Filomat 30:2 (2016), 459–467 DOI 10.2298/FIL1602459L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Strong Convergence for Generalized Multiple-Set Split Feasibility Problem

A. Latif^a, J. Vahidi^b, M. Eslamian^b

^aDepartment of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia ^bDepartment of Applied Mathematics, University of Science and Technology, Behshahr, Iran

Abstract. In this paper we introduce a new algorithm based on viscosity approximation method for solving the generalized multiple-set split feasibility problem (GMSSFP)in an infinite dimensional Hilbert spaces . We establish the strong convergence for the algorithm to find a unique solution of the variational inequality which is the optimality condition for the minimization problem.

1. Introduction

The problem of finding a point in the intersection of closed and convex subsets of a Hilbert space is a frequently appearing problem in diverse areas of mathematics and physical sciences. This problem is commonly referred to as the convex feasibility problem (CFP). There is a considerable investigation on (CFP) in the framework of Hilbert spaces which captures applications in various disciplines such as image restoration, computer tomograph and radiation therapy treatment planning [11].

Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A} : \mathcal{H} \to \mathcal{K}$, be a bounded linear operator and let $\{C_i\}_{i=1}^p$ be a family of nonempty closed convex subsets in \mathcal{H} and $\{Q_i\}_{i=1}^p$ be a family of nonempty closed convex subsets in \mathcal{K} . The multiple-set split feasibility problem (MSSFP) was recently introduced in [?] and is formulated as finding a point x^* with the property:

$$x^{\star} \in \bigcap_{i=1}^{p} C_{i}$$
 and $\mathcal{A}x^{\star} \in \bigcap_{i=1}^{r} Q_{i}$.

The multiple-set split feasibility problem with p = r = 1 is known as the split feasibility problem (SEP) which is formulated as finding a point x^* with the property:

$$x^{\star} \in C$$
 and $\mathcal{A}x^{\star} \in Q$,

where *C* and *Q* are nonempty closed convex subsets of \mathcal{H} and \mathcal{K} , respectively.

In 1994, the SFP was first introduced by Censor and Elfving [7], in finite-dimensional Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in medical image reconstruction. A

²⁰¹⁰ Mathematics Subject Classification. Primary 47J25, 47N10; Secondary 65J15, 90C25

Keywords. Multiple-set split feasibility problem, Variational inequality, Strong convergence.

Received: 15 March 2014; Accepted: 28 April 2014

Communicated by Ljubomir Ćirić

Email addresses: alatif@kau.edu.sa(A. Latif), j.vahidi@b-iust.ac.ir(J. Vahidi), mhmdeslamian@gmail.com(M. Eslamian)

number of image reconstruction problems can be formulated as the SFP; see, e.g., [3] and the references therein. Recently, it has been found that the SFP can also be applied to study intensity-modulated radiation therapy; see, e.g., [6, 8, 10] and the references therein. In the recent past, a wide variety of iterative methods have been used in signal processing and image reconstruction and for solving the SFP and MSSPP; see, e.g., [1-19] and the references therein.

The original algorithm given in [7] involves the computation of the inverse A^{-1} (assuming the existence of the inverse of A) and thus has not become popular. A seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne [2, 3] which is found to be a gradient-projection method (GPM) in convex minimization. It is also a special case of the proximal forward-backward splitting method [12]. The CQ algorithm starts with any $x_1 \in \mathcal{H}$ and generates a sequence $\{x_n\}$ through the iteration

$$x_{n+1} = P_C(I - \lambda \mathcal{A}^*(I - P_O)\mathcal{A})x_n$$

where $\lambda \in (0, \frac{2}{\|\mathcal{A}\|^2})$, \mathcal{A}^* is the adjoint of \mathcal{A} , P_C and P_Q are the metric projections onto C and Q respectively.

Very recently, Xu [22] gave a continuation of the study on the CQ algorithm and its convergence. Xu [22] transformed SFP to the fixed point problem of the operator $P_C(I - \lambda \mathcal{A}^*(I - P_Q))$ and shown that a point x^* solves SFP if and only if $x^* = P_C(I - \lambda \mathcal{A}^*(I - P_Q)\mathcal{A})x^*$. He applied Mann's algorithm to the SFP and proposed an averaged CQ algorithm which was proved to be weakly convergent to a solution of the SFP. Xu [22] also proposed the regularized method

$$x_{n+1} = P_C(I - \lambda_n(\mathcal{A}^*(I - P_Q)\mathcal{A} + \alpha_n I))x_n$$

and proved that the sequence $\{x_n\}$ converges strongly to a minimum norm solution of SFP(1) provided the parameters $\{\alpha_n\}$ and $\{\lambda_n\}$ verify some suitable conditions. Further recent work also appeared in literature, see, for example [5, 9, 16]. In [20], Wang and Xu gave a Cyclic algorithm to solve MSSFP:

$$x_{n+1} = P_{C[n]}(x_n + \gamma \mathcal{A}^*(P_{Q[n]} - I)\mathcal{A}x_n),$$

where [n] := n(mod p), (mod function take values in $\{1, 2, ..., p\}$), and $\gamma \in (0, \frac{2}{\||\mathcal{F}\||^2})$. They show that the sequence $\{x_n\}$ convergence weakly to a solution of MSSFP whenever its solution set in nonempty. Now we consider the multiple-set split feasibility problem for a finite family of operators:

Definition 1.1. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_k : \mathcal{H} \to \mathcal{K}$, (k = 1, 2, ..., m) be a family of bounded linear operators and let $\{C_i\}_{i=1}^p$ be a family of nonempty closed convex subsets in \mathcal{H} and $\{Q_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{H} and $\{Q_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{K} . Generalized multiple-set split feasibility problem (GMSSFP) is to find a point x^* such that

$$x^{\star} \in \bigcap_{i=1}^{p} C_i \quad and \quad \mathcal{A}_k x^{\star} \in \bigcap_{i=1}^{r} Q_{i, \quad k=1,2,\dots,m}.$$
 (1)

We denote Ω the solution set of GMSSFP.

