Filomat 30:2 (2016), 419–428 DOI 10.2298/FIL1602419D

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Extending the Moore-Penrose Inverse

Nebojša Č. Dinčić^a

^aFaculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

Abstract. We show that it is possible to define generalized inverse similar to the Moore-Penrose inverse by slightly modified Penrose equations. Then we are investigating properties of this, so-called extended Moore-Penrose inverse.

1. Introduction

Let *H* and *K* be arbitrary Hilbert spaces, and let $\mathcal{L}(H, K)$ be the set of all bounded linear operators from *H* to *K*. If H = K, then we abbreviate $\mathcal{L}(H, H) = \mathcal{L}(H)$. For $A \in \mathcal{L}(H, K)$ by $\mathcal{R}(A)$, $\mathcal{N}(A)$ and A^* we denote the range space, the null-space and adjoint, respectively.

Throughout the paper direct sum of the subspaces will be denoted by \oplus , and orthogonal direct sum by \oplus^{\perp} . An operator $P \in \mathcal{L}(H)$ is projection if $P^2 = P$, and orthogonal projection if $P^2 = P = P^*$. If $H = M \oplus N$, then $P_{M,N}$ denotes projection such that $\mathcal{R}(P_{M,N}) = M$, $\mathcal{N}(P_{M,N}) = N$. If $H = M \oplus^{\perp} N$, then we write P_M instead of $P_{M,N}$. Operator $A \in \mathcal{L}(H)$ is Hermitian (or selfadjoint) if $A = A^*$, normal if $AA^* = A^*A$, and unitary if $AA^* = A^*A = I$.

The Moore-Penrose inverse of $A \in \mathcal{L}(H, K)$, if it exists, is the unique operator $A^{\dagger} \in \mathcal{L}(K, H)$ satisfying the following, so-called Penrose equations:

$$(I) AA^{\dagger}A = A, (II) A^{\dagger}AA^{\dagger} = A^{\dagger}, (III) (AA^{\dagger})^{*} = AA^{\dagger}, (IV) (A^{\dagger}A)^{*} = A^{\dagger}A.$$

It is well-known that A^{\dagger} exists for given A if and only if $\mathcal{R}(A)$ is closed in K. For detailed introduction to the theory of generalized inverses, the reader is reffered, for example, to [1], [2], [4].

Closed-range operator $A \in \mathcal{L}(H)$ is EP ("equal-projection") if one of the following equivalent conditions holds: $AA^{\dagger} = A^{\dagger}A$, or $\mathcal{R}(A) = \mathcal{R}(A^{*})$, or $\mathcal{N}(A) = \mathcal{N}(A^{*})$.

In this paper we consider the following problem: for given closed-range operator $A \in \mathcal{L}(H, K)$ is there an operator $X \in \mathcal{L}(K, H)$ such that the following four Penrose-like equations are satisfied $(m, n \in \mathbb{N} \text{ are given})$:

(I_m)	$(AX)^m A = A,$
(II_n)	$X(AX)^n = X,$
(III)	$AX = (AX)^*,$
(IV)	$XA = (XA)^*.$

²⁰¹⁰ Mathematics Subject Classification. 15A60, 15A09

Keywords. Moore-Penrose inverse; Euclidean algorithm

Received: 15 January 2015; Accepted: 22 February 2015

Communicated by Dragan S. Djordjević

Research supported by the Ministry of Science, Republic of Serbia, grant No. 174007.

Email address: ndincic@hotmail.com (Nebojša Č. Dinčić)

It is obvious that case m = n = 1 reduces to well-known Moore-Penrose inverse.

Now we present some auxiliary results.

Lemma 1.1. Let $A \in \mathcal{L}(X, Y)$ have a closed range. Then A has the matrix decomposition with respect to the orthogonal decompositions of spaces $X = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$ and $Y = \mathcal{R}(A) \oplus \mathcal{N}(A^*)$:

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where A_1 is invertible. Moreover,

$$A^{\dagger} = \left[\begin{array}{cc} A_1^{-1} & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{array} \right] \to \left[\begin{array}{c} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{array} \right].$$

Lemma 1.2. [3] Let $A \in \mathcal{L}(X, Y)$ have a closed range. Let X_1 and X_2 be closed and mutually orthogonal subspaces of X, such that $X = X_1 \oplus X_2$. Let Y_1 and Y_2 be closed and mutually orthogonal subspaces of Y, such that $Y = Y_1 \oplus Y_2$. Then the operator A has the following matrix representations with respect to the orthogonal subspaces $X = X_1 \oplus X_2 = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$, and $Y = \mathcal{R}(A) \oplus \mathcal{N}(A^*) = Y_1 \oplus Y_2$:

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where $D = A_1A_1^* + A_2A_2^*$ maps $\mathcal{R}(A)$ into itself and D > 0 (meaning $D \ge 0$ invertible). Also,

$$A^{\dagger} = \begin{bmatrix} A_1^* D^{-1} & 0 \\ A_2^* D^{-1} & 0 \end{bmatrix}.$$

(b)

$$A = \begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix},$$

where $D = A_1^*A_1 + A_2^*A_2$ maps $\mathcal{R}(A^*)$ into itself and D > 0 (meaning $D \ge 0$ invertible). Also,

$$A^{\dagger} = \left[\begin{array}{cc} D^{-1}A_1^* & D^{-1}A_2^* \\ 0 & 0 \end{array} \right].$$

Here A_i *denotes different operators in any of these two cases.*

Some properties of the Moore-Penrose inverse are collected in the following proposition.

