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Abstract. In this work, following their counterparts for single sequences in classical real analysis we will
introduce and examine convergence types and relationship between them for double sequences of functions
defined on a subset E with finite measure in real numbers.

1. Introduction

In this work we examine the concepts of convergence almost everywere, convergence in measure and
uniformly convergence, also relationships between these concepts, for double function sequences. Let us
clearly note that we utilize from methods, given for single function sequences, in [6].

Let E be a measurable subset with finite Lebesgue measure E in real numbers. We receive a single
sequence

(
fn
)

of real-valued measurable functions and a measurable function f defined on E. If for an
element x in E and any ε > 0 there is a natural number N such that

∣∣∣ fn (x) − f (x)
∣∣∣ < ε for all n≥ N, then

this sequence
(

fn
)

converges to f in the point x. If for any ε > 0 there is a natural number N such that∣∣∣ fn (x) − f (x)
∣∣∣ < ε for all n≥ N and all x∈E, then this sequence

(
fn
)

is said to be uniformly convergence on E
to f.

Let a single sequence of measurable functions
(

fn
)

be defined and finite almost everywhere on E. Let f
be a measurable function which is finite almost everywhere on E. If

lim
n→∞

[
µ
{
x ∈ E :

∣∣∣ fn (x) − f (x)
∣∣∣ ≥ σ}] = 0

for all σ > 0, then this sequence
(

fn
)

is said to be convergence in measure to f [6].
Throughout this work, N and R denote the sets of natural numbers and real numbers respectively. A

real double sequence is a function x fromN ×N into R and briefly denoted by
(
xk,l

)
. If for all ε > 0 there is

nε ∈ N such that
∣∣∣xk,l − a

∣∣∣ < ε where k > nε and l > nε, then a double sequence
(
xk,l

)
is said to be converges

in Pringsheim’s sense to a ∈ R and to indicate it is briefly written

P − lim xk,l = a
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A double function sequence
(

fk,l
)

of real-valued functions defined on E corresponds to bring a real double
sequence

(
fk,l (x)

)
to each x ∈ E. If, for each x ∈ X, the sequence

(
fk,l (x)

)
converges in Pringsheim’s sense

to f (x), then this sequence
(

fk,l
)

is said to be pointwise convergence in Pringsheim’s sense to f . If, for any
ε > 0, there is a natural number N such that

∣∣∣ fkl (x) − f (x)
∣∣∣ < ε for all k,l≥ N and all x∈E, then this sequence(

fk,l
)

is said to be uniformly convergence in Pringsheim’s sense on E to f. These said things can be seen from
([1], [2], [3], [4], [5]).

Let a double sequence of measurable functions
(

fk,l
)

be defined and finite almost everywhere on E. Let f
be a measurable function which is finite almost everywhere on E. If

lim
n→∞

[
µ
{
x ∈ E :

∣∣∣ fk,l (x) − f (x)
∣∣∣ ≥ σ}] = 0

in Pringsheim’s sense for all σ > 0, then this sequence
(

fk,l
)

is said to be converges in measure in Pringsheim’s
sense to f .

2. Main Results

Theorem 2.1. Let
(

fm,n
)

be a double sequence of measurable functions which is finite almost everywere and a function
f be finite in almost everywere on E. If

(
fm,n

)
converges almost everywhere in Pringsheim’s sense on E to f , then

P − limµ
{
x ∈ E :

∣∣∣ fm,n (x) − f (x)
∣∣∣ ≥ σ} = 0

for all σ > 0.

Proof. Firstly we define the sets A, Am,n for m,n ∈N, B and Q as follows:

A =
{
x ∈ E :

∣∣∣ f (x)
∣∣∣ = +∞}

, Am.n =
{
x ∈ E :

∣∣∣ fm,n (x)
∣∣∣ = +∞}

(m,n ∈N),

B =
{
x ∈ E : P − lim fm,n (x) , f (x)

}
, Q = A ∪

(
∪
∞

m,n=1Am.n

)
∪ B.

By the hypothesis, we have µ (A) = µ (B) = µ
(
∪
∞

m,n=1Am.n

)
= 0. Since µ (Q) ≤ µ (A)+ µ (B)+

∞∑
m,n=1

µ (Am.n), we

get µ (Q) = 0. Further, let

Em,n (σ) =
{
x ∈ E :

∣∣∣ fm,n (x) − f (x)
∣∣∣ ≥ σ} for all m, n ∈N,

and

Rm,n (σ) = ∪∞i=0Ei+m,i+n (σ) for all m,n ∈N.