In this paper we introduce a new algorithm based on viscosity approximation method for solving the generalized multiple-set split feasibility problem (GMSSFP)in an infinite dimensional Hilbert spaces. We establish the strong convergence for the algorithm to find a unique solution of the variational inequality which is the optimality condition for the minimization problem.

2. Preliminaries

We use the following notion in the sequel:

• \rightarrow for weak convergence and \rightarrow for strong convergence.

It is known that a Hilbert space \mathcal{H} satisfies Opial's condition, i.e., for any sequence $\{x_n\}$ with $x_n \rightarrow x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for every $y \in \mathcal{H}$ with $y \neq x$.

Let C be a nonempty closed convex subset of a real Hilbert space \mathcal{H} . Recall that the nearest point or metric projection from \mathcal{H} onto C, denoted P_C , assigns, to each $x \in \mathcal{H}$, the unique point $P_C x \in C$ with the property

$$||x - P_C x|| = \inf\{||x - y|| \quad \forall y \in C\}.$$

Recall that a mapping $T : \mathcal{H} \to \mathcal{H}$ is called nonexpansive if

$$||Tx - Ty|| \le ||x - y||, \qquad \forall x, y \in \mathcal{H}.$$

It is well known that the metric projection P_C of \mathcal{H} onto C has the following basic properties: • P_C is a nonexpansive,

•
$$\langle y - P_C(x), x - P_C(x) \rangle \le 0, \quad \forall x \in \mathcal{H}, y \in C.$$

Definition 2.1. A bounded linear operator \mathcal{B} on \mathcal{H} is called strongly positive if there exists $\overline{\gamma} > 0$ such that

$$\langle \mathcal{B}x, x \rangle \ge \overline{\gamma} ||x||^2, \qquad (x \in \mathcal{H}).$$

For a nonexpansive mapping T from a nonempty subset C of \mathcal{H} into itself a typical problem is to minimize the quadratic function

$$\min_{x \in F(T)} \frac{1}{2} \langle \mathcal{B}x, x \rangle - \langle x, b \rangle, \tag{2}$$

over the set of all fixed points F(T) of T (see [18]).

Lemma 2.2. ([18]). Let \mathcal{B} be a self-adjoint strongly positive bounded linear operator on a Hilbert space \mathcal{H} with coefficient $\overline{\gamma} > 0$ and $0 < \rho \leq ||\mathcal{B}||^{-1}$. Then $||I - \rho \mathcal{B}|| \leq 1 - \rho \overline{\gamma}$.

Lemma 2.3. [14] Let \mathcal{H} be a Hilbert space and $x_i \in H$, $(1 \le i \le m)$. Then for any given $\{\lambda_i\}_{i=1}^m \subset (0,1)$ with $\sum_{i=1}^{m} \lambda_i = 1$ and for any positive integer k, j with $1 \le k < j \le m$,

$$\|\sum_{i=1}^{m} \lambda_{i} x_{i}\|^{2} \leq \sum_{i=1}^{m} \lambda_{i} \|x_{i}\|^{2} - \lambda_{k} \lambda_{j} \|x_{k} - x_{j}\|^{2}.$$

Lemma 2.4. [21] Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

 $a_{n+1} \leq (1 - \vartheta_n)a_n + \vartheta_n \delta_n, \qquad n \geq 0,$

where $\{\vartheta_n\}$ *is a sequence in* (0, 1) *and* $\{\delta_n\}$ *is a sequence in* \mathbb{R} *such that*

- (i) $\sum_{n=1}^{\infty} \vartheta_n = \infty$, (ii) $\limsup_{n \to \infty} \delta_n \le 0 \text{ or } \sum_{n=1}^{\infty} |\vartheta_n \delta_n| < \infty$.

Then $\lim_{n\to\infty} a_n = 0$.

Lemma 2.5. ([17]) Let $\{t_n\}$ be a sequence of real numbers such that there exists a subsequence $\{n_i\}$ of $\{n\}$ such that $t_{n_i} < t_{n_i+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\{\tau(n)\} \subset \mathbb{N}$ such that $\tau(n) \to \infty$ and the following properties are satisfied by all (sufficiently large) numbers $n \in \mathbb{N}$:

$$t_{\tau(n)} \le t_{\tau(n)+1}, \qquad t_n \le t_{\tau(n)+1}.$$

In fact

$$\tau(n) = \max\{k \le n : t_k < t_{k+1}\}.$$

3. The Results

In this section we introduce our algorithm for solving GMSSFP (1).