Proposition 1.3. Let $A \in \mathcal{L}(H, K)$ be closed-range operator. Then:

- 1. $(\lambda A)^{\dagger} = \lambda^{\dagger} A^{\dagger}$, where $\lambda^{\dagger} = \lambda^{-1}$ if $\lambda \neq 0$ and $\lambda^{\dagger} = 0$ if $\lambda = 0$;
- 2. $(A^{\dagger})^{\dagger} = A$, $(A^{*})^{\dagger} = (A^{\dagger})^{*}$;
- 3. $A^* = A^{\dagger}AA^* = A^*AA^{\dagger}, A = AA^*(A^*)^{\dagger} = (A^*)^{\dagger}A^*A;$
- 4. $A^{\dagger} = A^{*}(AA^{*})^{\dagger} = (A^{*}A)^{\dagger}A^{*}, \ (AA^{*})^{\dagger} = (A^{*})^{\dagger}A^{\dagger}, \ (A^{*}A)^{\dagger} = A^{\dagger}(A^{*})^{\dagger};$
- 5. $\mathcal{R}(A) = \mathcal{R}(AA^{\dagger}) = \mathcal{R}(AA^{\ast}), \ \mathcal{R}(A^{\dagger}) = \mathcal{R}(A^{\ast}) = \mathcal{R}(A^{\dagger}A) = \mathcal{R}(A^{\ast}A);$
- 6. $\mathcal{R}(I A^{\dagger}A) = \mathcal{N}(A^{\dagger}A) = \mathcal{N}(A) = \mathcal{R}(A^{*})^{\perp};$
- 7. $\mathcal{R}(I AA^{\dagger}) = \mathcal{N}(AA^{\dagger}) = \mathcal{N}(A^{\dagger}) = \mathcal{N}(A^{\ast}) = \mathcal{R}(A)^{\perp};$
- 8. $(UAV)^{\dagger} = V^*A^{\dagger}U^*$, when $U \in \mathcal{L}(K)$ and $V \in \mathcal{L}(H)$ are unitary operators (see for example [3] for some general reverse order law results).

Theorem 1.4 ([5], Th. 12.29). Suppose *E* is the spectral decomposition of a normal $T \in \mathcal{L}(H)$, $\lambda_0 \in \sigma(T)$, and $E_0 = E(\{\lambda_0\})$. Then

- (a) $\mathcal{N}(T \lambda_0 I) = \mathcal{R}(E_0),$
- (b) λ_0 is an eigenvalue of T if and only if $E_0 \neq 0$ and
- (c) every isolated point of $\sigma(T)$ is an eigenvalue of *T*.
- (d) Moreover, if $\sigma(T) = \{\lambda_1, \lambda_2, \lambda_3, ...\}$ is a countable set, then every $x \in H$ has a unique expansion of the form

$$x=\sum_{i=1}^{\infty}x_i,$$

where $Tx_i = \lambda_i x_i$. Also, $x_i \perp x_j$ whenever $i \neq j$.

Theorem 1.5 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let P_M and P_N be the orthogonal projections onto M and N, respectively.

- (a) We have $0 \le P_M \le I$.
- (b) The following statements are equivalent:

(i)
$$P_M \leq P_N$$
, (ii) $P_N P_M = P_M$, (iii) $M \subset N$, (iv) $P_M P_N = P_M$.

Theorem 1.6 ([6]). Let M and N be closed subspaces of a Hilbert space H, and let P_M and P_N be the orthogonal projections onto M and N, respectively.

- (a) $P = P_M P_N$ is an orthogonal projection if and only if $P_M P_N = P_N P_M$ holds; then we have $P = P_{M \cap N}$. We have $M \perp N$ if and only if $P_M P_N = 0$ (or $P_N P_M = 0$).
- (b) $Q = P_M + P_N$ is an orthogonal projection if and only if $M \perp N$, then we have $Q = P_{M \oplus N}$.
- (c) $R = P_M P_N$ is an orthogonal projection if and only if $N \subset M$; then we have $R = P_{M \ominus N}$.

Remark 1.7. (See [6]) If *H* is a Hilbert space and *T* and *T*₁ are closed subspaces such that $T_1 \subset T$, then there exists exactly one closed subspace T_2 such that $T_2 \subset T$, $T_2 \perp T_1$ and $T = T_1 \oplus T_2$. For the uniquely defined subspace T_2 , we write briefly $T_2 = T \ominus T_1$. The subspace T_2 is called the orthogonal complement of T_1 with respect to *T*. For T = H we obtain that $H \ominus T_1 = T_1^{\perp}$.

2. Main result

Lemma 2.1. Let *H* be arbitrary Hilbert space and $T \in \mathcal{L}(H)$ closed-range operator such that $T^n = I$, $n \in \mathbb{N}$.

- *i)* There exists $T^{-1} \in \mathcal{L}(H)$ and $T^{-k} = T^{n-k}$, $k = \overline{0, n}$.
- *ii)* If $T = T^*$, then $\sigma(T) = \{1\}$ for odd n and $\sigma(T) = \{-1; 1\}$. Moreover, T = I for odd n, and for even n there exist nontrivial closed subspaces $Y_1, Y_2 \subset H$ such that $Y_1 \oplus^{\perp} Y_2 = H$ and

$$T = \begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix} : \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \mapsto \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$$

Proof. i) We have $\{0\} = \mathcal{N}(I) = \mathcal{N}(T^n) \supseteq \mathcal{N}(I) \supseteq \mathcal{N}(I)$, so $\mathcal{N}(T) = \{0\}$ and operator *T* is injective. Also, $H = \mathcal{R}(I) = \mathcal{R}(T^n) \subseteq \mathcal{R}(T) \subseteq H$ implies $\mathcal{R}(T) = H$, so *T* is surjective. Therefore, there exists T^{-1} .

From $I = T^n = T^k T^{n-k} = T^{n-k} T^k$ it follows $T^{-k} = T^{n-k}$, $k = \overline{0, n}$.

ii) Operator *T* is Hermitian, so its spectrum is real. By the spectral mapping theorem for polynomials, we have

$$\{1\} = \sigma(I) = \sigma(T^n) = \{\lambda^n : \lambda \in \sigma(T)\} \Rightarrow \sigma(T) = \{\lambda \in \mathbb{R} : \lambda^n = 1\}$$

Therefore, for odd *n* we have $\sigma(T) = \{1\}$, while for even $n \in \mathbb{N}$ we have $\sigma(T) = \{-1, 1\}$.

