Filomat 30:2 (2016), 313–319 DOI 10.2298/FIL1602313Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Polaroid and *k***-quasi-*****-paranormal Operators**

Fei Zuo^a, Junli Shen^b

^a College of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China ^b School of Mathematical Sciences, Inner Mongolia University, Hohhot, 010021, China.

Abstract. An operator *T* is said to be *k*-quasi-*-paranormal if $||T^{k+2}x||||T^kx|| \ge ||T^*T^kx||^2$ for all $x \in H$, where *k* is a natural number. In this paper, we give the inclusion relation of *k*-quasi-*-paranormal operators and *k*-quasi-*-*A* operators. And we prove that if *T* is a polynomially *k*-quasi-*-paranormal operator, then *T* is polaroid and has SVEP. We also show that if *T* is a polynomially *k*-quasi-*-paranormal operator, then Weyl type theorems hold for *T*.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert space H. Recall [3, 8, 9, 15, 16, 18] that $T \in B(H)$ is hyponormal if $T^*T \ge TT^*$, T is class *-A if $|T^2| \ge |T^*|^2$, T is quasi-*-A if $T^*|T^2|T \ge T^*|T^*|^2T$, T is k-quasi-*-A, if $T^{*k}|T^2|T^k \ge T^{*k}|T^*|^2T^k$, T is *-paranormal, if $||T^2x||||x|| \ge ||T^*x||^2$ for all $x \in H$, T is k-quasi-*-paranormal, if $||T^{k+2}x||||T^kx|| \ge ||T^*T^kx||^2$ for all $x \in H$, and T is normaloid if $||T^n|| = ||T||^n$, for $n \in \mathbb{N}$ (equivalently, ||T|| = r(T), the spectral radius of T). In general the following implications hold:

hyponormal \Rightarrow class * -*A* \Rightarrow *-paranormal \Rightarrow normaloid.

hyponormal \Rightarrow class * -*A* \Rightarrow quasi- * -*A* \Rightarrow *k*-quasi- * -*A*.

A 1-quasi-*-paranormal operator is a quasi-*-paranormal operator. We show that a *k*-quasi-*-*A* operator is a *k*-quasi-*-paranormal operator (see Theorem 2.3). Hence we have the following implications: hyponormal \Rightarrow class *-*A* \Rightarrow *-paranormal \Rightarrow *k*-quasi-*-paranormal.

hyponormal \Rightarrow class $* A \Rightarrow$ quasi- $* A \Rightarrow$ k-quasi- $* A \Rightarrow$ k-quasi-*-paranormal.

We shall denote the set of all complex numbers and the complex conjugate of a complex number λ by \mathbb{C} and $\overline{\lambda}$, respectively. The closure of a set M will be denoted by \overline{M} and we shall henceforth shorten $T - \lambda I$ to $T - \lambda$. If $T \in B(H)$, write N(T) and R(T) for the null space and range space of T; $\sigma(T)$, $\sigma_a(T)$ and iso $\sigma(T)$ for the spectrum, the approximate point spectrum and the isolated spectrum points of T, respectively.

In section 2, we give the inclusion relation of *k*-quasi-*-paranormal operators and *k*-quasi-*-*A* operators. Also, we obtain a sufficient condition for *k*-quasi-*-paranormal operators to be normaloid. In section 3, we prove that if *T* is a polynomially *k*-quasi-*-paranormal operator, then *T* is polaroid and has SVEP. Finally we show that Weyl's theorem holds for polynomially *k*-quasi-*-paranormal operators.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10 ; Secondary 47B20

Keywords. Weyl's theorem, Polaroid, k-quasi-*-paranormal operators.

Received: 26 February 2014 ; Accepted: 23 November 2014

Communicated by Dragana Cvetković-Ilić

Research supported by the Natural Science Foundation of the Department of Education of Henan Province(16A110033,14B110009) *Email addresses:* zuofei2008@sina.com (Fei Zuo), zuoyawen1215@126.com (Junli Shen)

2. *k*-quasi-*-paranormal Operators

Lemma 2.1. [16] *T* is a *k*-quasi-*-paranormal operator $\Leftrightarrow T^{*k}(T^{*2}T^2 - 2\lambda TT^* + \lambda^2)T^k \ge 0$ for all $\lambda > 0$.

