Strong Convergence for Generalized Multiple-Set Split Feasibility Problem

A. Latif ${ }^{\text {a }}$, J. Vahidi ${ }^{\text {b }}$, M. Eslamian ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia
${ }^{b}$ Department of Applied Mathematics, University of Science and Technology, Behshahr, Iran

Abstract

In this paper we introduce a new algorithm based on viscosity approximation method for solving the generalized multiple-set split feasibility problem (GMSSFP)in an infinite dimensional Hilbert spaces. We establish the strong convergence for the algorithm to find a unique solution of the variational inequality which is the optimality condition for the minimization problem.

1. Introduction

The problem of finding a point in the intersection of closed and convex subsets of a Hilbert space is a frequently appearing problem in diverse areas of mathematics and physical sciences. This problem is commonly referred to as the convex feasibility problem (CFP). There is a considerable investigation on (CFP) in the framework of Hilbert spaces which captures applications in various disciplines such as image restoration, computer tomograph and radiation therapy treatment planning [11].

Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{H}: \mathcal{H} \rightarrow \mathcal{K}$, be a bounded linear operator and let $\left\{C_{i}\right\}_{i=1}^{p}$ be a family of nonempty closed convex subsets in \mathcal{H} and $\left\{Q_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{K}. The multiple-set split feasibility problem (MSSFP) was recently introduced in [?] and is formulated as finding a point x^{\star} with the property:

$$
x^{\star} \in \bigcap_{i=1}^{p} C_{i} \text { and } \mathcal{A} x^{\star} \in \bigcap_{i=1}^{r} Q_{i} .
$$

The multiple-set split feasibility problem with $p=r=1$ is known as the split feasibility problem (SEP) which is formulated as finding a point x^{\star} with the property:

$$
x^{\star} \in C \quad \text { and } \quad \mathcal{A} x^{\star} \in Q \text {, }
$$

where C and Q are nonempty closed convex subsets of \mathcal{H} and \mathcal{K}, respectively.
In 1994, the SFP was first introduced by Censor and Elfving [7], in finite-dimensional Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in medical image reconstruction. A

[^0]number of image reconstruction problems can be formulated as the SFP; see, e.g., [3] and the references therein. Recently, it has been found that the SFP can also be applied to study intensity-modulated radiation therapy; see, e.g., $[6,8,10]$ and the references therein. In the recent past, a wide variety of iterative methods have been used in signal processing and image reconstruction and for solving the SFP and MSSPP; see, e.g., [1-19] and the references therein.

The original algorithm given in [7] involves the computation of the inverse A^{-1} (assuming the existence of the inverse of A) and thus has not become popular. A seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne [2,3] which is found to be a gradient-projection method (GPM) in convex minimization. It is also a special case of the proximal forward-backward splitting method [12]. The CQ algorithm starts with any $x_{1} \in \mathcal{H}$ and generates a sequence $\left\{x_{n}\right\}$ through the iteration

$$
x_{n+1}=P_{C}\left(I-\lambda \mathcal{A}^{*}\left(I-P_{Q}\right) \mathcal{A}\right) x_{n}
$$

where $\lambda \in\left(0, \frac{2}{\| \mathcal{F}) \|^{2}}\right), \mathcal{A}^{*}$ is the adjoint of \mathcal{A}, P_{C} and P_{Q} are the metric projections onto C and Q respectively.
Very recently, Xu [22] gave a continuation of the study on the CQ algorithm and its convergence. Xu [22] transformed SFP to the fixed point problem of the operator $P_{C}\left(I-\lambda \mathcal{A}^{*}\left(I-P_{Q}\right)\right)$ and shown that a point x^{\star} solves SFP if and only if $x^{\star}=P_{C}\left(I-\lambda \mathcal{A}^{*}\left(I-P_{Q}\right) \mathcal{A}\right) x^{\star}$. He applied Mann's algorithm to the SFP and proposed an averaged CQ algorithm which was proved to be weakly convergent to a solution of the SFP. Xu [22] also proposed the regularized method

$$
x_{n+1}=P_{C}\left(I-\lambda_{n}\left(\mathcal{A}^{*}\left(I-P_{Q}\right) \mathcal{A}+\alpha_{n} I\right)\right) x_{n}
$$

and proved that the sequence $\left\{x_{n}\right\}$ converges strongly to a minimum norm solution of SFP(1) provided the parameters $\left\{\alpha_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ verify some suitable conditions. Further recent work also appeared in literature, see, for example [5, 9, 16]. In [20], Wang and Xu gave a Cyclic algorithm to solve MSSFP:

$$
x_{n+1}=P_{C[n]}\left(x_{n}+\gamma \mathcal{A}^{*}\left(P_{Q[n]}-I\right) \mathcal{A} x_{n}\right),
$$

where $[n]:=n(\bmod p),(\bmod$ function take values in $\{1,2, \ldots, p\})$, and $\gamma \in\left(0, \frac{2}{\|\mathcal{A}\|^{2}}\right)$. They show that the sequence $\left\{x_{n}\right\}$ convergence weakly to a solution of MSSFP whenever its solution set in nonempty. Now we consider the multiple-set split feasibility problem for a finite family of operators:

Definition 1.1. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_{k}: \mathcal{H} \rightarrow \mathcal{K},(k=1,2, \ldots, m)$ be a family of bounded linear operators and let $\left\{C_{i}\right\}_{i=1}^{p}$ be a family of nonempty closed convex subsets in \mathcal{H} and $\left\{Q_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{K}. Generalized multiple-set split feasibility problem (GMSSFP) is to find a point x^{*} such that

$$
\begin{equation*}
x^{\star} \in \bigcap_{i=1}^{p} C_{i} \quad \text { and } \quad \mathcal{A}_{k} x^{\star} \in \bigcap_{i=1}^{r} Q_{i,} \quad k=1,2, \ldots, m . \tag{1}
\end{equation*}
$$

We denote Ω the solution set of GMSSFP.