It is clear that if $\sigma(T) = \{1\}$, then T = I. When the spectrum of the operator is a disjoint union of closed sets, then by Theorem 1.4.d there exist nontrivial closed subspaces $Y_1, Y_2 \subset H$ such that $Y_1 \oplus^{\perp} Y_2 = H$ (the sum is orthogonal because *T* is Hermitian!) and

$$T = \left[\begin{array}{cc} I & 0 \\ 0 & -I \end{array} \right] : \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right] \mapsto \left[\begin{array}{c} Y_1 \\ Y_2 \end{array} \right].$$

Let *H*, *K* be arbitrary Hilbert spaces and $A \in \mathcal{L}(H, K)$ closed-range operator. Let us consider whether there is an operator $X \in \mathcal{L}(K, H)$ such that the following four Penrose-like equation are satisfied $(m, n \in \mathbb{N})$:

(*I_m*) $(AX)^m A = A,$ (*II_n*) $X(AX)^n = X,$ (*III*) $AX = (AX)^*,$ (*IV*) $XA = (XA)^*.$

Theorem 2.2. Let *H*, *K* be arbitrary Hilbert spaces and $A \in \mathcal{L}(H, K)$ closed-range operator. Then we have

$$\begin{cases} (I_m) & (AX)^m A = A \\ (II_n) & X(AX)^n = X \end{cases} \Leftrightarrow \begin{cases} (I_d) & (AX)^d A = A \\ (II_d) & X(AX)^d = X, \end{cases}$$

where d = GCD(m, n) is the greatest common divisor of $m, n \in \mathbb{N}$.

Proof. (\Leftarrow) : Obvious.

 (\Rightarrow) : Without the loss of generality, we may assume that m > n. By the Euclidean algorithm for the greatest common divisor, we have the finite sequence:

$$m = q_0 n + r_0, \ 0 \le r_0 < n,$$

$$n = q_1 r_0 + r_1, \ 0 \le r_1 < r_0,$$

$$r_0 = q_2 r_1 + r_2, \ 0 \le r_2 < r_1,$$

...

$$r_{k-2} = q_k r_{k-1} + r_k, \ 0 \le r_k < r_{k-1},$$

$$r_{k-1} = q_{k+1} r_k + 0, \ d \equiv GCD(m, n) = r_k.$$

So by (I_m) and (II_n) we have

$$A = (AX)^{m}A = (AX)^{q_{0}n+r_{0}}A = (AX)^{r_{0}-1}AX \underbrace{(AX)^{n} \dots (AX)^{n}}_{q_{0} \text{ times}} A = (AX)^{r_{0}-1}AX \underbrace{(AX)^{n} \dots (AX)^{n}}_{q_{0}-1 \text{ times}} A = \dots = (AX)^{r_{0}-1}AXA = (AX)^{r_{0}}A;$$

$$X = X(AX)^{n} = X(AX)^{q_{1}r_{0}+r_{1}} = X \underbrace{(AX)^{r_{0}} \dots (AX)^{r_{0}}}_{q_{1} \text{ times}} AX(AX)^{r_{1}-1} = \dots = XAX(AX)^{r_{1}-1} = X(AX)^{r_{1}}.$$

$$= X \underbrace{(AX)^{r_{0}} \dots (AX)^{r_{0}}}_{q_{1}-1 \text{ times}} AX(AX)^{r_{1}-1} = \dots = XAX(AX)^{r_{1}-1} = X(AX)^{r_{1}}.$$

By proceeding along the Euclidean algorithm, we have the proof.

Therefore, it is enough to investigate the case m = n in the sequel of the paper. Now we will consider the following four Penrose-like equations ($n \in \mathbb{N}$ given):

- $(I_n) \qquad (AX)^n A = A,$
- $(II_n) \qquad X(AX)^n = X,$
- $(III) \qquad AX = (AX)^*,$
- $(IV) \qquad XA = (XA)^*.$

By the Lemma 1.1, operator A has the following matrix form according to the space decompositions:

$$A = \left[\begin{array}{cc} A_1 & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{array} \right] \to \left[\begin{array}{c} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{array} \right],$$

We are looking for the operator X of the following form

$$X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix}.$$

By (III), the operator

$$AX = \left[\begin{array}{cc} A_1 X_1 & A_1 X_2 \\ 0 & 0 \end{array} \right]$$

is Hermitian, so by invertibility of A_1 it follows that $X_2 = 0$ and A_1X_1 is Hermitian. On the similar matter, from (*IV*) it follows $X_3 = 0$ and X_1A_1 is Hermitian. From (*II_n*) we have $X_4 = 0$ and $X_1(A_1X_1)^n = X_1$, and from (*I_n*) it follows (A_1X_1)^{*n*} $A_1 = A_1$. Therefore,

$$X = \begin{bmatrix} X_1 & 0 \\ 0 & 0 \end{bmatrix}, AX = \begin{bmatrix} A_1 X_1 & 0 \\ 0 & 0 \end{bmatrix}, XA = \begin{bmatrix} X_1 A_1 & 0 \\ 0 & 0 \end{bmatrix}$$

From $(A_1X_1)^n = I_{\mathcal{R}(A)}$, $(X_1A_1)^n = I_{\mathcal{R}(A^*)}$, $(A_1X_1)^* = A_1X_1$, $(X_1A_1)^* = X_1A_1$ by Lemma 2.1 we have **for odd** *n*:

$$A_1X_1 = I_{\mathcal{R}(A)}, \ X_1A_1 = I_{\mathcal{R}(A^*)} \Longrightarrow X_1 = A_1^{-1} \Longrightarrow X = A^{\dagger}.$$

By the same lemma, **for even** *n* we have:

$$A_1X_1 = \begin{bmatrix} -I & 0 \\ 0 & I \end{bmatrix} \in \mathcal{L}\left(\begin{bmatrix} S \\ S_{\mathcal{R}(A)}^{\perp} \end{bmatrix}\right), \ X_1A_1 = \begin{bmatrix} -I & 0 \\ 0 & I \end{bmatrix} \in \mathcal{L}\left(\begin{bmatrix} T \\ T_{\mathcal{R}(A^*)}^{\perp} \end{bmatrix}\right),$$

where $S \oplus^{\perp} S_{\mathcal{R}(A)}^{\perp} = \mathcal{R}(A)$, $T \oplus^{\perp} T_{\mathcal{R}(A^*)}^{\perp} = \mathcal{R}(A^*)$ (clearly, $S_{\mathcal{R}(A)}^{\perp} = \mathcal{R}(A) \ominus S$, $T_{\mathcal{R}(A^*)}^{\perp} = \mathcal{R}(A^*) \ominus T$). Therefore,

$$A_1X_1 = I_{\mathcal{R}(A)} - 2P_S, \ X_1A_1 = I_{\mathcal{R}(A^*)} - 2P_T,$$

so we have

$$X_1 = A_1^{-1}(I_{\mathcal{R}(A)} - 2P_S) = (I_{\mathcal{R}(A^*)} - 2P_T)A_1^{-1}$$

from where we see the relation between the subspaces T and S:

$$A_1^{-1}P_S = P_T A_1^{-1} \Leftrightarrow P_S A_1 = A_1 P_T,$$

so those projections are similar. We can put

$$X_1 = A_1^{-1}(I_{\mathcal{R}(A)} - 2P_S) = (I_{\mathcal{R}(A^*)} - 2A_1^{-1}P_SA_1)A_1^{-1}$$

