& A_{T, S}^{\ddagger}\left(A_{T, S}^{\ddagger}\right)^{\dagger}=\left(A_{T, S}^{\ddagger}\right)^{\dagger} A_{T, S}^{\ddagger} \Leftrightarrow A^{\dagger}\left(I-2 P_{S}\right)\left(A^{\dagger}\left(I-2 P_{S}\right)\right)^{\dagger}=\left(\left(I-2 P_{T}\right) A^{\dagger}\right)^{\dagger}\left(I-2 P_{T}\right) A^{\dagger} \Leftrightarrow \\
& \Leftrightarrow A^{\dagger}\left(I-2 P_{S}\right)^{2} A=A\left(I-2 P_{T}\right)^{2} A^{\dagger} \Leftrightarrow A^{\dagger} A=A A^{\dagger} .
\end{aligned}
$$

Theorem 3.7. Let $A \in \mathcal{L}(H, K)$ be closed range operators and $S \subset \mathcal{R}(A), T \subset \mathcal{R}\left(A^{*}\right)$ nontrivial closed subsets. Then we have the following norm estimates:

1. $\left\|A_{T, S}^{\ddagger}\right\|=\left\|A^{\dagger}\right\| ;$
2. $\left\|A-A A_{T, S}^{\ddagger} A\right\| \leq 2\|A\|$;

Proof. 1. From (3) we have

$$
\left\|A_{T, S}^{\ddagger}\right\|=\left\|A^{\dagger}\left(I-2 P_{S}\right)\right\| \leq\left\|A^{\dagger}\right\|
$$

while from Theorem 3.6, part 1, it follows

$$
\left\|A^{\dagger}\right\|=\left\|A_{T, S}^{\ddagger}\left(I-2 P_{S}\right)\right\| \leq\left\|A_{T, S}^{\ddagger}\right\| .
$$

2. It follows from $A-A A_{T, S}^{\ddagger} A=2 P_{S} A$, because $\left\|P_{S}\right\|=1$.

Proposition 3.8. Consider the operator equation $A x=b$. We have the following possibilities:

- $b \notin \mathcal{R}(A): A A_{T, S}^{\ddagger} b=\left(P_{\mathcal{R}(A)}-2 P_{S}\right) b=0$,
- $b \in \mathcal{R}(A) \backslash S: A A_{T, S}^{\ddagger} b=\left(P_{\mathcal{R}(A)}-2 P_{S}\right) b=b$,
- $b \in S: A A_{T, S}^{\ddagger} b=\left(P_{R(A)}-2 P_{S}\right) b=-b$.

Therefore, $x=A_{T, S}^{\ddagger} b$ is a solution when $b \in \mathcal{R}(A) \backslash S$, and $x=-A_{T, S}^{\ddagger} b$ is solution for $b \in S$.

4. Some examples

- It is obvious that $A=0 \Leftrightarrow A^{\ddagger}=0$.
- For $A=I \in \mathcal{L}(H)$ and given subspace $S \subset H$ we have $X^{*}=X$ and $X^{2}=I$, so $I_{T, S}^{\ddagger}=I-2 P_{S}=I-2 P_{T}$.
- Suppose $A \in \mathcal{L}(H)$ is invertible, and $S, T \subset H$ are given. By the equations, we have

$$
(A X)^{2}=I=(X A)^{2},(A X)^{*}=A X,(X A)^{*}=X A .
$$

The reasonings similar to those preceding the definition gives us $A X=I-2 P_{S}, X A=I-2 P_{T}$. Therefore,

$$
A_{T, S}^{\ddagger}=A^{-1}\left(I-2 P_{S}\right)=\left(I-2 P_{T}\right) A^{-1}, \text { where } A^{-1} P_{S}=P_{T} A^{-1}
$$

So, the subspaces S, T are similar $P_{T}=A^{-1} P_{S} A$. Also in this case we have

$$
P_{S}=\frac{1}{2}\left(I-A A_{S}^{\ddagger}\right), P_{T}=\frac{1}{2}\left(I-A_{S}^{\ddagger} A\right) .
$$

- Let R and L be the right shift and left shift operator, respectively, defined on separable Hilbert space ℓ^{2} with canonical basis $\left(\left\{e_{1}, e_{2}, \ldots\right\}\right)$ on usual way

$$
R\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots\right), L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
$$

It is not hard to see that $R^{\dagger}=R^{*}=L$ and $\mathcal{R}(R)=\operatorname{lin}\left\{e_{2}, e_{3}, \ldots\right\}$.
Let $S_{1}=\operatorname{lin}\left\{e_{3}, e_{5}, \ldots\right\}$ and $S_{2}=\left\{e_{2}, e_{4}, \ldots\right\}$ be given subspaces of $\mathcal{R}(R)$ such that $S_{1} \oplus^{\perp} S_{2}=\mathcal{R}(R)$. Then we have for any $x \in \ell^{2}$:

$$
\begin{aligned}
& R_{T_{1}, S_{1}}^{\ddagger} x=R^{\dagger}\left(I-2 P_{S_{1}}\right) x=R^{\dagger}\left(x-2\left(0,0, x_{3}, 0, x_{5}, 0, \ldots\right)\right)=L\left(x_{1}, x_{2},-x_{3}, x_{4},-x_{5}, \ldots\right)=\left(x_{2},-x_{3}, x_{4},-x_{5}, \ldots\right), \\
& R_{T_{2}, S_{2}}^{\ddagger} x=R^{\dagger}\left(I-2 P_{S_{2}}\right) x=R^{\dagger}\left(x-2\left(0, x_{2}, 0, x_{4}, 0, \ldots\right)\right)=L\left(x_{1},-x_{2}, x_{3},-x_{4}, x_{5}, \ldots\right)=\left(-x_{2}, x_{3},-x_{4}, x_{5}, \ldots\right) .
\end{aligned}
$$

It is obvious that $R_{T_{1}, S_{1}} x+R_{T_{2}, S_{2}} x=0$, therefore $R_{T_{1}, S_{1}}+R_{T_{2}, S_{2}}=0$.
Acknowledgement: The author would like to express his gratitude to Professor Dragan S. Djordjević for useful comments that improved the quality of the paper.

References

[1] A. Ben-Israel, T. N. E. Greville, Generalized inverses: theory and applications, 2nd ed., Springer, New York, 2003.
[2] S. R. Caradus, Generalized inverses and operator theory, Queen's paper in pure and applied mathematics, Queen's University, Kingston, Ontario, 1978.
[3] D. S. Djordjević, N. Č. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (1) (2010), 252-261.
[4] D. S. Djordjević, V. Rakočević, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2008.
[5] W. Rudin, Functional analysis, 2nd ed., McGraw-Hill Inc., 1991.
[6] J. Weidmann, Linear operators in Hilbert spaces, Springer, 1980.

[^0]: 2010 Mathematics Subject Classification. 15A60, 15A09
 Keywords. Moore-Penrose inverse; Euclidean algorithm
 Received: 15 January 2015; Accepted: 22 February 2015
 Communicated by Dragan S. Djordjević
 Research supported by the Ministry of Science, Republic of Serbia, grant No. 174007.
 Email address: ndincic@hotmail.com (Nebojša Č. Dinčić)