In this paper we introduce a new algorithm based on viscosity approximation method for solving the generalized multiple-set split feasibility problem (GMSSFP)in an infinite dimensional Hilbert spaces. We establish the strong convergence for the algorithm to find a unique solution of the variational inequality which is the optimality condition for the minimization problem.

2. Preliminaries

We use the following notion in the sequel:
$\bullet \rightharpoonup$ for weak convergence and \rightarrow for strong convergence.
It is known that a Hilbert space \mathcal{H} satisfies Opial's condition, i.e., for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in \mathcal{H}$ with $y \neq x$.
Let C be a nonempty closed convex subset of a real Hilbert space \mathcal{H}. Recall that the nearest point or metric projection from \mathcal{H} onto C, denoted P_{C}, assigns, to each $x \in \mathcal{H}$, the unique point $P_{C} x \in C$ with the property

$$
\left\|x-P_{C} x\right\|=\inf \{\|x-y\| \quad \forall y \in C\}
$$

Recall that a mapping $T: \mathcal{H} \rightarrow \mathcal{H}$ is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \quad \forall x, y \in \mathcal{H} .
$$

It is well known that the metric projection P_{C} of \mathcal{H} onto C has the following basic properties: $\bullet P_{C}$ is a nonexpansive,

- $\left\langle y-P_{C}(x), x-P_{C}(x)\right\rangle \leq 0, \quad \forall x \in \mathcal{H}, y \in C$.

Definition 2.1. A bounded linear operator \mathcal{B} on \mathcal{H} is called strongly positive if there exists $\bar{\gamma}>0$ such that

$$
\langle\mathcal{B} x, x\rangle \geq \bar{\gamma}\|x\|^{2}, \quad(x \in \mathcal{H})
$$

For a nonexpansive mapping T from a nonempty subset C of \mathcal{H} into itself a typical problem is to minimize the quadratic function

$$
\begin{equation*}
\min _{x \in F(T)} \frac{1}{2}\langle\mathcal{B} x, x\rangle-\langle x, b\rangle, \tag{2}
\end{equation*}
$$

over the set of all fixed points $F(T)$ of T (see [18]).
Lemma 2.2. ([18]). Let \mathcal{B} be a self-adjoint strongly positive bounded linear operator on a Hilbert space \mathcal{H} with coefficient $\bar{\gamma}>0$ and $0<\rho \leq\|\mathcal{B}\|^{-1}$. Then $\|I-\rho \mathcal{B}\| \leq 1-\rho \bar{\gamma}$.

Lemma 2.3. [14] Let \mathcal{H} be a Hilbert space and $x_{i} \in H,(1 \leq i \leq m)$. Then for any given $\left\{\lambda_{i}\right\}_{i=1}^{m} \subset(0,1)$ with $\sum_{i=1}^{m} \lambda_{i}=1$ and for any positive integer k, j with $1 \leq k<j \leq m$,

$$
\left\|\sum_{i=1}^{m} \lambda_{i} x_{i}\right\|^{2} \leq \sum_{i=1}^{m} \lambda_{i}\left\|x_{i}\right\|^{2}-\lambda_{k} \lambda_{j}\left\|x_{k}-x_{j}\right\|^{2}
$$

Lemma 2.4. [21] Assume that $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\vartheta_{n}\right) a_{n}+\vartheta_{n} \delta_{n}, \quad n \geq 0
$$

where $\left\{\vartheta_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in \mathbb{R} such that
(i) $\sum_{n=1}^{\infty} \vartheta_{n}=\infty$,
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\vartheta_{n} \delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.5. ([17]) Let $\left\{t_{n}\right\}$ be a sequence of real numbers such that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $t_{n_{i}}<t_{n_{i}+1}$ for all $i \in \mathbb{N}$. Then there exists a nondecreasing sequence $\{\tau(n)\} \subset \mathbb{N}$ such that $\tau(n) \rightarrow \infty$ and the following properties are satisfied by all (sufficiently large) numbers $n \in \mathbb{N}$:

$$
t_{\tau(n)} \leq t_{\tau(n)+1}, \quad t_{n} \leq t_{\tau(n)+1}
$$

In fact

$$
\tau(n)=\max \left\{k \leq n: t_{k}<t_{k+1}\right\} .
$$

3. The Results

In this section we introduce our algorithm for solving GMSSFP (1).
Theorem 3.1. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_{k}: \mathcal{H} \rightarrow \mathcal{K}, k=1,2$ be two bounded linear operator and let $\left\{C_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{H} and $\left\{Q_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{K}. Assume that GMSSFP has a nonempty solution set Ω. Suppose h be a contraction of \mathcal{H} into itself with constant $b \in(0,1)$ and \mathcal{B} be a strongly positive bounded linear self-adjoint operator on \mathcal{H} with coefficient $\bar{\gamma}$ and $0<\gamma<\frac{\bar{\gamma}}{b}$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in \mathcal{H}$ and by