When we return to the operator *X*, we have

$$X = A^{\dagger}(P_{\mathcal{R}(A)} - 2P_S) = A^{\dagger} - 2A^{\dagger}P_S = A^{\dagger}(I - 2P_S),$$

and on similar way

$$X = (P_{\mathcal{R}(A^*)} - 2P_T)A^{\dagger} = A^{\dagger} - 2P_T A^{\dagger} = (I - 2P_T)A^{\dagger}.$$

Also, $A^{\dagger}P_{S} = P_{T}A^{\dagger}$, or, equivalently, $P_{S}A = AP_{T}$.

Remark 2.3. If we suppose

$$A_1 = \begin{bmatrix} A_{11} & A_{12} \\ A_{13} & A_{14} \end{bmatrix} : \begin{bmatrix} T \\ T_{\mathcal{R}(A^*)}^{\perp} \end{bmatrix} \mapsto \begin{bmatrix} S \\ S_{\mathcal{R}(A)}^{\perp} \end{bmatrix}$$

from $P_SA_1 = A_1P_T$ we have $A_{12} = 0$, $A_{13} = 0$, so the operator A_1 must have the following form

$$A_1 = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{14} \end{bmatrix} : \begin{bmatrix} T \\ T_{\mathcal{R}(A^*)}^{\perp} \end{bmatrix} \mapsto \begin{bmatrix} S \\ S_{\mathcal{R}(A)}^{\perp} \end{bmatrix},$$

where A_{11} and A_{14} are invertible operators.

We have seen that odd *n* case reduces to n = 1, which coincides with the Moore-Penrose inverse. As an important result, because $(A_1X_1)^2 = I_{\mathcal{R}(A)}$ and $(X_1A_1)^2 = I_{\mathcal{R}(A^*)}$, we have that case n = 2k actually reduces to n = 2. Therefore, we can define new generalized inverse which depends of some subspace(s).

Definition 2.4. Let H, K be arbitrary Hilbert spaces and $A \in \mathcal{L}(H, K)$ be closed-range operator. For fixed subspace $S \subset \mathcal{R}(A)$ (or, equivalently, $T \subset \mathcal{R}(A^*)$, where S and T are related by

$$AP_T = P_S A, \text{ or, equivalently, } A^{\dagger} P_S = P_T A^{\dagger}.$$
(1)

there exist unique operator denoted by $A^{\ddagger} \equiv A_{T,S}^{\ddagger}$ such that the following four Penrose-like equations are satisfied:

$$(AA^{\ddagger})^{2}A = A, \ A^{\ddagger}(AA^{\ddagger})^{2} = A^{\ddagger}, \ (AA^{\ddagger})^{*} = AA^{\ddagger}, \ (A^{\ddagger}A)^{*} = A^{\ddagger}A.$$
⁽²⁾

Such inverse will be called extended MP inverse, and can be explicitly given by

$$A_{TS}^{\dagger} = A^{\dagger}(I - 2P_S) = (I - 2P_T)A^{\dagger}.$$
(3)

The existence and the uniqueness of extended Moore-Penrose inverse follows immediately by preceding construction. We use both subspaces in the index although they are uniquely related ($P_T = A_1^{-1}P_SA_1$, where $A_1 = A|_{\mathcal{R}(A^*)}$), because it is convenient in various identities. Note that for trivial closed subspaces $S = \{0\}$ and $S = \mathcal{R}(A)$ we also have $A_{\{0\},\{0\}}^{\ddagger} = A^{\dagger}(I - 2P_{\{0\}}) = A^{\dagger}$ and $A_{\mathcal{R}(A),\mathcal{R}(A^*)}^{\ddagger} = A^{\dagger}(I - 2P_{\mathcal{R}(A)}) = -A^{\dagger}$.

3. Properties of EMP

It is very likely that properties of extended Moore-Penrose inverse strongly resemble to those of Moore-Penrose inverse. Also, for given orthogonal projections P_S and P_T the operators $I - 2P_S$ and $I - 2P_T$ are unitary and they are square roots of unit operators $I_{\mathcal{R}(A)}$ and $I_{\mathcal{R}(A^*)}$ on appropriate Hilbert spaces.

Theorem 3.1. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, let $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}(A^*)$ be nontrivial closed subsets.

A[‡]_{T,S}P_S = −A⁺P_S, P_TA[‡]_{T,S} = −P_TA⁺, P_TA[‡]_{T,S}P_S = −P_TA⁺P_S;
 AA[‡]_{T,S} = P_{R(A)} − 2P_S, A[‡]_{T,S}A = P_{R(A⁺)} − 2P_T; those operators are Hermitian, but they are not idempotents. Also we have:

$$P_{S} = \frac{1}{2}(P_{\mathcal{R}(A)} - AA_{T,S}^{\ddagger}), P_{T} = \frac{1}{2}(P_{\mathcal{R}(A^{*})} - A_{T,S}^{\ddagger}A);$$

 $\begin{aligned} 3. \ A_{T,S}^{\ddagger} &= A^{\dagger}AA_{T,S}^{\ddagger} = A_{T,S}^{\ddagger}AA^{\dagger} = A^{\dagger}AA_{T,S}^{\ddagger}AA^{\dagger}; \\ 4. \ A^{\dagger} - A_{T,S}^{\ddagger} &= 2A^{\dagger}P_{S} = 2P_{T}A^{\dagger}, \ so \ ||A^{\dagger} - A_{T,S}^{\ddagger}|| \leq 2||A^{\dagger}||. \end{aligned}$

Proof. It follows from (3), with $S \subset \mathcal{R}(A) \Leftrightarrow P_{\mathcal{R}(A)}P_S = P_S$ and $T \subset \mathcal{R}(A^*) \Leftrightarrow P_T P_{\mathcal{R}(A^*)} = P_T$ (Th. 1.5.b).

