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Abstract. In this paper, we obtain some criteria for normal functions that share sets with their derivatives.

1. Introduction

Let D be a domain in the complex plane C. A family F of meromorphic functions defined on D is said
to be normal on D, in the sense of Montel, if for any sequence { fn} in F there exists a subsequence { fn j },
such that { fn j } converges spherically locally uniformly on D to a meromorphic function or∞( see [2,8,10]).
A function f meromorphic in the unit disc ∆ = {z : |z| < 1} is called to a normal function if and only if the
family { f (S(z))}, where z′ = S(z) denotes an arbitrary one-one conformal mapping of ∆ onto itself, is normal(
see [4]).

Obviously, there exists a close relation between normal families and normal functions, and it is natural
to expect the criteria of normal functions corresponding to the known criteria of normal families. As we
know, Montel’s theorem asserts that a family of meromorphic functions F is normal in a domain D if there
are three distinct points a, b, c in the extended complex plane Ĉ = C ∪ {∞} such that each f ∈ F omits a, b, c
in D. The corresponding result for normal functions is due to Lehto and Virtanen [4], which states that a
function f meromorphic in ∆ is normal if there are three distinct points a, b, c in the extended complex plane
Ĉ such that f , a, b, c in ∆.

However, this is not always true, especially for relating to derivatives. For example, Miranda proved
that the family F of all holomorphic functions f (z), such that f , 0, f ′ , 1 in ∆ forms a normal family,
which is called Miranda criterion; but an example given by Hayman and Storvick [3] shows that there exists
non-normal function f such that f , 0 and f ′ , 1 in ∆.

Let f , 1 be two meromorphic functions on a domain D ⊂ C, a, b be complex numbers. If 1(z) = b
whenever f (z) = a, we denote it by f (z) = a⇒ 1(z) = b in D. If f (z) = a⇒ 1(z) = b and 1(z) = b⇒ f (z) = a,
we write f (z) = a⇔ 1(z) = b in D. the functions f and 1 are said to share the value a if f (z) = a⇔ 1(z) = a
in D. Let S1,S2 ⊂ C. We define

D( f ,S1) :=
⋃
a∈S1

{z ∈ D : f (z) = a},
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Research supported by NNSF of China(Grant Nos.11171045, 11471163) and Doctoral Fund of Ministry of Education of China(Grant

No.20123207110003)
Email addresses: xuyan@njnu.edu.cn (Yan Xu), qiuhuiling1304@sina.com (Huiling Qiu)



Y. Xu, H. Qiu / Filomat 30:2 (2016), 287–292 288

D(1,S2) :=
⋃
a∈S2

{z ∈ D : 1(z) = a}.

If D( f ,S1) ⊂ D(1,S2), we denote it by f (z) ∈ S1 ⇒ 1(z) ∈ S2 in D. Furthermore, if D( f ,S1) ⊂ D(1,S2) and
D(1,S2) ⊂ D( f ,S1), that is, D( f ,S1) = D(1,S2), we write f (z) ∈ S1 ⇔ 1(z) ∈ S2 in D. the functions f and 1 are
said to share the set S in D if f (z) ∈ S⇔ 1(z) ∈ S in D.

In 1992, Schwick [9] studied the relation between normal families and shared values. He proved the
following result.

Theorem A. LetF be a family of meromorphic functions defined in a domain D, and let a1, a2, a3 be distinct complex
numbers. If, for every function f ∈ F , f and f ′ share a1, a2, a3, then F is normal in D.

Liu-Pang [5] improved the above result, by replacing ‘share value a1, a2, a3’ by ‘share the set {a1, a2, a3}’
in Theorem A, as follows.

Theorem B. Let F be a family of meromorphic functions defined in a domain D, and let S = {a1, a2, a3} be a set in
C. If, for every function f ∈ F , f and f ′ share S, then F is normal in D.

Set
Ω0 = {z ∈ Ĉ; z ∈ ∆̂(1, 1) or 1/z ∈ ∆̂(1, 1)},

where ∆̂(1, 1) = {z ∈ C; |z − 1| < 1 or (z − 1)k = 1 f or some positive inte1er k}. It is not difficult to see that
nonnegative real values and∞ are in Ω0, while negative real values are not.

