Filomat 30:2 (2016), 469–472 DOI 10.2298/FIL1602469P

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Proximal Relator Spaces

J. F. Peters^a

^aDepartment of Electrical & Computer Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada and Department of Mathematics, Faculty of Arts and Sciences, Adıyaman University, Adıyaman, Turkey

Abstract. This article introduces proximal relator spaces. The basic approach is to define a nonvoid family of proximity relations $\mathcal{R}_{\delta_{\phi}}$ (called a proximal relator) on a nonempty set. The pair $(X, \mathcal{R}_{\delta_{\phi}})$ (also denoted $X(\mathcal{R}_{\delta_{\phi}})$) is called a proximal relator space. Then, for example, the traditional closure of a subset of the Száz relator space (X, \mathcal{R}) can be compared with the more recent descriptive closure of a subset of $(X, \mathcal{R}_{\delta_{\phi}})$. This leads to an extension of fat and dense subsets of the relator space (X, \mathcal{R}) to proximal fat and dense subsets of the proximal relator space $(X, \mathcal{R}_{\delta_{\phi}})$.

1. Introduction

This article introduces an extension of a Száz relator space [14–16] called a proximal relator space. A *relator* is a nonvoid family of relations \mathcal{R} on a nonempty set X. The pair (X, \mathcal{R}) (also denoted $X(\mathcal{R})$) is called a relator space. Relator spaces are natural generalisations of ordered sets and uniform spaces [16]. With the introduction of a family of proximity relations on X, we obtain a proximal relator space $(X, \mathcal{R}_{\delta})$ ($X(\mathcal{R}_{\delta})$). For simplicity, we consider only two proximity relations, namely, the Efremovič proximity δ [5] and the descriptive proximity δ_{Φ} in defining $\mathcal{R}_{\delta_{\Phi}}$ [9, 11, 12]. The descriptive proximity δ_{Φ} results from the introduction of feature vectors that describe each point in a proximal relator space. In this paper, X denotes a metric topological space that is endowed with the relations in a proximal relator. With the introduction of ($X, \mathcal{R}_{\delta_{\Phi}}$), the traditional closure of a subset (*e.g.*, [4, 6]) can be compared with the more recent descriptive closure of a subset.

2. Preliminaries

In a Kovár discrete space, a non-abstract point has a location and features that can be measured [8, §3]. Let X contain non-abstract points in a proximal relator space $(X, \mathcal{R}_{\delta_{\oplus}})$ and let $\Phi = \{\phi_1, \dots, \phi_n\}$ be a set of probe functions that represent features of each $x \in X$. A *probe function* $\Phi : X \to \mathbb{R}$ represents a feature of a sample point in a picture. Let $\Phi(x) = (\phi_1(x), \dots, \phi_n(x))$ denote a feature vector for x, which provides a description of each $x \in X$. For example, this leads to a proximal view of sets of picture points in digital

²⁰¹⁰ Mathematics Subject Classification. Primary 54E15; Secondary 54E17, 03E15, 03E75

Keywords. Closure of a set; Proximity relation; Relator

Received: 15 March 2014; Accepted: 09 June 2014

Communicated by Hari M. Srivastava

Research supported by Scientific and Technological Research Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BIDEB) under grant no: 2221-1059B211301223 and Natural Sciences & Engineering Research Council of Canada (NSERC) discovery grant 185986.

Email address: James.Peters3@ad.umanitoba.ca (J. F. Peters)

images [9]. To obtain a descriptive proximity relation (denoted by δ_{Φ}), one first chooses a set of probe functions. Let $A, B \in 2^X$ and Q(A), Q(B) denote sets of descriptions of points in A, B, respectively. For example, $Q(A) = \{\Phi(a) : a \in A\}$. The expression $A \delta_{\Phi} B$ reads A is descriptively near B. Similarly, $A \delta_{\Phi} B$ reads A is descriptively far from B. The descriptive proximity of A and B is defined by

$$A \ \delta_{\Phi} \ B \Leftrightarrow Q(A) \cap Q(B) \neq \emptyset$$

The EF-proximity of $A, B \subset X$ (denoted $A \delta B$) is defined by

$$A \cap B \neq \emptyset \Longrightarrow A \ \delta \ B.$$

In an ordinary metric closure space [1, §14A.1] X, the closure of $A \subset X$ (denoted by cl(A)) is defined by

$$cl(A) = \{x \in X : D(x, A) = 0\}$$
, where
 $D(x, A) = inf \{d(x, a) : a \in A\}$,

i.e., cl(*A*) is the set of all points *x* in *X* that are close to *A* (*D*(*x*, *A*) is the Hausdorff distance [7, §22, p. 128] between *x* and the set *A* and d(x, a) = |x - a| (standard distance)). Subsets $A, B \in 2^X$ are spatially near (denoted by $A \delta B$), provided the intersection of the closure of *A* and the closure of *B* is nonempty, i.e., cl(*A*) \cap cl(*B*) $\neq \emptyset$. That is, nonempty sets are spatially near, provided the sets have at least one point in common.