By the definition, for fixed $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}(A^*)$, related by (1), there exists unique $A_{T,S}^{\ddagger}$. By the preceding theorem, part 2, for given $A_{T,S}^{\ddagger}$ one can reconstruct subspaces *T* and *S*, and the relation (1) holds.

Some properties of extended Moore-Penrose inverse, similar to those of the ordinary Moore-Penrose inverse, are presented in the next theorem (cf. Proposition 1.3).

Theorem 3.2. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}(A^*)$ nontrivial closed subspaces. *Then we have:*

1. $(\lambda A)_{T,S}^{\ddagger} = \lambda^{\dagger} A_{T,S}^{\ddagger}$, where $\lambda^{\dagger} = \lambda^{-1}$ if $\lambda \neq 0$ and $\lambda^{\dagger} = 0$ if $\lambda = 0$; 2. $(AA_{T,S}^{\ddagger})^2 = P_{\mathcal{R}(A)}, (A_{T,S}^{\ddagger}A)^2 = P_{\mathcal{R}(A^{*})};$ 3. $A^{*}(AA_{T,S}^{\ddagger})^2 = A^{*} = (A_{T,S}^{\ddagger}A)^2A^{*}, A^{*} - A^{*}AA_{T,S}^{\ddagger} = 2A^{*}P_{S}, A^{*} - A_{T,S}^{\ddagger}AA^{*} = 2P_{T}A^{*};$ 4. $(A_{T,S}^{\ddagger})^{*} = (A^{*})_{S,T}^{\ddagger};$ 5. $A_{T,S}^{\ddagger} = A^{*}(AA^{*})_{S,S}^{\ddagger}, A_{T,S}^{\ddagger} = (A^{*}A)_{T,T}^{\ddagger}A^{*};$ 6. $(A^{*})_{S,T}^{\ddagger}A_{T,S}^{\ddagger} = (AA^{*})^{\dagger}, A_{T,S}^{\ddagger}(A^{*})_{S,T}^{\ddagger} = (A^{*}A)^{\dagger};$ 7. $A - AA_{T,S}^{\ddagger}A = 2P_{S}A = 2AP_{T} \neq 0;$ 8. $\mathcal{R}(A_{T,S}^{\ddagger}) = \mathcal{R}(A^{*}), \mathcal{N}(A_{T,S}^{\ddagger}) = \mathcal{N}(A^{*});$ 9. $(A_{T,S}^{\ddagger})_{S,T}^{\ddagger} = A;$ 10. $(A_{T,S}^{\ddagger})^{\dagger} = (I - 2P_{S})A = A(I - 2P_{T}) = (A^{\dagger})_{S,T}^{\ddagger}.$

Proof. Recall, $V \subset W \Leftrightarrow P_V P_W = P_W P_V = P_V$, by Theorem 1.5.b.

1.
$$(\lambda A)_{TS}^{\ddagger} = (\lambda A)^{\dagger} (I - 2P_S) = \lambda^{\dagger} A^{\dagger} (I - 2P_S) = \lambda^{\dagger} A_{TS}^{\ddagger};$$

- 2. We have $(AA_{TS}^{\dagger})^2 = (AA^{\dagger}(I 2P_S))^2 = (P_{\mathcal{R}(A)} 2P_S)^2 = P_{\mathcal{R}(A)}$ and $(A_{TS}^{\dagger}A)^2 = (P_{\mathcal{R}(A^*)} 2P_T)^2 = P_{\mathcal{R}(A^*)}$.
- 3. By 2. and Proposition 1.3.3, we have $A^* P_{\mathcal{R}(A)} = A^* = P_{\mathcal{R}(A^*)}A$. The second part is due to $A^* A^*AA_{T,S}^{\ddagger} = A^* A^*(P_{\mathcal{R}(A)} 2P_S) = 2A^*P_S$ and $A^* A_{T,S}^{\ddagger}AA^* = A^* (P_{\mathcal{R}(A^*)} 2P_T)A^* = 2P_TA^*$.
- 4. $(A_{TS}^{\ddagger})^* = (A^{\dagger}(I 2P_S))^* = (I 2P_S)(A^{\dagger})^* = (I 2P_S)(A^*)^{\dagger} = (A^*)_{ST}^{\ddagger}$; also $A^*P_S = (P_SA)^* = (AP_T)^* = P_TA^*$.
- 5. We have $A^*(AA^*)_{S,S}^{\ddagger} = A^*(AA^*)^{\dagger}(I 2P_S) = A^{\dagger}(I 2P_S) = A_{T,S}^{\ddagger}$, and $(A^*A)_{T,T}^{\ddagger}A^* = (I 2P_T)(A^*A)^{\dagger}A^* = (I$
- 6. $(A^*)_{S,T}^{\dagger} A_{T,S}^{\dagger} = (A_{T,S}^{\dagger})^* A_{T,S}^{\dagger} = ((I 2P_T)A^{\dagger})^* (I 2P_T)A^{\dagger} = (A^{\dagger})^* (I 2P_T)^2 A^{\dagger} = (A^*)^{\dagger} A^{\dagger} = (AA^*)^{\dagger}$, and $A_{T,S}^{\dagger} (A^*)_{S,T}^{\dagger} = A^{\dagger} (I 2P_S) (A^{\dagger} (I 2P_S))^* = A^{\dagger} (I 2P_S)^2 (A^{\dagger})^* = A^{\dagger} (A^*)^{\dagger} = (A^*A)^{\dagger}$.
- 7. $S \subset \mathcal{R}(A) \Rightarrow P_S A \neq 0$, so this difference cannot be zero.
- 8. The operators $I 2P_S$ and $I 2P_T$ are unitary, hence invertible, so $\mathcal{R}(A_{T,S}^{\ddagger}) = \mathcal{R}(A^{\dagger}(I 2P_S)) = A^{\dagger}((I 2P_S))(K)) = A^{\dagger}(K) = \mathcal{R}(A^{\dagger}) = \mathcal{R}(A^{\ast}), \ \mathcal{N}(A_{T,S}^{\ddagger}) = \mathcal{N}((I 2P_T)A^{\dagger}) = \mathcal{N}(A^{\ast}) = \mathcal{R}(A)^{\perp}.$
- 9. Let us note that the reverse order law $(A^{\dagger}(I 2P_S))^{\dagger} = (I 2P_S)A$ holds, because $I 2P_S$ is unitary operator (hence Hermitian and invertible). Now we have