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{n}+\sum_{i=1}^{r} \beta_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}+\sum_{i=1}^{r} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}, \tag{3}\\
x_{n+1}=\theta_{n} \gamma h\left(x_{n}\right)+\left(I-\theta_{n} \mathcal{B}\right) y_{n}, \quad \forall n \geq 0,
\end{array}\right.
$$

where $\alpha_{n}+\sum_{i=1}^{r} \beta_{n, i}+\sum_{i=1}^{r} \gamma_{n, i}=1$ and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\},\left\{\gamma_{n, i}\right\},\left\{\theta_{n}\right\}$ and $\left\{\lambda_{n, i}\right\}$ satisfy the following conditions:
(i) $\liminf _{n} \alpha_{n} \beta_{n, i}>0$ and $\liminf _{n} \alpha_{n} \gamma_{n, i}>0$, for each $1 \leq i \leq r$,
(ii) $\lim _{n \rightarrow \infty} \theta_{n}=0$ and $\sum_{n=0}^{\infty} \theta_{n}=\infty$,
(iii) for each $1 \leq i \leq r, 0<\lambda_{n, i}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}$ and

$$
0<\liminf _{n \rightarrow \infty} \lambda_{n, i} \leq \limsup _{n \rightarrow \infty} \lambda_{n, i}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}
$$

Then, the sequences $\left\{x_{n}\right\}$ converges strongly to $x^{\star} \in \Omega$ which solves the variational inequality;

$$
\begin{equation*}
\left\langle(\mathcal{B}-\gamma h) x^{\star}, x-x^{\star}\right\rangle \geq 0, \quad \forall x \in \Omega . \tag{4}
\end{equation*}
$$

Proof. First, we note that the solution set Ω is closed and convex. Indeed, since $0<\lambda_{n, i}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}$ we have the operators $P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right)$ and $P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right)$ are nonexpansive (see [22] for details). Note that a point x^{\star} solves GMSSFP if and only if $x^{\star}=P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x^{\star}$ for all $1 \leq i \leq r$ and $k=1,2$. Now since the fixed point set of nonexpansive operators is closed and convex, the solution set Ω is closed and convex. So the projection onto the solution set Ω is well defined whenever $\Omega \neq \emptyset$. Next, we assert that $P_{\Omega}(I-\mathcal{B}+\gamma h)$ is a contraction from \mathcal{H} into itself. As a matter of fact, for any $x, y \in \mathcal{H}$ we have

$$
\begin{aligned}
\left\|P_{\Omega}(I-\mathcal{B}+\gamma h)(x)-P_{\Omega}(I-\mathcal{B}+\gamma h)(y)\right\| & \leq\|(I-\mathcal{B}+\gamma h)(x)-(I-\mathcal{B}+\gamma h)(y)\| \\
& \leq\|(I-\mathcal{B}) x-(I-\mathcal{B}) y\|+\gamma\|h x-h y\| \\
& \leq(1-\bar{\gamma})\|x-y\|+\gamma b\|x-y\| \\
& \leq(1-(\bar{\gamma}-\gamma b)\|x-y\| .
\end{aligned}
$$

So, by the Banach contraction principle there exists a unique element $x^{\star} \in \mathcal{H}$ such that $x^{\star}=P_{\Omega}(I-\mathcal{B}+\gamma h) x^{\star}$. Since $\lim _{n \rightarrow \infty} \theta_{n}=0$, we can assume that $\theta_{n} \in\left(0,\|\mathcal{B}\|^{-1}\right)$, for all $n \geq 0$. By Lemma 2.2 we have $\left\|I-\theta_{n} \mathcal{B}\right\| \leq$ $1-\theta_{n} \bar{\gamma}$. Now, we show that $\left\{x_{n}\right\}$ is bounded. In fact, using the nonexpansive property of the operators $P_{C_{i}}\left(I-\lambda_{n, i} A^{*}\left(I-P_{Q_{i}}\right) A\right)$ we have