The Efremovič nearness relation δ (called a *discrete* proximity [5]) is defined by

$$\delta = \left\{ (A, B) \in 2^X \times 2^X : \operatorname{cl}(A) \cap \operatorname{cl}(B) \neq \emptyset \right\}.$$

The pair (X, δ) is called an EF-proximity space. In a proximity space X, the closure of A in X coincides with the intersection of all closed sets that contain A.

Theorem 2.1. [13] The closure of any set A in the proximity space X is the set of points $x \in X$ that are close to A.

The expression $A \ \delta_{\Phi} B$ reads A is descriptively near B. The relation δ_{Φ} is called a *descriptive proximity relation*. Similarly, $A \ \underline{\delta}_{\Phi} B$ denotes that A is descriptively far (remote) from B. The descriptive proximity of A and B is defined by

$$A \ \delta_{\Phi} \ B \Leftrightarrow Q(\operatorname{cl}(A)) \cap Q(\operatorname{cl}(B)) \neq \emptyset.$$

The *descriptive intersection* \bigcap_{Φ} of *A* and *B* is defined by

$$A \cap B = \{x \in A \cup B : \Phi(x) \in Q(cl(A)) \text{ and } \Phi(x) \in Q(cl(B))\}.$$

That is, $x \in A \cup B$ is in cl(*A*) \bigcap_{Φ} cl(*B*), provided $\Phi(x) = \Phi(a) = \Phi(b)$ for some $a \in cl(A), b \in cl(B)$.

The descriptive proximity relation δ_{Φ} is defined by

$$\delta_{\Phi} = \left\{ (A, B) \in 2^X \times 2^X : \operatorname{cl}(A) \bigcap_{\Phi} \operatorname{cl}(B) \neq \emptyset \right\}.$$

The pair (X, δ_{Φ}) is called a descriptive EF-proximity space. In a proximal relator space *X*, the descriptive closure of *A* in *X* contains all points in *X* that are descriptively close to the closure of *A*. The *descriptive closure of a set A* (denoted by $cl_{\Phi}(A)$) is defined by

$$cl_{\Phi}(A) = \{x \in X : \Phi(x) \in Q(cl(A))\}.$$

That is, $x \in X$ is in the descriptive closure of A, provided $\Phi(x)$ (description of x) matches $\Phi(a) \in Q(cl(A))$ for at least one $a \in cl(A)$.

Theorem 2.2. [10] *The descriptive closure of any set* A *in the proximal relator space* X *is the set of points* $x \in X$ *that are descriptively close to* A.

3. Main Results

In a proximal relator space, EF-proximity δ leads to the following results for descriptive proximity δ_{Φ} .

Theorem 3.1. Let $(X, \mathcal{R}_{\delta_{\Phi}})$ be a proximal relator space, $A, B, C \subset X$. Then $1^{\circ} A \cap B \neq \emptyset$ implies $A \delta_{\Phi} B$. $2^{\circ} (A \cup B) \cap C \neq \emptyset$ implies $(A \cup B) \delta_{\Phi} C$.

 3° cl $A \cap clB \neq \emptyset$ implies cl $A \delta_{\Phi}$ clB.

Proof.

1^{*o*}: For *x* ∈ *A* ∩ *B*, Φ(*x*) ∈ *Q*(*A*) and Φ(*x*) ∈ *Q*(*B*). Consequently, *A* δ_{Φ} *B*. 1^{*o*} ⇒ 2^{*o*}. 3^{*o*}: cl*A* ∩ cl*B* ≠ Ø implies that cl*A* and cl*A* have at least one point in common. Hence, 1^{*o*} ⇒ 3^{*o*}. □

In a pseudometric proximal relator space *X*, the neighbourhood of a point $x \in X$ (denoted by $N_{x,\varepsilon}$), for $\varepsilon > 0$, is defined by

 $N_{x,\varepsilon} = \{y \in X : d(x, y) < \varepsilon\}.$

The interior of a set A (denoted by int(A)) and boundary of A (denoted by bdy(A)) in a proximal relator space X are defined by

 $int(A) = \{x \in X : N_{x,\varepsilon} \subseteq A\}.$ bdy(A) = cl(A) \ int(A).