$$(A_{T,S}^{\dagger})_{S,T}^{\dagger} = (A_{T,S}^{\dagger})^{\dagger}(I - 2P_T) = (A^{\dagger}(I - 2P_S))^{\dagger}(I - 2P_T) = (I - 2P_S)A(I - 2P_T) = A,$$

because $AP_T = P_S A \Rightarrow AP_T = P_S AP_T$. Also, $A_{T,S}^{\ddagger} P_S = P_T A_{T,S}^{\ddagger} \Leftrightarrow A^{\dagger} (I - 2P_S) P_S = P_T (I - 2P_T) A^{\dagger} \Leftrightarrow A^{\dagger} P_S = P_T A^{\dagger}$.

10. Because of $(A_{T,S}^{\ddagger})^{\dagger} = (A^{\dagger}(I - 2P_S))^{\dagger} = (I - 2P_S)A$, and $(A^{\dagger})_{S,T}^{\ddagger} = (A^{\dagger})^{\dagger}(I - 2P_T) = A(I - 2P_T)$, we have the proof. Note that 8. implies the existence of $(A_{T,S}^{\ddagger})^{\dagger}$.

Unlike the ordinary Moore-Penrose inverse, the extended Moore-Penrose inverse depends on some subspaces, and we present some related properties.

Theorem 3.3. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S, S_1, S_2 \subset \mathcal{R}(A)$, $T, T_1, T_2 \subset \mathcal{R}(A^*)$ be nontrivial closed subsets. Then we have

$$\begin{aligned} 1. \ A_{T_{1},S_{1}}^{+}AA_{T_{2},S_{2}}^{+} &= A^{\dagger}(I - 2P_{S_{1}} - 2P_{S_{2}} + 4P_{S_{1}}P_{S_{2}}). \\ \bullet \ S_{1} \cap S_{2} &= \{0\} \Rightarrow A_{T_{1},S_{1}}^{\dagger}AA_{T_{2},S_{2}}^{\dagger} &= A^{\dagger}(I - 2(P_{S_{1}} + P_{S_{2}})); \\ \bullet \ S_{1} \oplus^{\perp} S_{2} &= \mathcal{R}(A) \Rightarrow A_{T_{1},S_{1}}^{\dagger}AA_{T_{2},S_{2}}^{\dagger} &= -A^{\dagger}; \\ \bullet \ S_{1} \bot S_{2} \Rightarrow A_{T_{1},S_{1}}^{\dagger}AA_{T_{2},S_{2}}^{\dagger} &= A_{T_{1}\oplus T_{2},S_{1}\oplus S_{2}}^{\dagger}. \end{aligned}$$

$$\begin{aligned} 2. \ A_{T_{1},S_{1}}^{\dagger} - A_{T_{2},S_{2}}^{\dagger} &= 2A^{\dagger}(P_{S_{2}} - P_{S_{1}}); particularly, if S_{1} \subset S_{2} then \ A_{T_{1},S_{1}}^{\dagger} - A_{T_{2},S_{2}}^{\dagger} &= A^{\dagger}_{T_{2}\oplus T_{1},S_{2}\oplus S_{1}}; \\ 3. \ AA_{T_{1},S_{1}}^{\dagger} - AA_{T_{2},S_{2}}^{\dagger} &= 2(P_{S_{2}} - P_{S_{1}}); particularly, if S_{1} \subset S_{2} then \ AA_{T_{1},S_{1}}^{\dagger} - AA_{T_{2},S_{2}}^{\dagger} &= 2P_{T_{2}\oplus T_{1},S_{2}\oplus S_{1}}; \end{aligned}$$

- 4. $A_{T_1,S_1}^{\dagger} A_{T_2,S_2}^{\dagger} A = 2(P_{T_2} P_{T_1})$; particularly, if $T_1 \subset T_2$ then $A_{T_1,S_1}^{\dagger} A A_{T_2,S_2}^{\dagger} A = 2P_{T_2 \ominus T_1,S_2 \ominus S_1}$;
- 5. $A, B \in \mathcal{L}(H, K), \ \mathcal{R}(A) = \mathcal{R}(B) \supseteq S, \ then \ (A_{T,S}^{\ddagger} B_{T,S}^{\ddagger})^{\dagger} = (A^{\dagger} B^{\dagger})_{S,T}^{\ddagger}.$

Proof.

т

- 1. $A_{T_{1},S_{1}}^{\ddagger}AA_{T_{2},S_{2}}^{\ddagger} = A^{\dagger}(I-2P_{S_{1}})AA^{\dagger}(I-2P_{S_{2}}) = A^{\dagger}(I-2P_{S_{1}})P_{\mathcal{R}(A)}(I-2P_{S_{2}}) = A^{\dagger}(I-2P_{S_{1}}-2P_{S_{2}}+4P_{S_{1}}P_{S_{2}}).$ If $S_{1} \cap S_{2} = \{0\}$, then $P_{S_{1}}P_{S_{2}} = 0$, so $A_{T_{1},S_{1}}^{\ddagger}AA_{T_{2},S_{2}}^{\ddagger} = A^{\dagger}(I-2(P_{S_{1}}+P_{S_{2}})).$ When $S_{1} \oplus^{\perp} S_{2} = \mathcal{R}(A)$, then $A_{T_{1},S_{1}}^{\ddagger}AA_{T_{2},S_{2}}^{\ddagger} = -A^{\dagger}.$ For $S_{1}\perp S_{2}$, by Theorem 1.6 we have $P_{S_{1}}P_{S_{2}} = 0$ and $P_{S_{1}}+P_{S_{2}} = P_{S_{1}\oplus S_{2}},$ therefore $A_{T_{1},S_{1}}^{\ddagger}AA_{T_{2},S_{2}}^{\ddagger} = A^{\dagger}(I-2P_{S_{1}\oplus S_{2}}) = A_{T_{1}\oplus T_{2},S_{1}\oplus S_{2}}^{\ddagger}.$
- 2. $A_{T_1,S_1}^{\ddagger} A_{T_2,S_2}^{\ddagger} = A^{\dagger}(I 2P_{S_1}) A^{\dagger}(I 2P_{S_2}) = 2A^{\dagger}(P_{S_2} P_{S_1})$. When $S_1 \subset S_2$, by Theorem 1.6 it follows $P_{S_2} P_{S_1} = P_{S_2 \ominus S_1}$ is orthogonal projection, therefore