$$
\begin{aligned}
\left\|y_{n}-x^{\star}\right\| & =\| \alpha_{n} x_{n}+\sum_{i=1}^{r} \beta_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n} \\
& +\sum_{i=1}^{r} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x^{\star} \| \\
& \leq \alpha_{n}\left\|x_{n}-x^{\star}\right\|+\sum_{i=1}^{r} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x^{\star}\right\| \\
& +\sum_{i=1}^{r} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x^{\star}\right\| \\
& \leq \alpha_{n}\left\|x_{n}-x^{\star}\right\|+\sum_{i=1}^{r} \beta_{n, i}\left\|x_{n}-x^{\star}\right\|+\sum_{i=1}^{r} \gamma_{n, i}\left\|x_{n}-x^{\star}\right\| \\
& =\left\|x_{n}-x^{\star}\right\|,
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left\|x_{n+1}-x^{\star}\right\| & =\| \theta_{n}\left(\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right)+\left(I-\theta_{n} \mathcal{B}\right)\left(y_{n}-x^{\star} \|\right. \\
& \leq \theta_{n}\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right\|+\left\|I-\theta_{n} \mathcal{B}\right\|\left\|y_{n}-x^{\star}\right\| \\
& \leq \theta_{n}\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right\|+\left(1-\theta_{n} \bar{\gamma}\right)\left\|x_{n}-x^{\star}\right\| \\
& \leq \theta_{n} \gamma\left\|h\left(x_{n}\right)-h x^{\star}\right\|+\theta_{n}\left\|\gamma h x^{\star}-\mathcal{B} x^{\star}\right\|+\left(1-\theta_{n}\right) \bar{\gamma}\left\|x_{n}-x^{\star}\right\| \\
& \leq \theta_{n} \gamma b\left\|x_{n}-x^{\star}\right\|+\theta_{n}\left\|\gamma h x^{\star}-\mathcal{B} x^{\star}\right\|+\left(1-\theta_{n}\right) \bar{\gamma}\left\|x_{n}-x^{\star}\right\| \\
& \leq\left(1-\theta_{n}(\bar{\gamma}-\gamma b)\right)\left\|x_{n}-x^{\star}\right\|+\theta_{n}\|\gamma h z-\mathcal{B} z\| \\
& =\left(1-\theta_{n}(\bar{\gamma}-\gamma b)\right)\left\|x_{n}-x^{\star}\right\|+\theta_{n}(\bar{\gamma}-\gamma b) \frac{\left\|\gamma h x^{\star}-\mathcal{B} x^{\star}\right\|}{\bar{\gamma}-\gamma b} \\
& \leq \max \left\{\left\|x_{n}-x^{\star}\right\|, \frac{\left\|\gamma h x^{\star}-\mathcal{B} x^{\star}\right\|}{\bar{\gamma}-\gamma b}\right\} \\
& \vdots \\
& \leq \max \left\{\left\|x_{0}-x^{\star}\right\|, \frac{\left\|\gamma h x^{\star}-\mathcal{B} x^{\star}\right\|}{\bar{\gamma}-\gamma b}\right\} .
\end{aligned}
$$

This indicates that $\left\{x_{n}\right\}$ is bounded. It is easily to deduce that $\left\{y_{n}\right\}$ and $\left\{h\left(x_{n}\right)\right\}$ are also bounded. Next, we show that for each $1 \leq i \leq r$ and $k=1,2$,

$$
\lim _{n \rightarrow \infty}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}-x_{n}\right\|=0
$$

Applying Lemma 2.3, we get that

$$
\begin{aligned}
\left\|y_{n}-x^{\star}\right\|^{2} & =\| \alpha_{n} x_{n}+\sum_{i=1}^{r} \beta_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n} \\
& +\sum_{i=1}^{r} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x^{\star} \|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-x^{\star}\right\|^{2}+\sum_{i=1}^{r} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x^{\star}\right\|^{2} \\
& +\sum_{i=1}^{r} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x^{\star}\right\|^{2} \\
& -\alpha_{n} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|^{2} \\
& -\alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x_{n}\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-x^{\star}\right\|^{2}+\sum_{i=1}^{r} \beta_{n, i}\left\|x_{n}-x^{\star}\right\|^{2}+\sum_{i=1}^{r} \gamma_{n, i}\left\|x_{n}-x^{\star}\right\|^{2} \\
& -\alpha_{n} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|^{2} \\
& -\alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x_{n}\right\|^{2} \\
& =\left\|x_{n}-x^{\star}\right\|^{2}-\alpha_{n} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|^{2} \\
& -\alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x_{n}\right\|^{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left\|x_{n+1}-x^{\star}\right\|^{2} & =\| \theta_{n}\left(\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}+\left(I-\theta_{n} \mathcal{B}\right)\left(y_{n}-x^{\star} \|^{2}\right.\right. \\
& \leq \theta_{n}^{2}\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right\|^{2}+\left(1-\theta_{n} \bar{\gamma}\right)^{2}\left\|y_{n}-x^{\star}\right\|^{2}+2 \theta_{n}\left(1-\theta_{n} \bar{\gamma}\right)\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star} \mid\right\|\left\|y_{n}-x^{\star}\right\| \\
& \leq \theta_{n}^{2}\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right\|^{2}+\left(1-\theta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-x^{\star}\right\|^{2}+2 \theta_{n}\left(1-\theta_{n} \bar{\gamma}\right)\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star} \mid\right\|\left\|x_{n}-x^{\star}\right\| \\
& -\left(1-\theta_{n} \bar{\gamma}\right)^{2} \alpha_{n} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|^{2} \\
& -\left(1-\theta_{n} \bar{\gamma}\right)^{2} \alpha_{n} \gamma_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x_{n}\right\|^{2},
\end{aligned}
$$

which hence implies that

$$
\begin{align*}
&\left(1-\theta_{n} \bar{\gamma}\right)^{2} \alpha_{n} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|^{2} \leq\left\|x_{n}-x^{\star}\right\|^{2}-\left\|x_{n+1}-x^{\star}\right\|^{2} \\
&+2 \theta_{n}\left(1-\theta_{n} \bar{\gamma}\right)\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right\|\left\|x_{n}-x^{\star}\right\|+\theta_{n}^{2}\left\|\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right\|^{2} \tag{5}
\end{align*}
$$

We finally analyze the inequality (5) by considering the following two cases.
Case 1. Assume that $\left\{\left\|x_{n}-x^{\star}\right\|\right\}$ is a monotone sequence. In other words, for n_{0} large enough, $\left\{\left\|x_{n}-x^{\star}\right\|\right\}_{n \geq n_{0}}$ is either nondecreasing or nonincreasing. Since $\left\{\| x_{n}-x^{\star}| |\right\}$ is bounded, it is convergent. Since $\lim _{n \rightarrow \infty} \theta_{n}=0$ and $\left\{h\left(x_{n}\right)\right\}$ and $\left\{x_{n}\right\}$ are bounded, from (5) we deduce

$$
\lim _{n \rightarrow \infty} \alpha_{n} \beta_{n, i}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|^{2}=0
$$