The descriptive interior of a set *A* (denoted by $int_{\Phi}(A)$) and descriptive boundary of *A* (denoted by $bdy_{\Phi}(A)$) in a proximal relator space *X* are defined by

 $\operatorname{int}_{\Phi}(A) = \{x \in X : \Phi(x) \in Q(\operatorname{int}(A))\}.$ $\operatorname{bdy}_{\Phi}(A) = \{x \in X : \Phi(x) \in Q(\operatorname{cl}(A) \setminus \operatorname{int}(A))\}.$

A set *A* has a *natural strong inclusion* in a set *B* associated with δ [2, 3] (denoted by $A \ll_{\delta} B$), provided $A \subset \text{int}(\text{cl}(\text{int}B))$, *i.e.*, $A \ \underline{\delta} X \setminus \text{cl}(\text{int}B)$ (*A* is far from the complement of cl(int*B*)). Correspondingly, a set *A* has a *descriptive strong inclusion* in a set *B* associated with δ_{Φ} (denoted by $A \ll_{\delta_{\Phi}} B$), provided $Q(A) \subset Q(\text{int}(\text{cl}_{\Phi}(\text{int}B)))$, *i.e.*, $A \ \underline{\delta}_{\Phi} X \setminus \text{cl}_{\Phi}(\text{int}B)$ (Q(A) is far from the complement of cl_{\Phi}(\text{int}B))). This leads to the following results.

Theorem 3.2. Let $(X, \mathcal{R}_{\delta_{\Phi}})$ be a proximal relator space, $A, B \subset X$. Then $1^{\circ} A \ll_{\delta} B \Leftrightarrow A \ll_{\delta_{\Phi}} B$. $2^{\circ} clA \ll_{\delta} clB \Leftrightarrow clA \ll_{\delta_{\Phi}} clB$.

Proof. 1^{*o*}: $A \ll_{\delta} B \Leftrightarrow \Phi(x) \in Q(\operatorname{int}(\operatorname{cl}_{\Phi}(\operatorname{int} B)))$ for each $\Phi(x) \in Q(A) \Leftrightarrow A \ll_{\delta_{\Phi}} B$. 1^{*o*} $\Rightarrow 2^{o}$. \Box

Theorem 3.3. Let $(X, \mathcal{R}_{\delta_{\Phi}})$ be a proximal relator space, $A \subset X$. Then $cl(A) \subseteq cl_{\Phi}(A)$.

Proof. Let $\Phi(x) \in Q(X \setminus cl(A))$ such that $\Phi(x) = \Phi(a)$ for some $a \in clA$. Consequently, $\Phi(x) \in Q(cl_{\Phi}(A))$. Hence, $cl(A) \subseteq cl_{\Phi}(A)$. \Box

Theorem 3.4. Let $(X, \mathcal{R}_{\delta_{\Phi}})$ be a proximal relator space, $A \subset X$. Then $1^0 int(A) \subseteq int_{\Phi}(A)$. $2^0 bdy(A) \subseteq bdy_{\Phi}(A)$.

Proof. Immediate from the definition of int(A), $int_{\Phi}(A)$, bdy(A), $bdy_{\Phi}(A)$. \Box

Theorem 3.5. Let $(X, \mathcal{R}_{\delta_{\Phi}})$ be a proximal relator space, $A \subset X$. Then $cl(A) = int(A) \cup bdy(A)$.

Theorem 3.6. Let $(X, \mathcal{R}_{\delta_{0}})$ be a proximal closure relator space, $A \subset X$. Then $cl_{\Phi}(A) = int_{\Phi}(A) \cup bdy_{\Phi}(A)$.

Proof.

$$cl(A) \subseteq cl_{\Phi}(A)[\text{Theorem 3.3}] \Rightarrow int(A) \cup bdy(A) \subseteq cl_{\Phi}(A)$$
$$\Rightarrow bdy_{\Phi}(A) \subset cl_{\Phi}(A), \text{ since } bdy(A) \subset cl(A), \text{ and}$$
$$int_{\Phi}(A) \subset cl_{\Phi}(A), \text{ since } int(A) \subset cl(A)$$
$$\Rightarrow int_{\Phi}(A) \cup bdy_{\Phi}(A) \subseteq cl_{\Phi}(A).$$

Similarly, $cl_{\Phi}(A) \subseteq int_{\Phi}(A) \cup bdy_{\Phi}(A)$. \Box

If $\mathcal{R}_{\delta\phi}$ is a proximal relator on *X*, members of the families

$$\mathcal{E}_{\mathcal{R}_{\delta_{\Phi}}} = \left\{ A \subset X : \operatorname{int}_{\mathcal{R}_{\delta_{\Phi}}}(A) \neq \emptyset \right\} \text{ and } \mathcal{D}_{\mathcal{R}_{\delta_{\Phi}}} = \left\{ A \subset X : \operatorname{cl}_{\mathcal{R}_{\delta_{\Phi}}}(A) = X \right\}$$

are called *fat* and *dense* subsets of the proximal relator space ($X, \mathcal{R}_{\delta_{\phi}}$).