Recently, Chang and Wang [1] proved that the 3-element set in Theorem B can be reduced to a 2-element
set.

Theorem C. Let F be a family of meromorphic functions defined in a domain D, and let S = {a1, a2}, where a1, a2
are nonzero constants such that a1/a2 ∈ Ω0,. If, for every function f ∈ F , f and f ′ share S, then F is normal in D.

In this paper, corresponding to the above results, we prove some criteria for normal functions that share
sets with their derivatives.

Theorem 1.1. Let S1 = {a1, a2} and S2 = {b1, b2} be two sets in C such that a1a2 , 0 and b1/b2 < Z− ∪ 1/Z−. Let f
be a meromorphic function in the unit disc ∆, and suppose that there exists a positive number M such that | f ′(z)| ≤M
whenever f (z) = 0. If f ∈ S1 ⇔ f ′ ∈ S2 in ∆, then f is normal.

Here Z− denotes the set of all negative integers, and 1/Z− stands for the set {1/k; k ∈ Z−}.

Theorem 1.2. Let S1 = {a1, a2, a3} and S2 = {b1, b2, b3} be two sets in C. Let f be a meromorphic function in the unit
disc ∆. If f ∈ S1 ⇔ f ′ ∈ S2 in ∆, then f is normal.

If one is a two-element set and the other is a three-element set, we have the following results.

Theorem 1.3. Let S1 = {a1, a2} and S2 = {b1, b2, b3} be two sets in C such that a1a2 , 0. Let f be a meromorphic
function in the unit disc ∆. If there exists a positive number M such that | f ′(z)| ≤ M whenever f (z) = 0, and
f ∈ S1 ⇔ f ′ ∈ S2 in ∆, then f is normal.

Theorem 1.4. Let S1 = {a1, a2, a3} and S2 = {b1, b2} be two sets in C such that b1/b2 < Z− ∪ 1/Z−. Let f be a
meromorphic function in the unit disc ∆. If f ∈ S1 ⇔ f ′ ∈ S2 in ∆, then f is normal.

The following are direct consequences of Theorems 1 and 2.

Corollary 1.5. Let S = {a1, a2} be a set in C such that a1a2 , 0 and a1/a2 < Z− ∪ 1/Z−, and f be a meromorphic
function in the unit disc ∆, and suppose that there exists a positive number M such that | f ′(z)| ≤ M whenever
f (z) = 0. If f and f ′ share S in ∆, then f is normal.

Corollary 1.6. Let S = {a1, a2, a3} be a set in C, f be a meromorphic function in the unit disc ∆. If f and f ′ share S
in ∆, then f is normal.
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2. Lemmas

To prove our results, we need some preliminaries. The next is the well-known Lohwater-Pommerenke’s
theorem [6].

Lemma 2.1. Let f be a function meromorphic in the unit disc ∆. If f is not normal, then there exist a sequence of
points zn ∈ ∆, and a sequence of positive numbers ρn with ρn → 0 such that 1n(z) = f (zn +ρnz) converges spherically
uniformly to a non-constant meromorphic function on each compact subset of the complex plane C.

The following is the local version of Zalcman’s lemma, which is due to Pang and Zalcman [7].

Lemma 2.2. Let k be a positive integer and let F be a family of meromorphic functions in a domain D, such that each
function f ∈ F has only zeros with multiplicities at least k, and suppose that there exists A ≥ 1 such that | f (k)(z)| ≤ A
whenever f (z) = 0, f ∈ F . If F is not normal at z0 ∈ D, then for each α, 0 ≤ α ≤ k, there exist a sequence of complex
numbers zn ∈ D, zn → z0, a sequence of positive numbers ρn → 0, and a sequence of functions fn ∈ F such that

1n(ξ) =
fn(zn + ρnξ)

ραn
→ 1(ξ)

locally uniformly with respect to the spherical metric, where 1 is a nonconstant meromorphic function on C, all of
whose zeros have multiplicity at least k, such that 1#(ξ) ≤ 1#(0) = kA + 1. Moreover, 1(ξ) has order at most 2.

Here as usual, f #(z) = | f ′(z)|/(1 + | f (z)|2) is the spherical derivative of f .