$$A_{T_1,S_1}^{\ddagger} - A_{T_2,S_2}^{\ddagger} = 2A^{\dagger}P_{S_2 \ominus S_1} = A^{\dagger}(I - (I - 2P_{S_2 \ominus S_1})) = A^{\dagger} - A_{T_2 \ominus T_1,S_2 \ominus S_1}^{\ddagger}.$$

Note that $S_1 \subset S_2 \Leftrightarrow P_{S_1}P_{S_2} = P_{S_2}P_{S_1} = P_{S_1} \Leftrightarrow P_{S_1}P_{S_2}A = P_{S_2}P_{S_1}A = P_{S_1}A \Leftrightarrow P_{S_1}AP_{T_2} = P_{S_2}AP_{T_1} = AP_{T_1} \Leftrightarrow AP_{T_1} \Leftrightarrow A^{\dagger}AP_{T_1}P_{T_2} = A^{\dagger}AP_{T_2}P_{T_1} = A^{\dagger}AP_{T_1} \Leftrightarrow P_{T_1}P_{T_2} = P_{T_2}P_{T_1} = P_{T_1} \Leftrightarrow T_1 \subset T_2.$

- 3. $AA_{T_1,S_1}^{\ddagger} AA_{T_2,S_2}^{\ddagger} = 2AA^{\dagger}(P_{S_2} P_{S_1}) = 2(P_{S_2} P_{S_1})$; the rest of the proof as in the second part.
- 4. Analogous to the proof of part 3.
- 5. By part 10 of Theorem 3.2 and part 8 of Proposition 1.1, we have

$$((A^{\dagger} - B^{\dagger})_{S,T}^{\dagger})^{\dagger} = ((A^{\dagger} - B^{\dagger})^{\dagger}(I - 2P_{T}))^{\dagger} = (I - 2P_{T})(A^{\dagger} - B^{\dagger}) = A_{T,S}^{\ddagger} - B_{T,S}^{\ddagger}.$$

Theorem 3.4. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and S_i , $i = \overline{1, n}$, $n \ge 2$, be closed subspaces of $\mathcal{R}(A)$, such that $\mathcal{R}(A)$ is their orthogonal direct sum (i.e. $\mathcal{R}(A) = S_1 \oplus^{\perp} S_2 \oplus^{\perp} \dots \oplus^{\perp} S_n$). Then:

$$\sum_{k=1}^{n} A_{T_k,S_k}^{\ddagger} = (n-2)A^{\dagger}.$$

Here T_k , $k = \overline{1, n}$, *are related to* S_k , $k = \overline{1, n}$, *by* (1).

Proof. Because of

$$S_1 \oplus^{\perp} S_2 \oplus^{\perp} \ldots \oplus^{\perp} S_n = \mathcal{R}(A) \Leftrightarrow P_{S_1} + P_{S_2} + \ldots + P_{S_n} = I_{\mathcal{R}(A)}$$

we have

$$\sum_{k=1}^{n} A_{T_{k},S_{k}}^{\ddagger} = A^{\dagger} \sum_{k=1}^{n} (I - 2P_{S_{k}}) = A^{\dagger} \left(\sum_{k=1}^{n-1} (I - 2P_{S_{k}}) + I - 2(P_{\mathcal{R}(A)} - 2\sum_{k=1}^{n-1} P_{S_{k}}) \right) = A^{\dagger} (nI - 2P_{\mathcal{R}(A)}) = (n-2)A^{\dagger}.$$

In the case when there are just two subspaces, the following corollary holds.

Corollary 3.5. Let $A \in \mathcal{L}(H, K)$ be closed-range operator and $S \subset \mathcal{R}(A)$ nontrivial closed subspace. Then we have

$$A^{\ddagger}_{T^{\perp},S^{\perp}} = -A^{\ddagger}_{T,S},$$

where $S_{\mathcal{R}(A)}^{\perp}$ is closed subspace such that $S \oplus^{\perp} S_{\mathcal{R}(A)}^{\perp} = \mathcal{R}(A)$. Here $T \subset \mathcal{R}(A^*)$ is related to S by (1).

Next result establishes the connection between extended Moore-Penrose equation and some other generalized inverses:

Theorem 3.6. Let $A \in \mathcal{L}(H, K)$ be closed-range operator, and $S \subset \mathcal{R}(A)$ and $T \subset \mathcal{R}(A^*)$ nontrivial closed subspaces. *Then we have:*

1. $A^{\dagger} = A_{T,S}^{\ddagger}(I - 2P_S) = (I - 2P_T)A_{T,S}^{\ddagger};$ 2. $A_{T,S}^{\ddagger}AA_{T,S}^{\ddagger} = A^{\dagger};$ 3. $A_{T,S}^{\ddagger}$ is EP if and only if A is EP.

Proof. Recall that $V \subset W \Leftrightarrow P_V P_W = P_W P_V = P_V$, by Theorem 1.5.b.