By our assumption that $\liminf _{n} \alpha_{n} \beta_{n, i}>0$, we get that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}-x_{n}\right\|=0, \quad 1 \leq i \leq r . \tag{6}
\end{equation*}
$$

By similar argument we can obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-x_{n}\right\|=0, \quad 1 \leq i \leq r \tag{7}
\end{equation*}
$$

Next, we show that

$$
\lim \sup _{n \rightarrow \infty}\left\langle(\mathcal{B}-\gamma h) x^{\star}, x^{\star}-x_{n}\right\rangle \leq 0
$$

To show this inequality, We can choose a subsequence $\left\{x_{n_{l}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\lim _{l \rightarrow \infty}\left(\langle\mathcal{B}-\gamma h) x^{\star}, x^{\star}-x_{n_{l}}\right\rangle=\lim \sup _{n \rightarrow \infty}\left\langle(\mathcal{B}-\gamma h) x^{\star}, x^{\star}-x_{n}\right\rangle .
$$

Since $\left\{x_{n_{l}}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{l_{j}}}\right\}$ of $\left\{x_{n_{l}}\right\}$ which converges weakly to z. Without loss of generality, we can assume that $x_{n_{l}} \rightharpoonup z$ and $\lambda_{n, i} \rightarrow \lambda_{i} \in\left(0, \min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}\right)$ for each $1 \leq i \leq r$. From (7) for $k=1,2$, we have

$$
\begin{aligned}
\left\|P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}-x_{n}\right\| & \leq\left\|P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}-P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}\right\| \\
& +\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}-x_{n}\right\| \\
& \leq\left\|\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}-\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}\right\| \\
& +\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right)-x_{n}\right\| \\
& \left.\leq \mid \lambda_{i}-\lambda_{n, i} \| \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n} \| \\
& +\left\|P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n}-x_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty .
\end{aligned}
$$

Notice that, since $\lambda_{i} \in\left(0, \min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}\right)$ we have $P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right)$ is nonexpansive. Thus

$$
\begin{aligned}
\left\|x_{n_{l}}-P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) z\right\| & \leq\left\|x_{n_{l}}-P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n_{l}}\right\| \\
& +\left\|P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n_{l}}-P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) z\right\| \\
& \leq\left\|x_{n_{l}}-P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) x_{n_{l}}\right\|+\left\|x_{n_{l}}-z\right\| .
\end{aligned}
$$

This implies that

$$
\limsup _{n \rightarrow \infty}\left\|x_{n_{l}}-P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) z\right\| \leq \limsup \left\|x_{n \rightarrow \infty}-z\right\| .
$$

By the Opial property of the Hilbert space \mathcal{H} we obtain that $P_{C_{i}}\left(I-\lambda_{i} \mathcal{A}_{k}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{k}\right) z=z$, for all $\leq i \leq r$ and $k=1,2$, hence $z \in \Omega$. Since $x^{\star}=P_{\Omega}(I-\mathcal{B}+\gamma h) x^{\star}$ and $z \in \Omega$, we have

$$
\lim \sup _{n \rightarrow \infty}\left\langle(\mathcal{B}-\gamma h) x^{\star}, x^{\star}-x_{n}\right\rangle=\lim _{i \rightarrow \infty}\left(\langle\mathcal{B}-\gamma h) x^{\star}, x^{\star}-x_{n_{l}}\right\rangle=\left(\langle\mathcal{B}-\gamma h) x^{\star}, x^{\star}-z\right\rangle \leq 0 .
$$

It is known that in a Hilbert space \mathcal{H}

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, x+y\rangle, \quad \forall x, y \in \mathcal{H}
$$

From this and since

$$
x_{n+1}-x^{\star}=\theta_{n}\left(\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}\right)+\left(I-\theta_{n} \mathcal{B}\right)\left(y_{n}-x^{\star}\right)
$$