Lemma 2.3. (see [2,8,10]) Let f be a transcendental meromorphic function. Then f or f ′ − 1 has infinitely many
zeros.

Lemma 2.4. (see [1]) Let P be a nonconstant polynomial of degree k, and a, b two distinct nonzero finite numbers. If
P(z) = 0 if and only if P′(z) ∈ {a, b}, then k ≥ 2 and either a + (k − 1)b = 0 or (k − 1)a + b = 0.

3. Proof of Theorems

Proof of Theorem 1. Assume that f is not a normal function. Then, by Lemma 1, there exist points zn ∈ ∆,
positive numbers ρn → 0 such that

1n(ζ) = f (zn + ρnζ)→ 1(ζ) (1)

locally uniformly with respect to the spherical metric, where 1 is a nonconstant meromorphic function on
C.

If 1(ζ′) = 0, Hurwitz’s theorem (1) imply that there exist points ζn → ζ′ such that f (zn + ρnζn) = 0. Then
by the the assumptions given, | f ′(zn + ρnζn)| ≤M, and thus

|1′(ζn)| = ρn| f ′(zn + ρnζn)| ≤ ρnM.

It follows that 1′(ζ′) = 0. We know that all zeros of 1 are multiple.
By Nevanlinna’s second fundamental theorem, either 1−a1 or 1−a2 has zeros. Without loss of generality,

we assume that ζ0 is a zero of 1− a1 with multiplicity k. Then there exists δ > 0 such that 1n (for sufficiently
large n) is holomorphic on ∆(ζ0, δ) = {ζ : |ζ − ζ0| < δ}.

Set

hn(ζ) =
1n(ζ) − a1

ρn
. (2)

Clearly, {hn} is well defined and holomorphic on ∆(ζ0, δ). We claim that {hn} is not normal at ζ0. Indeed,
suppose that {hn} is normal at ζ0. By the definition, there exist 0 < δ1 < δ and a subsequence of {hn} which
(to avoid complication in notation) we still denote by {hn}, such that {hn} converges uniformly in ∆(ζ0, δ1) to
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a holomorphic function h or ∞. Noting that 1(ζ0) = a1 and 1 is no constant, there exists ζ′0 ∈ ∆(ζ0, δ1) such
that ζ′0 , ζ0 and 1(ζ′0) , a1, and then |1n(ζ′0) − a1| > |1(ζ′0) − a1|/2 > 0 for sufficiently large n. It follows that

|hn(ζ′0)| =
|1n(ζ′0) − a1|

ρn
>
|1(ζ′0) − a1|

2ρn
→∞.

Thus hn →∞ in ∆(ζ0, δ1). On the other hand, by Hurwitz’s theorem, we may find points ζn → ζ0 such that(
for sufficiently large n) 1n(ζn) − a1 = 0, and hence

h(ζ0) = lim
n→∞

hn(ζn) = lim
n→∞

1n(ζn) − a1

ρn
= 0,

a contradiction.
We also claim that |h′n(ζ)| ≤ |b1|+ |b2|whenever hn(ζ) = 0. In fact, if hn(ζ) = 0, by (1) and (2), f (zn + ρnζ) =

a1 ∈ S1. Since f ∈ S1 ⇒ f ′ ∈ S2, f ′(zn + ρnζ) ∈ S2. Then |h′n(ζ)| = | f ′(zn + ρnζ)| ≤ |b1| + |b2|.
Thus applying for Lemma 2, we can extract a subsequence of {hn} (which, renumbering, we continue to

call {hn}), points ζn → ζ0, and positive numbers σn → 0 such that

Hn(ξ) =
hn(ζn + σnξ)

σn
=
1n(ζn + σnξ) − a1

σnρn
→ H(ξ) (3)

locally uniformly with respect to the spherical metric, where H is a nonconstant meromorphic function on
C. Moreover, H#(ξ) ≤ H#(0) = |b1| + |b2| + 1.