Theorem 3.1. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_k : \mathcal{H} \to \mathcal{K}, k = 1, 2$ be two bounded linear operator and let $\{C_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{H} and $\{Q_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{K} . Assume that GMSSFP has a nonempty solution set Ω . Suppose h be a contraction of \mathcal{H} into itself with constant $b \in (0, 1)$ and \mathcal{B} be a strongly positive bounded linear self-adjoint operator on \mathcal{H} with coefficient $\overline{\gamma}$ and $0 < \gamma < \frac{\overline{\gamma}}{\overline{\mu}}$. Let $\{x_n\}$ be a sequence generated by $x_0 \in \mathcal{H}$ and by

$$\begin{cases} y_n = \alpha_n x_n + \sum_{i=1}^r \beta_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}_1^* (I - P_{Q_i}) \mathcal{A}_1) x_n + \sum_{i=1}^r \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}_2^* (I - P_{Q_i}) \mathcal{A}_2) x_n, \\ x_{n+1} = \theta_n \gamma h(x_n) + (I - \theta_n \mathcal{B}) y_n, \quad \forall n \ge 0, \end{cases}$$
(3)

where $\alpha_n + \sum_{i=1}^r \beta_{n,i} + \sum_{i=1}^r \gamma_{n,i} = 1$ and the sequences $\{\alpha_n\}, \{\beta_{n,i}\}, \{\gamma_{n,i}\}, \{\Theta_n\}$ and $\{\lambda_{n,i}\}$ satisfy the following conditions:

- (*i*) $\liminf_{n \to \infty} \alpha_n \beta_{n,i} > 0$ and $\liminf_{n \to \infty} \alpha_n \gamma_{n,i} > 0$, for each $1 \le i \le r$,
- (*ii*) $\lim_{n\to\infty} \theta_n = 0$ and $\sum_{n=0}^{\infty} \theta_n = \infty$,
- (*iii*) for each $1 \le i \le r, 0 < \lambda_{n,i} < \min\{\frac{2}{\|\mathcal{A}_i\|^2}, \frac{2}{\|\mathcal{A}_i\|^2}\}$ and

$$0 < \liminf_{n \to \infty} \lambda_{n,i} \le \limsup_{n \to \infty} \lambda_{n,i} < \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\}$$

Then, the sequences $\{x_n\}$ converges strongly to $x^* \in \Omega$ which solves the variational inequality;

$$\langle (\mathcal{B} - \gamma h) x^*, x - x^* \rangle \ge 0, \qquad \forall x \in \Omega.$$
⁽⁴⁾

Proof. First, we note that the solution set Ω is closed and convex. Indeed, since $0 < \lambda_{n,i} < \min\{\frac{2}{\|\mathcal{A}_{l}\|^{2}}, \frac{2}{\|\mathcal{A}_{2}\|^{2}}\}$ we have the operators $P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{1}^{*}(I - P_{Q_{i}})\mathcal{A}_{1})$ and $P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})$ are nonexpansive (see [22] for details). Note that a point x^{*} solves GMSSFP if and only if $x^{*} = P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x^{*}$ for all $1 \le i \le r$ and k = 1, 2. Now since the fixed point set of nonexpansive operators is closed and convex, the solution set Ω is closed and convex. So the projection onto the solution set Ω is well defined whenever $\Omega \neq \emptyset$. Next, we assert that $P_{\Omega}(I - \mathcal{B} + \gamma h)$ is a contraction from \mathcal{H} into itself. As a matter of fact, for any $x, y \in \mathcal{H}$ we have

$$\begin{aligned} \|P_{\Omega}(I - \mathcal{B} + \gamma h)(x) - P_{\Omega}(I - \mathcal{B} + \gamma h)(y)\| &\leq \|(I - \mathcal{B} + \gamma h)(x) - (I - \mathcal{B} + \gamma h)(y)\| \\ &\leq \|(I - \mathcal{B})x - (I - \mathcal{B})y\| + \gamma \|hx - hy\| \\ &\leq (1 - \overline{\gamma})\|x - y\| + \gamma b\|x - y\| \\ &\leq (1 - (\overline{\gamma} - \gamma b)\|x - y\|. \end{aligned}$$

So, by the Banach contraction principle there exists a unique element $x^* \in \mathcal{H}$ such that $x^* = P_{\Omega}(I - \mathcal{B} + \gamma h)x^*$. Since $\lim_{n\to\infty} \theta_n = 0$, we can assume that $\theta_n \in (0, ||\mathcal{B}||^{-1})$, for all $n \ge 0$. By Lemma 2.2 we have $||I - \theta_n \mathcal{B}|| \le 1 - \theta_n \overline{\gamma}$. Now, we show that $\{x_n\}$ is bounded. In fact, using the nonexpansive property of the operators $P_{C_i}(I - \lambda_{n,i}A^*(I - P_{Q_i})A)$ we have

$$\begin{aligned} \|y_n - x^{\star}\| &= \|\alpha_n x_n + \sum_{i=1}^r \beta_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}_1^* (I - P_{Q_i}) \mathcal{A}_1) x_n \\ &+ \sum_{i=1}^r \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}_2^* (I - P_{Q_i}) \mathcal{A}_2) x_n - x^{\star} \| \\ &\leq \alpha_n \|x_n - x^{\star}\| + \sum_{i=1}^r \beta_{n,i} \|P_{C_i} (I - \lambda_{n,i} \mathcal{A}_1^* (I - P_{Q_i}) \mathcal{A}_1) x_n - x^{\star} \| \\ &+ \sum_{i=1}^r \gamma_{n,i} \|P_{C_i} (I - \lambda_{n,i} \mathcal{A}_2^* (I - P_{Q_i}) \mathcal{A}_2) x_n - x^{\star} \| \\ &\leq \alpha_n \|x_n - x^{\star}\| + \sum_{i=1}^r \beta_{n,i} \|x_n - x^{\star}\| + \sum_{i=1}^r \gamma_{n,i} \|x_n - x^{\star}\| \\ &= \|x_n - x^{\star}\|, \end{aligned}$$