we conclude that

$$
\begin{aligned}
\left\|x_{n+1}-x^{\star}\right\|^{2} & \leq\left\|\left(I-\theta_{n} \mathcal{B}\right)\left(y_{n}-x^{\star}\right)\right\|^{2}+2 \theta_{n}\left\langle\gamma h\left(x_{n}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle \\
& \leq\left(1-\theta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-x^{\star}\right\|^{2}+2 \theta_{n} \gamma\left\langle h\left(x_{n}\right)-h\left(x^{\star}\right), x_{n+1}-x^{\star}\right\rangle \\
& +2 \theta_{n}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle \\
& \leq\left(1-\theta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-x^{\star}\right\|^{2}+2 \theta_{n} b \gamma\left\|x_{n}-x^{\star}\right\|\left\|x_{n+1}-x^{\star}\right\| \\
& +2 \theta_{n}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle \\
& \leq\left(1-\theta_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-x^{\star}\right\|^{2}+\theta_{n} b \gamma\left(\left\|x_{n}-x^{\star}\right\|^{2}+\left\|x_{n+1}-x^{\star}\right\|^{2}\right) \\
& +2 \theta_{n}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle \\
& \leq\left(\left(1-\theta_{n} \bar{\gamma}\right)^{2}+\theta_{n} b \gamma\right)\left\|x_{n}-x^{\star}\right\|^{2}+\theta_{n} \gamma b\left\|x_{n+1}-x^{\star}\right\|^{2} \\
& +2 \theta_{n}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left\|x_{n+1}-x^{\star}\right\|^{2} & \leq \frac{1-2 \theta_{n} \bar{\gamma}+\left(\theta_{n} \bar{\gamma}\right)^{2}+\theta_{n} \gamma b}{1-\theta_{n} \gamma b}\left\|x_{n}-x^{\star}\right\|^{2}+\frac{2 \theta_{n}}{1-\theta_{n} \gamma b}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle \\
& =\left(1-\frac{2(\bar{\gamma}-\gamma b) \theta_{n}}{1-\theta_{n} \gamma b}\right)\left\|x_{n}-x^{\star}\right\|^{2}+\frac{\left(\theta_{n} \bar{\gamma}\right)^{2}}{1-\theta_{n} \gamma b}\left\|x_{n}-x^{\star}\right\|^{2} \\
& +\frac{2 \theta_{n}}{1-\theta_{n} \gamma b}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle \\
& \leq\left(1-\frac{2(\bar{\gamma}-\gamma b) \theta_{n}}{1-\theta_{n} \gamma b}\right)\left\|x_{n}-x^{\star}\right\|^{2}+\frac{2(\bar{\gamma}-\gamma b) \theta_{n}}{1-\theta_{n} \gamma b}\left(\frac{\left(\theta_{n} \bar{\gamma}^{2}\right) L}{2(\bar{\gamma}-\gamma b)}\right. \\
& \left.+\frac{1}{\bar{\gamma}-\gamma b}\left\langle\gamma h\left(x^{\star}\right)-\mathcal{B} x^{\star}, x_{n+1}-x^{\star}\right\rangle\right) \\
& =\left(1-\vartheta_{n}\right)\left\|x_{n}-x^{\star}\right\|^{2}+\vartheta_{n} \delta_{n},
\end{aligned}
$$

where

$$
L=\sup \left\{\left\|x_{n}-x^{\star}\right\|^{2}: n \geq 0\right\}, \quad \vartheta_{n}=\frac{2(\bar{\gamma}-\gamma k) \theta_{n}}{1-\theta_{n} \gamma b}
$$

and

$$
\delta_{n}=\frac{\left(\theta_{n} \bar{\gamma}^{2}\right) L}{2(\bar{\gamma}-\gamma b)}+\frac{1}{\bar{\gamma}-\gamma b}\left\langle\gamma h x^{\star}-B x^{\star}, x_{n+1}-x^{\star}\right\rangle
$$

It is easy to see that $\vartheta_{n} \rightarrow 0, \sum_{n=1}^{\infty} \vartheta_{n}=\infty$ and $\lim \sup _{n \rightarrow \infty} \delta_{n} \leq 0$. Hence, all conditions of Lemma 2.4 are satisfied. Therefore, we immediately deduce that $x_{n} \rightarrow x^{\star}$.

Case 2. Assume that $\left\{\left\|x_{n}-x^{\star}\right\|\right\}$ is not a monotone sequence. Then, we can define an integer sequence $\{\tau(n)\}$ for all $n \geq n_{0}$ (for some n_{0} large enough) by

$$
\tau(n):=\max \left\{k \in \mathbb{N} ; k \leq n:\left\|x_{k}-x^{\star}\right\|<\left\|x_{k+1}-x^{\star}\right\|\right\}
$$

Clearly, τ is a nondecreasing sequence such that $\tau(n) \rightarrow \infty$ as $n \rightarrow \infty$ and for all $n \geq n_{0}$,

$$
\left\|x_{\tau(n)}-x^{\star}\right\| \leq\left\|x_{\tau(n)+1}-x^{\star}\right\| .
$$

From (5) we obtain that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|P_{C_{i}}\left(I-\lambda_{\tau(n), i} \mathcal{H}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{\tau(n)}-x_{\tau(n)}\right\|=0, \quad 1 \leq i \leq r \tag{8}
\end{equation*}
$$

Following an argument similar to that in Case 1 we have

$$
\left\|x_{\tau(n)+1}-x^{\star}\right\|^{2} \leq\left(1-\vartheta_{\tau(n)}\right)\left\|x_{\tau(n)}-x^{\star}\right\|^{2}+\vartheta_{\tau(n)} \delta_{\tau(n)},
$$

where $\vartheta_{\tau(n)} \rightarrow 0, \sum_{n=1}^{\infty} \vartheta_{\tau(n)}=\infty$ and $\lim \sup _{n \rightarrow \infty} \delta_{\tau(n)} \leq 0$. Hence, by Lemma 2.4, we obtain $\lim _{n \rightarrow \infty} \| x_{\tau(n)}-$ $x^{\star} \|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{\tau(n)+1}-x^{\star}\right\|=0$. Now Lemma 2.5 implies

$$
0 \leq\left\|x_{n}-x^{\star}\right\| \leq \max \left\{\left\|x_{\tau(n)}-x^{\star}\right\|,\left\|x_{n}-x^{\star}\right\|\right\} \leq\left\|x_{\tau(n)+1}-x^{\star}\right\| .
$$