Claim: (I) H is entire; (II) H has at most k distinct zeros; (III) H(ξ) = 0 if and only if H′(ξ) ∈ S2.
Since {hn} is is holomorphic on ∆(ζ0, δ), and ζn + σnξ→ ζ0 for each ξ ∈ C, we see from (3) that H is entire

on C. (I) is proved.
Suppose that H has (at least) k + 1 distinct zeros: ξ1, ξ2, · · · , ξk+1. By Hurwitz’s theorem and (3), we

can find k + 1 distinct sequences {ξnj} such that ξnj → ξ j and Hn(ξnj) = 0 ( j = 1, 2, . . . , k + 1). Then
1n(ζn + σnξnj)− a1 = 0. Noting that ζn + σnξnj → ζ0 and ζn + σnξni , ζn + σnξnj for 1 ≤ i < j ≤ k + 1, it follows
from (1) that, as a zero of 1 − a1, ζ0 must have multiplicity at least k + 1, we arrive at a contradiction since
ζ0 is a zero of 1 − a1 of multiplicity k. Thus (II) is proved.

Let H(ξ0) = 0. In view of H . 0 and (3), Hurwitz’s theorem implies that there exist points ξn → ξ0 such
that Hn(ξn) = 0. It follows that 1n(ζn + σnξn) − a1 = 0, and hence

f (zn + ρnζn + ρnσnξn) = a1 ∈ S1.

Since f ∈ S1 ⇒ f ′ ∈ S2, we have

H′n(ζn) = f ′(zn + ρnζn + ρnσnξn) ∈ S2.

In view of H′n(ξn)→ H′(ξ0), we get H′(ξ0) ∈ S2.
Conversely, suppose that H′(ξ0) ∈ S2, say H′(ξ0) = b1. We have H′(ξ) . b1. For otherwise H(ξ) = b1ξ + c

with c ∈ C, then H#(0) = |b1|/(1 + |c|2) < |b1| + |b2| + 1, a contradiction. Thus by Hurwitz’s theorem, there
exist ξn → ξ0 such that H′n(ξn) = b1, so that

f ′(zn + ρnζn + ρnσnξn) = b1 ∈ S2.

Since f ∈ S1 ⇐ f ′ ∈ S2, f (zn + ρnζn + ρnσnξn) ∈ S1.
If there exists N > 0 such that f (zn + ρnζn + ρnσnξn) = a2 for n > N, then we get from (3) that

H(ξ0) = lim
n→∞

Hn(ξn)

= lim
n→∞

f (zn + ρnζn + ρnσnξn) − a1

ρnσn

= lim
n→∞

a2 − a1

ρnσn
= ∞,
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violating the fact that H′(ξ0) = b1. Thus, there exists a subsequence which we continue to denote by
{ f (zn + ρnζn + ρnσnξn)} such that

f (zn + ρnζn + ρnσnξn) = a1.

Hence we have

H(ξ0) = lim
n→∞

Hn(ξn) = lim
n→∞

f (zn + ρnζn + ρnσnξn) − a1

ρnσn
= 0.

This completes the proof of (III).
Now (II) and (III) imply that both H′ − b1 and H′ − b2 have only finitely many zeros. Then, we know

from (I) and Lemma 3 that H is a polynomial.
If b1b2 , 0, Lemma 4 implies that b1/b2 ∈ Z− ∪ 1/Z−, a contradiction. Then one of b1, b2 must be zero,

say b1 = 0, that is, S2 = {0, b2}. We claim that deg H ≥ 2. Indeed, otherwise H would be a polynomial of
degree 1, and then (ii) implies that H(ξ) = b2ξ+ c, where c is a constant. Thus H′(ξ) = b2 ∈ S2 for each ξ ∈ C,
whereas H has only one zero at −c/b2, a contradiction.

So H′′ . 0. Set

P =
HH′′

H′(H′ − b2)
. (4)

Clearly, P(. 0) is a rational function, and its poles arise only from the zeros of H′ and H′ − b. Firstly, if ξ0 is
a zero of H′ of multiplicity n, then ξ0 is a zero of H′′ of multiplicity n − 1. By (III), ξ0 is also a zero of H of
multiplicity n + 1. Then P(ξ0) = 0. This means that the zero of H′ is also the zero of P. Secondly, if ξ0 is a
zero of H′ − b2 with multiplicity m, then ξ0 is a zero of H′′ of multiplicity m− 1. Aging by (III), ξ0 is a simple
zero of H. It follows that P(ξ0) , 0,∞. Therefore, P has no poles, so that P is a polynomial.