and hence

$$\begin{aligned} ||x_{n+1} - x^{\star}|| &= ||\theta_n(\gamma h(x_n) - \mathcal{B}x^{\star}) + (I - \theta_n \mathcal{B})(y_n - x^{\star}|| \\ &\leq \theta_n ||\gamma h(x_n) - \mathcal{B}x^{\star}|| + ||I - \theta_n \mathcal{B}||||y_n - x^{\star}|| \\ &\leq \theta_n ||\gamma h(x_n) - \mathcal{B}x^{\star}|| + (1 - \theta_n \overline{\gamma})||x_n - x^{\star}|| \\ &\leq \theta_n \gamma ||h(x_n) - hx^{\star}|| + \theta_n ||\gamma hx^{\star} - \mathcal{B}x^{\star}|| + (1 - \theta_n)\overline{\gamma}||x_n - x^{\star}|| \\ &\leq \theta_n \gamma b ||x_n - x^{\star}|| + \theta_n ||\gamma hx^{\star} - \mathcal{B}x^{\star}|| + (1 - \theta_n)\overline{\gamma}||x_n - x^{\star}|| \\ &\leq (1 - \theta_n(\overline{\gamma} - \gamma b))||x_n - x^{\star}|| + \theta_n ||\gamma hz - \mathcal{B}z|| \\ &= (1 - \theta_n(\overline{\gamma} - \gamma b))||x_n - x^{\star}|| + \theta_n(\overline{\gamma} - \gamma b)\frac{||\gamma hx^{\star} - \mathcal{B}x^{\star}||}{\overline{\gamma} - \gamma b} \\ &\leq \max\{||x_n - x^{\star}||, \frac{||\gamma hx^{\star} - \mathcal{B}x^{\star}||}{\overline{\gamma} - \gamma b}\}. \end{aligned}$$

This indicates that $\{x_n\}$ is bounded. It is easily to deduce that $\{y_n\}$ and $\{h(x_n)\}$ are also bounded. Next, we show that for each $1 \le i \le r$ and k = 1, 2,

$$\lim_{n\to\infty} \|P_{C_i}(I-\lambda_{n,i}\mathcal{A}_k^*(I-P_{Q_i})\mathcal{A}_k)x_n-x_n\|=0.$$

Applying Lemma 2.3, we get that

$$\begin{split} \|y_{n} - x^{\star}\|^{2} &= \|\alpha_{n}x_{n} + \sum_{i=1}^{r} \beta_{n,i}P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{1}^{*}(I - P_{Q_{i}})\mathcal{A}_{1})x_{n} \\ &+ \sum_{i=1}^{r} \gamma_{n,i}P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - x^{\star}\|^{2} \\ &\leq \alpha_{n}\|x_{n} - x^{\star}\|^{2} + \sum_{i=1}^{r} \beta_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{1}^{*}(I - P_{Q_{i}})\mathcal{A}_{1})x_{n} - x^{\star}\|^{2} \\ &+ \sum_{i=1}^{r} \gamma_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - x^{\star}\|^{2} \\ &- \alpha_{n}\beta_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{1}^{*}(I - P_{Q_{i}})\mathcal{A}_{1})x_{n} - x_{n}\|^{2} \\ &- \alpha_{n}\gamma_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - x_{n}\|^{2} \\ &\leq \alpha_{n}\|x_{n} - x^{\star}\|^{2} + \sum_{i=1}^{r} \beta_{n,i}\|x_{n} - x^{\star}\|^{2} + \sum_{i=1}^{r} \gamma_{n,i}\|x_{n} - x^{\star}\|^{2} \\ &- \alpha_{n}\beta_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{1}^{*}(I - P_{Q_{i}})\mathcal{A}_{1})x_{n} - x_{n}\|^{2} \\ &= \|x_{n} - x^{\star}\|^{2} - \alpha_{n}\beta_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - x_{n}\|^{2} \\ &= \|x_{n} - x^{\star}\|^{2} - \alpha_{n}\beta_{n,i}\|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - x_{n}\|^{2} . \end{split}$$

Consequently,

$$\begin{split} ||x_{n+1} - x^{\star}||^{2} &= ||\theta_{n}(\gamma h(x_{n}) - \mathcal{B}x^{\star} + (I - \theta_{n}\mathcal{B})(y_{n} - x^{\star})|^{2} \\ &\leq \theta_{n}^{2}||\gamma h(x_{n}) - \mathcal{B}x^{\star}||^{2} + (1 - \theta_{n}\overline{\gamma})^{2}||y_{n} - x^{\star}||^{2} + 2\theta_{n}(1 - \theta_{n}\overline{\gamma})||\gamma h(x_{n}) - \mathcal{B}x^{\star}||||y_{n} - x^{\star}|| \\ &\leq \theta_{n}^{2}||\gamma h(x_{n}) - \mathcal{B}x^{\star}||^{2} + (1 - \theta_{n}\overline{\gamma})^{2}||x_{n} - x^{\star}||^{2} + 2\theta_{n}(1 - \theta_{n}\overline{\gamma})||\gamma h(x_{n}) - \mathcal{B}x^{\star}||||x_{n} - x^{\star}|| \\ &- (1 - \theta_{n}\overline{\gamma})^{2}\alpha_{n}\beta_{n,i}||P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{1}^{*}(I - P_{Q_{i}})\mathcal{A}_{1})x_{n} - x_{n}||^{2} \\ &- (1 - \theta_{n}\overline{\gamma})^{2}\alpha_{n}\gamma_{n,i}||P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{2}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - x_{n}||^{2}, \end{split}$$