- 1. Operator $I 2P_S$ is unitary, therefore $A_{T,S}^{\ddagger} = A^{\dagger}(I 2P_S) \Leftrightarrow A^{\dagger} = A_{T,S}^{\ddagger}(I 2P_S)$.
- 2. $A_{T,S}^{\ddagger}AA_{T,S}^{\ddagger} = A_{T,S}^{\ddagger}(P_{\mathcal{R}(A)} 2P_S) = A^{\dagger}(I 2P_S)(P_{\mathcal{R}(A)} 2P_S) = A^{\dagger}P_{\mathcal{R}(A)} = A^{\dagger};$
- 3. The proof follows from the following equivalence chain:

.

$$A_{T,S}^{\ddagger}(A_{T,S}^{\ddagger})^{\dagger} = (A_{T,S}^{\ddagger})^{\dagger}A_{T,S}^{\ddagger} \Leftrightarrow A^{\dagger}(I - 2P_S)(A^{\dagger}(I - 2P_S))^{\dagger} = ((I - 2P_T)A^{\dagger})^{\dagger}(I - 2P_T)A^{\dagger} \Leftrightarrow A^{\dagger}(I - 2P_S)^2A = A(I - 2P_T)^2A^{\dagger} \Leftrightarrow A^{\dagger}A = AA^{\dagger}.$$

Theorem 3.7. Let $A \in \mathcal{L}(H, K)$ be closed range operators and $S \subset \mathcal{R}(A)$, $T \subset \mathcal{R}(A^*)$ nontrivial closed subsets. Then we have the following norm estimates:

- 1. $||A_{T,S}^{\ddagger}|| = ||A^{\dagger}||;$ 2. $||A - AA_{TS}^{\ddagger}A|| \le 2||A||;$
- *Proof.* 1. From (3) we have

$$||A_{T,S}^{\ddagger}|| = ||A^{\dagger}(I - 2P_S)|| \le ||A^{\dagger}||,$$

while from Theorem 3.6, part 1, it follows

$$||A^{\dagger}|| = ||A_{T,S}^{\dagger}(I - 2P_S)|| \le ||A_{T,S}^{\dagger}||.$$

2. It follows from $A - AA_{TS}^{\ddagger}A = 2P_{S}A$, because $||P_{S}|| = 1$.

Proposition 3.8. Consider the operator equation Ax = b. We have the following possibilities:

- $b \notin \mathcal{R}(A) : AA_{T,S}^{\ddagger}b = (P_{\mathcal{R}(A)} 2P_S)b = 0,$
- $b \in \mathcal{R}(A) \setminus S : AA_{T,S}^{\ddagger}b = (P_{\mathcal{R}(A)} 2P_S)b = b,$
- $b \in S : AA_{T,S}^{\ddagger}b = (P_{\mathcal{R}(A)} 2P_S)b = -b.$

Therefore, $x = A_{T,S}^{\ddagger} b$ is a solution when $b \in \mathcal{R}(A) \setminus S$, and $x = -A_{T,S}^{\ddagger} b$ is solution for $b \in S$.

4. Some examples

- It is obvious that $A = 0 \Leftrightarrow A^{\ddagger} = 0$.
- For $A = I \in \mathcal{L}(H)$ and given subspace $S \subset H$ we have $X^* = X$ and $X^2 = I$, so $I_{T,S}^{\ddagger} = I 2P_S = I 2P_T$.
- Suppose $A \in \mathcal{L}(H)$ is invertible, and $S, T \subset H$ are given. By the equations, we have

$$(AX)^2 = I = (XA)^2, \ (AX)^* = AX, \ (XA)^* = XA.$$

The reasonings similar to those preceding the definition gives us $AX = I - 2P_S$, $XA = I - 2P_T$. Therefore,

$$A_{T,S}^{\ddagger} = A^{-1}(I - 2P_S) = (I - 2P_T)A^{-1}$$
, where $A^{-1}P_S = P_T A^{-1}$

So, the subspaces *S*, *T* are similar $P_T = A^{-1}P_SA$. Also in this case we have

$$P_S = \frac{1}{2}(I - AA_S^{\ddagger}), \ P_T = \frac{1}{2}(I - A_S^{\ddagger}A).$$

• Let *R* and *L* be the right shift and left shift operator, respectively, defined on separable Hilbert space ℓ^2 with canonical basis ($\{e_1, e_2, ...\}$) on usual way

$$R(x_1, x_2, x_3, \ldots) = (0, x_1, x_2, \ldots), \ L(x_1, x_2, x_3, \ldots) = (x_2, x_3, x_4, \ldots).$$

It is not hard to see that $R^{\dagger} = R^* = L$ and $\mathcal{R}(R) = lin\{e_2, e_3, \ldots\}$.

Let $S_1 = lin\{e_3, e_5, \ldots\}$ and $S_2 = \{e_2, e_4, \ldots\}$ be given subspaces of $\mathcal{R}(R)$ such that $S_1 \oplus^{\perp} S_2 = \mathcal{R}(R)$. Then we have for any $x \in \ell^2$:

$$R_{T_1,S_1}^{\ddagger} x = R^{\ddagger} (I - 2P_{S_1}) x = R^{\ddagger} (x - 2(0, 0, x_3, 0, x_5, 0, \ldots)) = L(x_1, x_2, -x_3, x_4, -x_5, \ldots) = (x_2, -x_3, x_4, -x_5, \ldots),$$

$$R_{T_2,S_2}^{\ddagger} x = R^{\ddagger} (I - 2P_{S_2}) x = R^{\ddagger} (x - 2(0, x_2, 0, x_4, 0, \ldots)) = L(x_1, -x_2, x_3, -x_4, x_5, \ldots) = (-x_2, x_3, -x_4, x_5, \ldots).$$

It is obvious that $R_{T_1,S_1}x + R_{T_2,S_2}x = 0$, therefore $R_{T_1,S_1} + R_{T_2,S_2} = 0$.

Acknowledgement: The author would like to express his gratitude to Professor Dragan S. Djordjević for useful comments that improved the quality of the paper.

References

- [1] A. Ben-Israel, T. N. E. Greville, Generalized inverses: theory and applications, 2nd ed., Springer, New York, 2003.
- [2] S. R. Caradus, *Generalized inverses and operator theory*, Queen's paper in pure and applied mathematics, Queen's University, Kingston, Ontario, 1978.
- [3] D. S. Djordjević, N. Č. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (1) (2010), 252-261.
- [4] D. S. Djordjević, V. Rakočević, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2008.
- [5] W. Rudin, Functional analysis, 2nd ed., McGraw-Hill Inc., 1991.
- [6] J. Weidmann, Linear operators in Hilbert spaces, Springer, 1980.