By (4), PH′(H′ − b2) = HH′′. Comparing the degree of both side gives deg P = 0, so that P is nonzero
constant. It follows (from what has been proved above) that H′ has no zero. But this contradicts the fact
that H is a polynomial of degree deg H ≥ 2. Theorem 1 is thus proved.

Proof of Theorem 2. Assume that f is not a normal function. By Lemma 1, there exist points zn ∈ ∆, positive
numbers ρn → 0 such that

1n(ζ) = f (zn + ρnζ)→ 1(ζ)

locally uniformly with respect to the spherical metric, where 1 is a nonconstant meromorphic function on
C.

We first prove that all zeros of 1 − ai (for each ai ∈ S1) are multiple. Suppose that 1(ζ′) − a1 = 0. By
Hurwitz’s theorem, there exist points ζn → ζ′ such that f (zn + ρnζn) = a1 ∈ S1. Since f ∈ S1 ⇒ f ′ ∈ S2,
f ′(zn + ρnζn) ∈ S2, and then

|1′(ζn)| = ρn| f ′(zn + ρnζn)| ≤ ρn(|b1| + |b2| + |b3|).

It follows that 1′(ζ′) = 0. We see that all zeros of 1 − a1 are multiple. Similarly, all zeros of 1 − ai(i = 2, 3) are
also multiple.

Then, by Nevanlinna’s second fundamental theorem, at least one of 1 − ai(i = 1, 2, 3) must have zeros.
Without loss of generality, we assume that ζ0 is a zero of 1 − a1 with multiplicity k.

Similarly, we set

hn(ζ) =
1n(ζ) − a1

ρn
.

As in the proof of Theorem 1, we know that {hn} is not normal at ζ0, and |h′n(ζ)| ≤ |b1| + |b2| + |b3| whenever
hn(ζ) = 0. By Lemma 2, we can extract a subsequence of {hn} (which, renumbering, we continue to call {hn}),
points ζn → ζ0, and positive numbers σn → 0 such that

Hn(ξ) =
hn(ζn + σnξ)

σn
=
1n(ζn + σnξ) − a1

σnρn
→ H(ξ)
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locally uniformly with respect to the spherical metric, where H is a nonconstant meromorphic function on
C such that H#(ξ) ≤ H#(0) = |b1| + |b2| + |b3| + 1.

Also as in the proof of Theorem 1, we have (I′) H is entire; (II′) H has at most k distinct zeros; (III′)
H(ξ) = 0 if and only if H′(ξ) ∈ S2. These and Lemma 3 imply that H is a polynomial.

Let
H(ξ) = cnξ

n + cn−1ξ
n−1 + · · · + c0,

where n is a positive integer, and c0, c1, . . . , cn(, 0) are constants. Then, by Nevanlinna’s second fundamental
theorem,

2T(r,H′) ≤
3∑

i=1

N(r,
1

H′ − bi
) + S(r,H′). (5)

By (III′), we have
3∑

i=1

N(r,
1

H′ − bi
) ≤ N(r,

1
H

) = n log r. (6)

Clearly, T(r,H′) = (n − 1) log r and S(r,H′) = O(1). Substituting this and (6) in (5) gives

(n − 2) log r ≤ O(1), as r→∞,

so that n ≤ 2.
If n = 1, then H(ξ) = c1ξ + c0 and H′(ξ) = c1, where c1 , 0. It follows from (III′) that c1 ∈ S2. Then

H′(ξ) ∈ S2 for each ξ ∈ C, but H(ξ) has only one zero, which contradicts (III’).
If n = 2, then H(ξ) = c2ξ2 + c1ξ + c0(c2 , 0), and H′(ξ) = 2c2ξ + c1. It follows that H′(ξi) ∈ S2, where

ξi = (bi − c1)/2c2(i = 1, 2, 3) are three distinct numbers. But H has at most two zeros, which also contradicts
(III′). Theorem 2 is thus proved.

Proof of Theorem 3 and Theorem 4. Theorem 3 and Theorem 4 can be proved by using the same argument as
in Theorem 1 and Theorem 2. We here omit the details.
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made to this paper.
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