which hence implies that

$$(1 - \theta_n \overline{\gamma})^2 \alpha_n \beta_{n,i} \|P_{C_i} (I - \lambda_{n,i} \mathcal{A}_1^* (I - P_{Q_i}) \mathcal{A}_1) x_n - x_n \|^2 \le \|x_n - x^\star\|^2 - \|x_{n+1} - x^\star\|^2 + 2\theta_n (1 - \theta_n \overline{\gamma}) \|\gamma h(x_n) - \mathcal{B} x^\star \| \|x_n - x^\star\| + \theta_n^2 \|\gamma h(x_n) - \mathcal{B} x^\star\|^2.$$
(5)

We finally analyze the inequality (5) by considering the following two cases.

Case 1. Assume that { $||x_n - x^*||$ } is a monotone sequence. In other words, for n_0 large enough, { $||x_n - x^*||$ } is either nondecreasing or nonincreasing. Since { $||x_n - x^*||$ } is bounded, it is convergent. Since $\lim_{n\to\infty} \theta_n = 0$ and { $h(x_n)$ } and { x_n } are bounded, from (5) we deduce

$$\lim_{n \to \infty} \alpha_n \beta_{n,i} \| P_{C_i} (I - \lambda_{n,i} \mathcal{A}_1^* (I - P_{Q_i}) \mathcal{A}_1) x_n - x_n \|^2 = 0.$$

By our assumption that $\liminf_{n \to n} \alpha_n \beta_{n,i} > 0$, we get that

$$\lim_{n \to \infty} \|P_{C_i}(I - \lambda_{n,i}\mathcal{A}_1^*(I - P_{Q_i})\mathcal{A}_1)x_n - x_n\| = 0, \qquad 1 \le i \le r.$$
(6)

By similar argument we can obtain that

$$\lim_{n \to \infty} \|P_{C_i}(I - \lambda_{n,i}\mathcal{A}_2^*(I - P_{Q_i})\mathcal{A}_2)x_n - x_n\| = 0, \qquad 1 \le i \le r.$$
(7)

Next, we show that

$$\limsup_{n\to\infty}\langle (\mathcal{B}-\gamma h)x^{\star},x^{\star}-x_n\rangle\leq 0.$$

To show this inequality, We can choose a subsequence $\{x_{n_l}\}$ of $\{x_n\}$ such that

$$\lim_{l\to\infty} \langle (\mathcal{B} - \gamma h) x^{\star}, x^{\star} - x_{n_l} \rangle = \limsup_{n\to\infty} \langle (\mathcal{B} - \gamma h) x^{\star}, x^{\star} - x_n \rangle$$

Since $\{x_{n_l}\}$ is bounded, there exists a subsequence $\{x_{n_l}\}$ of $\{x_{n_l}\}$ which converges weakly to z. Without loss of generality, we can assume that $x_{n_l} \rightarrow z$ and $\lambda_{n,i} \rightarrow \lambda_i \in (0, \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\})$ for each $1 \le i \le r$. From (7) for k = 1, 2, we have

$$\begin{split} \|P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n} - x_{n}\| &\leq \|P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n} - P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n}\| \\ &+ \|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n} - x_{n}\| \\ &\leq \|(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{2})x_{n} - (I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n}\| \\ &+ \|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k}) - x_{n}\| \\ &\leq |\lambda_{i} - \lambda_{n,i}| \|\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n}\| \\ &+ \|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n}\| \\ &+ \|P_{C_{i}}(I - \lambda_{n,i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n} - x_{n}\| \to 0 \quad as \quad n \to \infty. \end{split}$$

Notice that, since $\lambda_i \in (0, \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\})$ we have $P_{C_i}(I - \lambda_{n,i}\mathcal{A}_k^*(I - P_{Q_i})\mathcal{A}_k)$ is nonexpansive. Thus

$$\begin{aligned} \|x_{n_{l}} - P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})z\| &\leq \|x_{n_{l}} - P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n_{l}}\| \\ &+ \|P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n_{l}} - P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})z\| \\ &\leq \|x_{n_{l}} - P_{C_{i}}(I - \lambda_{i}\mathcal{A}_{k}^{*}(I - P_{Q_{i}})\mathcal{A}_{k})x_{n_{l}}\| + \|x_{n_{l}} - z\|. \end{aligned}$$

This implies that

$$\limsup_{n\to\infty} ||x_{n_l} - P_{C_i}(I - \lambda_i \mathcal{R}_k^*(I - P_{Q_i})\mathcal{R}_k)z|| \le \limsup_{n\to\infty} ||x_{n_l} - z||.$$

By the Opial property of the Hilbert space \mathcal{H} we obtain that $P_{C_i}(I - \lambda_i \mathcal{A}_k^*(I - P_{Q_i})\mathcal{A}_k)z = z$, for all $1 \le i \le r$ and k = 1, 2, hence $z \in \Omega$. Since $x^* = P_{\Omega}(I - \mathcal{B} + \gamma h)x^*$ and $z \in \Omega$, we have

$$\lim \sup_{n\to\infty} \langle (\mathcal{B}-\gamma h)x^{\star}, x^{\star}-x_n\rangle = \lim_{i\to\infty} \langle (\mathcal{B}-\gamma h)x^{\star}, x^{\star}-x_{n_l}\rangle = \langle (\mathcal{B}-\gamma h)x^{\star}, x^{\star}-z\rangle \leq 0.$$