Using these sets, we define the sets

Sm,n (σ) = ∪∞k=m ∪
∞

l=n Rk,l (σ) for all m,n ∈N.

Then clearly

S1,1 (σ) ⊃ S2,2 (σ) ⊃ S3,3 (σ) ⊃ ...

Now we take

M = ∩∞n=1Sn,n (σ) ,

and show the inclusion M ⊂ Q. If we accept x0 < Q, then P − lim fk,l (x0) = f (x0), each fk,l (x0) is finite and
f (x0) is finite. Thus there is n0 ∈N such that∣∣∣ fk,l (x0) − f (x0)

∣∣∣ < σ
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for all k, l ≥ n0. In other words, x0 < Ek,l (σ) for all k, l ≥ n0. Hence x0 < Sn,n (σ) for each n ≥ n0 . From here,
we have x0 <M and so M ⊂ Q. Hence, since µ (Q) = 0 we find µ (M) = 0 and so

lim
n→∞

µ
(
Sn,n (σ)

)
= µ (M) = 0.

Considering the inclusions

Em,n (σ) ⊂ Rm,n (σ) ⊂ Sm,n ⊂ Sm,m ∪ Sn,n

for m ≥ n0 and n ≥ n0, we have

µ
(
Em,n (σ)

)
≤ µ

(
Sm,m ∪ Sn,n

)
≤ µ

(
Sm,m

)
+ µ

(
Sn,n

)
and hence

P − limµ
(
Em,n (σ)

)
= 0.

This completes the proof.

Corollary 2.2. If a double sequence of functions converges almost everywhere, then it converges in measure to same
function.

The opposite of the above theorem is not usually true. We explain this with an example:

Example 2.3. We define k − f untions on [0.1) for all k ∈N as follows:

f (k)
i (x) =

 1, f or x ∈
[

i−1
k ,

i
k

)
0, f or x <

[
i−1
k ,

i
k

) , i = 1, 2, 3, ..., k

Using these functions, we define a double sequence as ϕm,n ≡ 0 on [0.1) for m , n and

ϕ1,1 (x) = f (1)
1 (x) , ϕ2,2 (x) = f (2)

1 (x) , ϕ3,3 (x) = f (2)
2 (x) , ϕ4,4 (x) = f (3)

1 (x) , ....

We can easily see that this double sequence
(
ϕm,n

)
converges in measure to zero. In fact, for each σ with 0 < σ ≤ 1 if

m , n, then
{
x ∈ E :

∣∣∣ϕm,n (x)
∣∣∣ ≥ σ} = φ where φ denotes to empty set and if m = n, then taking ϕn,n (x) = f (k)

i (x)
we have{

x ∈ E :
∣∣∣ϕn,n (x)

∣∣∣ ≥ σ} = [ i − 1
k
,

i
k

)
,

and the measure of this set is 1
k and converges to zero as n→∞. Thus

P − lim
{
x ∈ E :

∣∣∣ϕn,n (x)
∣∣∣ ≥ σ} = 0.

Also the relation

P − limϕm,n (x) = 0

does not occur for any point of the interval [0, 1). In fact, given any x0 ∈ [0, 1) we can find i ∈N such that

x0 ∈

[ i − 1
k
,

i
k

)
,

and so f (k)
i (x0) = 1. In other words, ϕn,n (x0) = f (k)

i (x0) = 1 for large enough n and hence

P − limϕm,n (x0) , 0.
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Theorem 2.4. If double sequence of functions
(

fm,n
)

converges in measure to two different f and 1, then this limit
functions are equivalent.

Proof. It is easy to verify that{
x ∈ E :

∣∣∣ f (x) − 1 (x)
∣∣∣ ≥ σ} ⊂ {

x ∈ E :
∣∣∣ fm,n (x) − f (x)

∣∣∣ ≥ σ
2

}
∪

{
x ∈ E :

∣∣∣ fm,n (x) − 1 (x)
∣∣∣ ≥ σ

2

}
.

for all σ > 0. The measure of set in right side of this inclusion converges to zero in Pringsheim’s sense and
hence we have

µ
({

x ∈ E :
∣∣∣ f (x) − 1 (x)

∣∣∣ ≥ σ}) = 0.

This gives the desired.