Therefore $\left\{x_{n}\right\}$ converges strongly to $x^{\star}=P_{\Omega}(I-\mathcal{B}+\gamma h) x^{\star}$. This complete the proof.
Setting $\mathcal{B}=I$ and $\gamma=1$ in Theorem 3.1 we obtain the following result.
Theorem 3.2. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_{k}: \mathcal{H} \rightarrow \mathcal{K}, k=1,2$ be two bounded linear operator and let $\left\{C_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{H} and $\left\{Q_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{K}. Assume that GMSSFP has a nonempty solution set Ω. Suppose h be a contraction of \mathcal{H} into itself with constant $b \in(0,1)$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in \mathcal{H}$ and by

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{n}+\sum_{i=1}^{r} \beta_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{1}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{1}\right) x_{n}+\sum_{i=1}^{r} \gamma_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}_{2}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}_{2}\right) x_{n}, \\
x_{n+1}=\theta_{n} h\left(x_{n}\right)+\left(1-\theta_{n}\right) y_{n}, \quad \forall n \geq 0,
\end{array}\right.
$$

where $\alpha_{n}+\sum_{i=1}^{r} \beta_{n, i}+\sum_{i=1}^{r} \gamma_{n, i}=1$ and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i}\right\},\left\{\gamma_{n, i}\right\},\left\{\theta_{n}\right\}$ and $\left\{\lambda_{n, i}\right\}$ satisfy the following conditions:
(i) $\liminf _{n} \alpha_{n} \beta_{n, i}>0$ and $\liminf _{n} \alpha_{n} \gamma_{n, i}>0$, for each $1 \leq i \leq r$,
(ii) $\lim _{n \rightarrow \infty} \theta_{n}=0$ and $\sum_{n=0}^{\infty} \theta_{n}=\infty$,
(iii) for each $1 \leq i \leq r, 0<\lambda_{n, i}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}$ and

$$
0<\liminf _{n \rightarrow \infty} \lambda_{n, i} \leq \limsup _{n \rightarrow \infty} \lambda_{n, i}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}
$$

Then, the sequences $\left\{x_{n}\right\}$ converges strongly to $x^{\star} \in \Omega$ which solves the variational inequality;

$$
\left\langle\left(x^{\star}-h x^{\star}, x-x^{\star}\right\rangle \geq 0, \quad \forall x \in \Omega .\right.
$$

Putting $f(x)=u$ and similar argument as in Theorem 3.1, we can obtain the following result.
Theorem 3.3. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}_{k}: \mathcal{H} \rightarrow \mathcal{K}, k=1,2$ be two bounded linear operator and let C be a nonempty closed convex subsets in \mathcal{H} and Q be a nonempty closed convex subsets in \mathcal{K}. Assume that GSFP has a nonempty solution set Ω. Let $u \in \mathcal{H}$ and $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in C$ and by

$$
x_{n+1}=\alpha_{n} x_{n}+\beta_{n} u+\gamma_{n} P_{C}\left(I-\lambda_{n} \mathcal{A}_{1}^{*}\left(I-P_{Q}\right) \mathcal{A}_{1}\right) x_{n}+\theta_{n} P_{C}\left(I-\lambda_{n} \mathcal{A}_{2}^{*}\left(I-P_{Q}\right) \mathcal{A}_{2}\right) x_{n}
$$

where $\alpha_{n}+\beta_{n}+\gamma_{n}+\theta_{n}=1$ and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\},\left\{\gamma_{n}\right\},\left\{\theta_{n}\right\}$ and $\left\{\lambda_{n}\right\}$ satisfy the following conditions:
(i) $\liminf _{n} \alpha_{n} \theta_{n}>0$ and $\liminf _{n} \alpha_{n} \gamma_{n}>0$,
(ii) $\lim _{n \rightarrow \infty} \beta_{n}=0$ and $\sum_{n=0}^{\infty} \beta_{n}=\infty$,
(iii) $0<\lambda_{n}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}$ and $0<\lim \inf _{n \rightarrow \infty} \lambda_{n} \leq \lim \sup _{n \rightarrow \infty} \lambda_{n}<\min \left\{\frac{2}{\left\|\mathcal{A}_{1}\right\|^{2}}, \frac{2}{\left\|\mathcal{A}_{2}\right\|^{2}}\right\}$.

Then, the sequences $\left\{x_{n}\right\}$ converges strongly to $P_{\Omega} u$.
When the point u in the above theorem is taken to be 0 , we see that the limit point x^{\star} of the sequence $\left\{x_{n}\right\}$ is the unique minimum norm solution of GSFP, that is,

$$
\left\|x^{\star}\right\|=\min \{\|x\|: x \in \Omega\}
$$

Corollary 3.4. Let \mathcal{H} and \mathcal{K} be real Hilbert spaces, $\mathcal{A}: \mathcal{H} \rightarrow \mathcal{K}$ be a bounded linear operator and let $\left\{\mathcal{C}_{i}\right\}_{i=1}^{r}$ be a family of nonempty closed convex subsets in \mathcal{H} and $\left\{Q_{i}\right\}_{i=1}^{Y}$ be a family of nonempty closed convex subsets in \mathcal{K}. Assume that MSSFP has a nonempty solution set Ω. Suppose h be a contraction of \mathcal{H} into itself with constant $b \in(0,1)$ and \mathcal{B} be a strongly positive bounded linear self-adjoint operator on \mathcal{H} with coefficient $\bar{\gamma}$ and $0<\gamma<\frac{\bar{\gamma}}{b}$. Let $\left\{x_{n}\right\}$ be a sequence generated by $x_{0} \in \mathcal{H}$ and by