Theorem 3.7. Let
$$(X, \mathcal{R}_{\delta_{\Phi}})$$
 be a proximal relator space, $A, B \subset X$. Then
 $1^{0} \mathcal{E}_{\mathcal{R}_{\delta_{\Phi}}} = \left\{ A \subset X : \forall B \in \mathcal{D}_{\mathcal{R}_{\delta_{\Phi}}} : A \cap B \neq \emptyset \right\}.$
 $2^{0} \mathcal{D}_{\mathcal{R}_{\delta_{\Phi}}} = \left\{ A \subset X : \forall B \in \mathcal{E}_{\mathcal{R}_{\delta_{\Phi}}} : A \cap B \neq \emptyset \right\}.$
 $3^{0} \mathcal{E}_{\mathcal{R}_{\delta_{\Phi}}} = \left\{ A \subset X : \forall B \in \mathcal{D}_{\mathcal{R}_{\delta_{\Phi}}} : A \bigcap_{\Phi} B \neq \emptyset \right\}.$
 $4^{0} \mathcal{D}_{\mathcal{R}_{\delta_{\Phi}}} = \left\{ A \subset X : \forall B \in \mathcal{E}_{\mathcal{R}_{\delta_{\Phi}}} : A \bigcap_{\Phi} B \neq \emptyset \right\}.$

Proof. Immediate from the definition of $\mathcal{E}_{R_{\delta_n}}$, $\mathcal{D}_{R_{\delta_n}}$.

References

- [1] E. Čech, Topological Spaces, revised Ed. by Z. Frolik and M. Katětov, John Wiley & Sons, London, 1966, MR0104205.
- [2] A. Di Concilio, Action, uniformity and proximity, Theory and Applications of Proximity, Nearness and Uniformity (S.A. Naimpally, G. Di Maio, ed.), Seconda Università di Napoli,2008, pp. 71-88.
- [3] A. Di Concilio, Proximity: A powerful tool in extension theory, function spaces, hyper-spaces, Boolean algebras and point-free geometry, Contemporary Math. 486 (2009), 89114, MR2521943.
- [4] R. Devi, A. Selvakumar and M. Vigneshwaran, (I, γ) -generalized semi-closed sets in topological spaces, FILOMAT 24 (2010), no. 4, 97-100.
- [5] V.A. Efremovič, *The geometry of proximity I (in Russian)*, Mat. Sb. (N.S.) **31** (1952), no. 1, 189-200.
 [6] E. Ekici, *A note on a-open and e^{*}-sets*, FILOMAT **22** (2008), no. 1, 89-96.
- [7] F. Hausdorff, Grundzüge der Mengenlehre, Veit and Company, Leipzig, 1914, viii + 476 pp.
- [8] M.M. Kovár, A new causal topology and why the universe is co-compact, arXive:1112.0817[math-ph] (2011), 1-15.
- [9] J.F. Peters, Near Sets: An Introduction, Math. in Comp. Sci., 7 (2013), no. 1, 3-9.
- [10] J.F. Peters, Topology of Digital Images. Visual Pattern Discovery in Proximity Spaces, Intelligent Systems Reference Library, vol. 63, Springer, 2014, ISBN 978-3-642-53844-5, xv + 342pp.
- [11] J.F. Peters and E. Inan and M.A. Öztürk, Spatial and descriptive isometries in proximity spaces, General Mathematics Notes, 21 (2014), no. 2, 1-10.
- [12] J.F. Peters and S.A. Naimpally, Applications of near sets, Notices of the Amer. Math. Soc. 59 (2012), no. 4, 536-542, MR2951956.
- [13] Ju. M. Smirnov, On proximity spaces, Math. Sb. (N.S.) 31 (1952), no. 73, 543-574, English translation: Amer. Math. Soc. Trans. Ser. 2, 38, 1964, 5-35.
- [14] Á Száz, An extension of Kelley's closed relation theorem to relator spaces, FILOMAT 14 (2000), 49-71.
- [15] Á Száz, Applications of relations and relators in the extensions of stability theorems for homogeneous and additive functions, The Australian J. of Math. Anal. and Appl. 6 (2009), no. 1, 1-66.
- [16] Á Száz, Basic tools and mild continuities in relator spaces, Acta Math. Hungar. 50 (1987), 177-201.