It is known that in a Hilbert space \mathcal{H}

 $||x+y||^2 \leq ||x||^2 + 2\langle y, x+y\rangle, \qquad \forall x,y \in \mathcal{H}.$

From this and since

$$x_{n+1} - x^{\star} = \theta_n(\gamma h(x_n) - \mathcal{B}x^{\star}) + (I - \theta_n \mathcal{B})(y_n - x^{\star}),$$

we conclude that

$$\begin{aligned} ||x_{n+1} - x^{\star}||^{2} &\leq ||(I - \theta_{n}\mathcal{B})(y_{n} - x^{\star})||^{2} + 2\theta_{n}\langle\gamma h(x_{n}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star}\rangle \\ &\leq (1 - \theta_{n}\overline{\gamma})^{2}||x_{n} - x^{\star}||^{2} + 2\theta_{n}\gamma\langle h(x_{n}) - h(x^{\star}), x_{n+1} - x^{\star}\rangle \\ &+ 2\theta_{n}\langle\gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star}\rangle \\ &\leq (1 - \theta_{n}\overline{\gamma})^{2}||x_{n} - x^{\star}||^{2} + 2\theta_{n}b\gamma||x_{n} - x^{\star}||||x_{n+1} - x^{\star}|| \\ &+ 2\theta_{n}\langle\gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star}\rangle \\ &\leq (1 - \theta_{n}\overline{\gamma})^{2}||x_{n} - x^{\star}||^{2} + \theta_{n}b\gamma(||x_{n} - x^{\star}||^{2} + ||x_{n+1} - x^{\star}||^{2}) \\ &+ 2\theta_{n}\langle\gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star}\rangle \\ &\leq ((1 - \theta_{n}\overline{\gamma})^{2} + \theta_{n}b\gamma)||x_{n} - x^{\star}||^{2} + \theta_{n}\gamma b||x_{n+1} - x^{\star}||^{2} \\ &+ 2\theta_{n}\langle\gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star}\rangle. \end{aligned}$$

This implies that

$$\begin{aligned} \|x_{n+1} - x^{\star}\|^{2} &\leq \frac{1-2\theta_{n}\overline{\gamma} + (\theta_{n}\overline{\gamma})^{2} + \theta_{n}\gamma b}{1-\theta_{n}\gamma b} \|x_{n} - x^{\star}\|^{2} + \frac{2\theta_{n}}{1-\theta_{n}\gamma b} \langle \gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star} \rangle \\ &= (1 - \frac{2(\overline{\gamma} - \gamma b)\theta_{n}}{1-\theta_{n}\gamma b}) \|x_{n} - x^{\star}\|^{2} + \frac{(\theta_{n}\overline{\gamma})^{2}}{1-\theta_{n}\gamma b} \|x_{n} - x^{\star}\|^{2} \\ &+ \frac{2\theta_{n}}{1-\theta_{n}\gamma b} \langle \gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star} \rangle \\ &\leq (1 - \frac{2(\overline{\gamma} - \gamma b)\theta_{n}}{1-\theta_{n}\gamma b}) \|x_{n} - x^{\star}\|^{2} + \frac{2(\overline{\gamma} - \gamma b)\theta_{n}}{1-\theta_{n}\gamma b} (\frac{(\theta_{n}\overline{\gamma}^{2})L}{2(\overline{\gamma} - \gamma b)} \\ &+ \frac{1}{\overline{\gamma} - \gamma b} \langle \gamma h(x^{\star}) - \mathcal{B}x^{\star}, x_{n+1} - x^{\star} \rangle) \\ &= (1 - \vartheta_{n}) \|x_{n} - x^{\star}\|^{2} + \vartheta_{n}\delta_{n}, \end{aligned}$$

where

$$L = \sup\{||x_n - x^*||^2 : n \ge 0\}, \qquad \vartheta_n = \frac{2(\overline{\gamma} - \gamma k)\theta_n}{1 - \theta_n \gamma b},$$

and

$$\delta_n = \frac{(\theta_n \overline{\gamma}^2)L}{2(\overline{\gamma} - \gamma b)} + \frac{1}{\overline{\gamma} - \gamma b} \langle \gamma h x^{\star} - B x^{\star}, x_{n+1} - x^{\star} \rangle.$$

It is easy to see that $\vartheta_n \to 0$, $\sum_{n=1}^{\infty} \vartheta_n = \infty$ and $\limsup_{n \to \infty} \delta_n \le 0$. Hence, all conditions of Lemma 2.4 are satisfied. Therefore, we immediately deduce that $x_n \to x^*$.