Theorem 2.5. Let
(

fm,n
)

be a double sequence of measurable functions which converges in measure to a function f
on E. Then there exists a subsequence

fm1,n1 , fm2,n2 , fm3,n3 , ... (m1 < m2 < m3 < ...; n1 < n2 < n3 < ... )

of
(

fm,n
)

which converges almost everywhere to f .

Proof. We consider a sequence of positive numbers such that

lim
k→∞

σk = 0, σ1 > σ2 > σ3 > ....

Further, let

η1 + η2 + η3 + ...

be a convergence series with positive terms. According to hypotesis, there exist two natural numbers m1
and n1 such that

µ
({

x ∈ E :
∣∣∣ fm1,n1 (x) − f (x)

∣∣∣ ≥ σ1

})
< η1.

Again there two natural numbers m2 and n2 such that

µ
({

x ∈ E :
∣∣∣ fm2,n2 (x) − f (x)

∣∣∣ ≥ σ2

})
< η2 (m2 > m1, n2 > n1) .

In general we can choose two natural numbers mk and nk such that

µ
({

x ∈ E :
∣∣∣ fmk,nk (x) − f (x)

∣∣∣ ≥ σk

})
< ηk (mk > mk−1, nk > nk−1) .

We thus have defined a subsequence
(

fmk ,nk

)
of

(
fm,n

)
. Next we denote that

P − lim fmk,nk (x) = f (x)

almost everywhere. Firstly, we define the sets

Ri = ∪
∞

k=i

{
x ∈ E :

∣∣∣ fmk,nk (x) − f (x)
∣∣∣ ≥ σk

}
for each i ∈N and a set

Q = ∩∞k=iRi.
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Since

R1 ⊃ R2 ⊃ R3 ⊃ ...,

we have

µ (Ri)→ µ (Q)

as i→∞. On the other hand, the inequality

µ (Ri) <
∞∑
k=i

ηk

holds and hence it is clear that µ (Ri)→ 0 as i→∞. Therefore we obtain

µ (Q) = 0.

Finally we denote that P− lim fmk ,nk (x) = f (x) on E−Q. Let x0 ∈ E−Q. Then x0 < Ri0 for at least one i0 ∈N.
Namely

x0 <
{
x ∈ E :

∣∣∣ fmk ,nk (x) − f (x)
∣∣∣ ≥ σk

}
for all k ≥ i0 and hence we have∣∣∣ fmk ,nk (x) − f (x)

∣∣∣ < σk

for all k ≥ i0. Since lim
k→∞

σk = 0, it is clear that P − lim fmk,nk (x) = f (x). This completes the proof.

Theorem 2.6. Let
(

fm,n
)

be a double sequence of measurable functions which is defined on E and finite almost
everywere. We accept that

(
fm,n

)
converges almost everywhere in Pringsheim’s sense to a measurable function f ,

which is finite almost everywere. Then, for all δ > 0 there is a measurable set Eδ ⊂ E such that

(1) µ (Eδ) > µ (E) − δ,
(2)

(
fm,n

)
is uniformly convergence to f on Eδ.

Proof. We consider the sets
(
Sm,n (σ)

)
in Theorem 1. We consider a sequence of positive numbers such that

lim
k→∞

σk = 0, σ1 > σ2 > σ3 > ....

and a convergence series

η1 + η2 + η3 + ...

with positive terms. Since µ
(
Sn,n (σ)

)
→ 0 as n→∞, there exists ni ∈N such that

µ
(
Sni,ni (σi)

)
< ηi

for all i ∈N. We now select i0 ∈N such that

∞∑
i=i0

ηi < δ

also receive

e = ∪∞i=i0 Sni,ni (σi) .
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Then clearly

µ (e) ≤
∞∑

i=i0

Sni,ni (σi) <
∞∑

i=i0

ηi < δ.

We now say Eδ = E − e. We obviously have µ (Eδ) > µ (E) − δ. So the condition (1) is proved. Finally we
prove the condition (2). For this we select arbitrary ε > 0.

If y ∈ Eδ, then x < e and therefore y < Sni,ni (σ) for all i ≥ i0. This implies that

y <
{
x ∈ E :

∣∣∣ fk,l (x) − f (x)
∣∣∣ ≥ σi

}
k ≥ ni, l ≥ ni and so∣∣∣ fk,l (y) − f

(
y
)∣∣∣ < σi.

Hence∣∣∣ fk,l (y) − f
(
y
)∣∣∣ < ε

k ≥ ni, l ≥ ni. This completes the proof.
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