$$
\left\{\begin{array}{l}
y_{n}=\alpha_{n} x_{n}+\sum_{i=1}^{r} \beta_{n, i} P_{C_{i}}\left(I-\lambda_{n, i} \mathcal{A}^{*}\left(I-P_{Q_{i}}\right) \mathcal{A}\right) x_{n,} \\
x_{n+1}=\theta_{n} \gamma h\left(x_{n}\right)+\left(I-\theta_{n} \mathcal{B}\right) y_{n,} \quad \forall n \geq 0,
\end{array}\right.
$$

where $\alpha_{n}+\sum_{i=1}^{r} \beta_{n, i}=1$ and the sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n, i},\left\{\theta_{n}\right\}\right.$ and $\left\{\lambda_{n, i}\right\}$ satisfy the following conditions:
(i) $\liminf _{n} \alpha_{n} \beta_{n, i}>0$,
(ii) $\lim _{n \rightarrow \infty} \theta_{n}=0$ and $\sum_{n=0}^{\infty} \theta_{n}=\infty$,
(iii) for each $1 \leq i \leq r, 0<\lambda_{n, i}<\frac{2}{\|\mathcal{F}\|^{2}}$ and $0<\liminf _{n \rightarrow \infty} \lambda_{n, i} \leq \lim \sup _{n \rightarrow \infty} \lambda_{n, i}<\frac{2}{\|\mathscr{A l}\|^{2}}$.

Then, the sequences $\left\{x_{n}\right\}$ converges strongly to $x^{\star} \in \Omega$ which solves the variational inequality;

$$
\left\langle(\mathcal{B}-\gamma h) x^{\star}, x-x^{\star}\right\rangle \geq 0, \quad \forall x \in \Omega .
$$

Competing interests:

The authors declare that they have no competing interests.

References

[1] Saud A. Alsulami, E. Naraghirad and N. Hussain, Strong convergence of iterative algorithm for a new system of generalized $H(.,)-.\eta$ cocoercive operator inclusions in Banach spaces, Abstract and Applied Analysis, Volume 2013, Article ID 540108, 10 pp.
[2] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103-120.
[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Problems, 18 (2002), 441-453.
[4] L. C. Ceng, Q. H. Ansari, J. C. Yao, Mann type iterative methods for finding a common solution of split feasibility and fixed point problems, Positivity, doi 10.1007/ s 11117-012-0174-8, (2012).
[5] L. C. Ceng, N. Hussain, A. Latif and J. C. Yao, Strong convergence for solving general system of variational inequalities and fixed point problems in Banach spaces, Journal of Inequalities and Applications, 2013, 2013:334.
[6] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol. 51 (2006), 2353-2365.
[7] Y. Censor and T. Elfving, A multiprojection algorithms using Bragman projection in a product space, J. Numer Algorithm, 8 (1994), 221-239.
[8] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, 21 (2005), 2071-2084.
[9] L. C. Ceng, A. Latif and J. C. Yao, On solutions of system of variational inequalities and fixed point problems in Banach spaces, Fixed Point Theory and Applications 2013, 2013:176.
[10] Y. Censor, X. A. Motova, A. Segal, Pertured projections and subgradient projections for the multiple-setssplit feasibility problem, J. Math. Anal. Appl. 327 (2007), 1244-1256.
[11] P. L. Combettes, The convex feasibility problem in image recovery, In: Advances in Imaging and Electron Physics (P. Hawkes Ed.), 95. Academic Press, New York, 1996, 155-270.
[12] P. L. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4 (2005), 1168-1200.
[13] Y. Dang, Y. Gao, The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Problems, 27 (2011), 015007.
[14] M. Eslamian, A. Abkar, One-step iterative process for a finite family of multivalued mappings, Math. Comput. Modell. 54 (2011), 105-111.
[15] M. Eslamian, A. Latif, General split feasibility problems in Hilbert spaces, Abstract and Applied Analysis, Volume 2013, Article ID 805104, 6pp.
[16] A. Latif, A. E. Al-Mazrooei, B. A. B. Dehaish, and J. C. Yao, Hybrid viscosity approximation methods for general systems of variational inequalities in Banach spaces, Fixed Point Theory and Applications, 2013, 2013:258.
[17] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Analysis, 16 (2008), 899-912.
[18] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), 43-52.
[19] B. Qu and N. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse Problems, 21 (2005), 1655-1665.
[20] F. Wang, H. K. Xu, Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., 74 (2011), 4105-4111.
[21] H. K. Xu, A variable Krasnoselskii-Mann algorithm and the multiple-sets split feasibility problem, Inverse Problems, 22 (2006), $2021-2034$.
[22] H. K. Xu, Iterative methods for split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Problems, 26 (2010), (105018).

[^0]: 2010 Mathematics Subject Classification. Primary 47J25, 47N10; Secondary 65J15, 90C25
 Keywords. Multiple-set split feasibility problem, Variational inequality, Strong convergence.
 Received: 15 March 2014; Accepted: 28 April 2014
 Communicated by Ljubomir Ćirić
 Email addresses: alatif@kau.edu.sa (A. Latif), j.vahidi@b-iust.ac.ir (J. Vahidi), mhmdeslamian@gmail.com (M. Eslamian)