Case 2. Assume that $\{||x_n - x^*||\}$ is not a monotone sequence. Then, we can define an integer sequence $\{\tau(n)\}$ for all $n \ge n_0$ (for some n_0 large enough) by

$$\tau(n) := \max\{k \in \mathbb{N}; k \le n : ||x_k - x^*|| < ||x_{k+1} - x^*||\}.$$

Clearly, τ is a nondecreasing sequence such that $\tau(n) \to \infty$ as $n \to \infty$ and for all $n \ge n_0$,

$$||x_{\tau(n)} - x^{\star}|| \le ||x_{\tau(n)+1} - x^{\star}||$$

From (5) we obtain that

$$\lim_{n \to \infty} \|P_{C_i}(I - \lambda_{\tau(n),i}\mathcal{A}_1^*(I - P_{Q_i})\mathcal{A}_1)x_{\tau(n)} - x_{\tau(n)}\| = 0, \qquad 1 \le i \le r.$$
(8)

Following an argument similar to that in Case 1 we have

$$||x_{\tau(n)+1} - x^{\star}||^2 \le (1 - \vartheta_{\tau(n)}) ||x_{\tau(n)} - x^{\star}||^2 + \vartheta_{\tau(n)} \delta_{\tau(n)},$$

where $\vartheta_{\tau(n)} \to 0$, $\sum_{n=1}^{\infty} \vartheta_{\tau(n)} = \infty$ and $\limsup_{n \to \infty} \delta_{\tau(n)} \leq 0$. Hence, by Lemma 2.4, we obtain $\lim_{n \to \infty} ||x_{\tau(n)} - t_{\tau(n)}|| = 0$. $x^* \parallel = 0$ and $\lim_{n \to \infty} ||x_{\tau(n)+1} - x^*|| = 0$. Now Lemma 2.5 implies

$$0 \le ||x_n - x^{\star}|| \le \max\{||x_{\tau(n)} - x^{\star}||, ||x_n - x^{\star}||\} \le ||x_{\tau(n)+1} - x^{\star}||.$$

Therefore $\{x_n\}$ converges strongly to $x^* = P_{\Omega}(I - \mathcal{B} + \gamma h)x^*$. This complete the proof.

Setting $\mathcal{B} = I$ and $\gamma = 1$ in Theorem 3.1 we obtain the following result.

Theorem 3.2. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_k : \mathcal{H} \to \mathcal{K}, k = 1, 2$ be two bounded linear operator and let $\{C_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{H} and $\{Q_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{K} . Assume that GMSSFP has a nonempty solution set Ω . Suppose h be a contraction of \mathcal{H} into itself with constant $b \in (0, 1)$. Let $\{x_n\}$ be a sequence generated by $x_0 \in \mathcal{H}$ and by

$$\begin{cases} y_n = \alpha_n x_n + \sum_{i=1}^r \beta_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}_1^* (I - P_{Q_i}) \mathcal{A}_1) x_n + \sum_{i=1}^r \gamma_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}_2^* (I - P_{Q_i}) \mathcal{A}_2) x_n, \\ x_{n+1} = \theta_n h(x_n) + (1 - \theta_n) y_n, \quad \forall n \ge 0, \end{cases}$$

where $\alpha_n + \sum_{i=1}^r \beta_{n,i} + \sum_{i=1}^r \gamma_{n,i} = 1$ and the sequences $\{\alpha_n\}, \{\beta_{n,i}\}, \{\gamma_{n,i}\}, \{\Theta_n\}$ and $\{\lambda_{n,i}\}$ satisfy the following conditions:

- (*i*) $\liminf_{n \to \infty} \alpha_n \beta_{n,i} > 0$ and $\liminf_{n \to \infty} \alpha_n \gamma_{n,i} > 0$, for each $1 \le i \le r$,
- (*ii*) $\lim_{n\to\infty} \theta_n = 0$ and $\sum_{n=0}^{\infty} \theta_n = \infty$,
- (*iii*) for each $1 \le i \le r, 0 < \lambda_{n,i} < \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\}$ and

$$0 < \liminf_{n \to \infty} \lambda_{n,i} \le \limsup_{n \to \infty} \lambda_{n,i} < \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\}.$$

Then, the sequences $\{x_n\}$ converges strongly to $x^* \in \Omega$ which solves the variational inequality;

$$\langle (x^{\star} - hx^{\star}, x - x^{\star}) \geq 0, \quad \forall x \in \Omega.$$

Putting f(x) = u and similar argument as in Theorem 3.1, we can obtain the following result.

Theorem 3.3. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_k : \mathcal{H} \to \mathcal{K}, k = 1, 2$ be two bounded linear operator and let C be a nonempty closed convex subsets in \mathcal{H} and Q be a nonempty closed convex subsets in \mathcal{K} . Assume that GSFP has a nonempty solution set Ω . Let $u \in \mathcal{H}$ and $\{x_n\}$ be a sequence generated by $x_0 \in C$ and by

$$x_{n+1} = \alpha_n x_n + \beta_n u + \gamma_n P_C (I - \lambda_n \mathcal{A}_1^* (I - P_Q) \mathcal{A}_1) x_n + \theta_n P_C (I - \lambda_n \mathcal{A}_2^* (I - P_Q) \mathcal{A}_2) x_n,$$

where $\alpha_n + \beta_n + \gamma_n + \theta_n = 1$ and the sequences $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\theta_n\}$ and $\{\lambda_n\}$ satisfy the following conditions:

- (*i*) $\liminf_{n \to \infty} \alpha_n \theta_n > 0$ and $\liminf_{n \to \infty} \alpha_n \gamma_n > 0$,
- (*ii*) $\lim_{n\to\infty} \beta_n = 0$ and $\sum_{n=0}^{\infty} \beta_n = \infty$, (*iii*) $0 < \lambda_n < \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\}$ and $0 < \liminf_{n\to\infty} \lambda_n \le \limsup_{n\to\infty} \lambda_n < \min\{\frac{2}{\|\mathcal{A}_1\|^2}, \frac{2}{\|\mathcal{A}_2\|^2}\}$.

Then, the sequences $\{x_n\}$ *converges strongly to* $P_{\Omega}u$ *.*

When the point *u* in the above theorem is taken to be 0, we see that the limit point x^* of the sequence $\{x_n\}$ is the unique minimum norm solution of GSFP, that is,

$$\|x^{\star}\| = \min\{\|x\| : x \in \Omega\}$$

Corollary 3.4. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A} : \mathcal{H} \to \mathcal{K}$ be a bounded linear operator and let $\{C_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{H} and $\{Q_i\}_{i=1}^r$ be a family of nonempty closed convex subsets in \mathcal{K} . Assume that MSSFP has a nonempty solution set Ω . Suppose h be a contraction of \mathcal{H} into itself with constant $b \in (0,1)$ and \mathcal{B} be a strongly positive bounded linear self-adjoint operator on \mathcal{H} with coefficient $\overline{\gamma}$ and $0 < \gamma < \frac{\gamma}{h}$. *Let* $\{x_n\}$ *be a sequence generated by* $x_0 \in \mathcal{H}$ *and by*

$$\begin{cases} y_n = \alpha_n x_n + \sum_{i=1}^r \beta_{n,i} P_{C_i} (I - \lambda_{n,i} \mathcal{A}^* (I - P_{Q_i}) \mathcal{A}) x_n, \\ x_{n+1} = \theta_n \gamma h(x_n) + (I - \theta_n \mathcal{B}) y_n, \quad \forall n \ge 0, \end{cases}$$

where $\alpha_n + \sum_{i=1}^r \beta_{n,i} = 1$ and the sequences $\{\alpha_n\}, \{\beta_{n,i}\}, \{\theta_n\}$ and $\{\lambda_{n,i}\}$ satisfy the following conditions:

- (*i*) $\liminf_{n \to \infty} \alpha_n \beta_{n,i} > 0$,
- (*ii*) $\lim_{n\to\infty} \theta_n = 0$ and $\sum_{n=0}^{\infty} \theta_n = \infty$, (*iii*) for each $1 \le i \le r$, $0 < \lambda_{n,i} < \frac{2}{\|\mathcal{A}\|^2}$ and $0 < \liminf_{n\to\infty} \lambda_{n,i} \le \limsup_{n\to\infty} \lambda_{n,i} < \frac{2}{\|\mathcal{A}\|^2}$.

Then, the sequences $\{x_n\}$ converges strongly to $x^* \in \Omega$ which solves the variational inequality;

$$\langle (\mathcal{B} - \gamma h) x^{\star}, x - x^{\star} \rangle \ge 0, \qquad \forall x \in \Omega.$$

Competing interests:

The authors declare that they have no competing interests.

References

- [1] Saud A. Alsulami, E. Naraghirad and N. Hussain, Strong convergence of iterative algorithm for a new system of generalized H(.,.)-ηcocoercive operator inclusions in Banach spaces, Abstract and Applied Analysis, Volume 2013, Article ID 540108, 10 pp.
- [2] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.
- [3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
- [4] L. C. Ceng, Q. H. Ansari, J. C. Yao, Mann type iterative methods for finding a common solution of split feasibility and fixed point problems, Positivity, doi 10.1007/ s 11117-012-0174-8, (2012).
- [5] L. C. Ceng, N. Hussain, A. Latif and J. C. Yao, Strong convergence for solving general system of variational inequalities and fixed point problems in Banach spaces, Journal of Inequalities and Applications, 2013, 2013:334.
- [6] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353-2365.
- [7] Y. Censor and T. Elfving, A multiprojection algorithms using Bragman projection in a product space, J. Numer Algorithm, 8 (1994), 221-239.
- [8] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
- [9] L. C. Ceng, A. Latif and J. C. Yao, On solutions of system of variational inequalities and fixed point problems in Banach spaces, Fixed Point Theory and Applications 2013, 2013:176.
- [10] Y. Censor, X. A. Motova, A. Segal, Pertured projections and subgradient projections for the multiple-setssplit feasibility problem, J. Math. Anal. Appl. **327** (2007), 1244-1256.
- [11] P. L. Combettes, The convex feasibility problem in image recovery, In: Advances in Imaging and Electron Physics (P. Hawkes Ed.), 95. Academic Press, New York, 1996, 155-270.
- [12] P. L. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4 (2005), 1168-1200.
- [13] Y. Dang, Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems, 27 (2011), 015007.
- [14] M. Eslamian, A. Abkar, One-step iterative process for a finite family of multivalued mappings, Math. Comput. Modell. 54 (2011), 105-111.
- [15] M. Eslamian, A. Latif, General split feasibility problems in Hilbert spaces, Abstract and Applied Analysis, Volume 2013, Article ID 805104, 6pp.
- [16] A. Latif, A. E. Al-Mazrooei, B. A. B. Dehaish, and J. C. Yao, Hybrid viscosity approximation methods for general systems of variational inequalities in Banach spaces, Fixed Point Theory and Applications, 2013, 2013:258.
- [17] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Analysis, 16 (2008), 899-912.
- [18] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52.
- [19] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problems, 21 (2005), 1655-1665.
- [20] F. Wang, H. K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105-4111.
- [21] H. K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple-sets split feasibility problem, Inverse Problems, 22 (2006), 2021-2034.
- [22] H. K. Xu, Iterative methods for split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 26 (2010), (105018).