Lemma 2.2. [16] Let T be a k-quasi-*-paranormal operator, the range of T^k be not dense and

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \quad on \ H = \overline{R(T^k)} \oplus N(T^{*k}).$$

Then T_1 *is a *-paranormal operator,* $T_3^k = 0$ *and* $\sigma(T) = \sigma(T_1) \cup \{0\}$ *.*

Theorem 2.3. *Let T be a k-quasi-*-A operator. Then T is a k-quasi-*-paranormal operator.*

Proof. If *T* is a *k*-quasi-*-*A* operator, then

$$T^{*k}|T^2|T^k \ge T^{*k}|T^*|^2T^k,$$

which yields that

$$(T^{*k}|T^2|T^kx, x) \ge (T^{*k}|T^*|^2T^kx, x)$$
 for all $x \in H$,

and hence

 $||T^{k+2}x||||T^kx|| \ge ||T^*T^kx||^2.$

Consequently, *T* is a *k*-quasi-*-paranormal operator. \Box

But the converse of Theorem 2.3 is not true. We shall give an operator which is a 2-quasi-*-paranormal operator but not a 2-quasi-*-*A* operator.

By straightforward computations, we have the following Lemma 2.4.

Lemma 2.4. Let $K = \bigoplus_{n=1}^{+\infty} H_n$, where $H_n \cong H$. For given positive operators A and B on H, define the operator $T_{A,B}$ on K as follows:

	(0	0	0	0	0	0	•••)	۱
$T_{A,B} =$	Α	0	0	0	0	0	•••	
	0	Α	0	0	0	0	•••	
	0	0	В	0	0	0	•••	
	0	0	0	В	0	0	•••	
	0	0	0	0	В	0	•••	
	÷	÷	÷	÷	÷	÷	·	

Then i) $T_{A,B}$ belongs to 2-quasi-*-A if and only if

$$A^2(B^2 - A^2)A^2 \ge 0.$$

ii) $T_{A,B}$ belongs to 2-quasi-*-paranormal if and only if

$$A^{2}(B^{4}-2\lambda A^{2}+\lambda^{2})A^{2} \geq 0 \text{ for all } \lambda > 0.$$

Example 2.5. A non-2-quasi-*-A and 2-quasi-*-paranormal operator.

Proof. Take *A* and *B* as

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{\frac{1}{2}} B = \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix}^{\frac{1}{4}}.$$

Then

$$B^{4} - 2\lambda A^{2} + \lambda^{2} = \begin{pmatrix} (1-\lambda)^{2} & 2(1-\lambda) \\ 2(1-\lambda) & \lambda^{2} - 4\lambda + 8 \end{pmatrix} \ge 0 \text{ for all } \lambda > 0,$$

hence

$$A^{2}(B^{4} - 2\lambda A^{2} + \lambda^{2})A^{2} \ge 0 \text{ for all } \lambda > 0.$$

Thus $T_{A,B}$ is a 2-quasi-*-paranormal operator.

On the other hand, by using the Maple program,

$$A^{2}(B^{2} - A^{2})A^{2} = \begin{pmatrix} -0.2850\cdots & 0.0432\cdots \\ 0.0432\cdots & 1.1449\cdots \end{pmatrix} \not\ge 0.$$

Hence $T_{A,B}$ is not a 2-quasi-*-*A* operator. \Box

Lemma 2.6. [15] Let T be a quasi-*-paranormal operator. Then T is normaloid.

If k > 1, a nilpotent operator is a k-quasi-*-paranormal operator, but it is not normaloid. However we have the following result.

Theorem 2.7. Let T be a k-quasi-*-paranormal operator and $||T^k|| = ||T||^k$. Then T is normaloid.

Proof. Suppose that *T* is a *k*-quasi-*-paranormal operator, i.e.,

$$||T^{k+2}x||||T^kx|| \ge ||T^*T^kx||^2$$
 for every $x \in H$,

which implies that

$$||T^{k+2}||||T^k|| \ge ||T^*T^k||^2.$$

Now assume that

$$||T^k|| = ||T||^k$$

then, by the above inequality,

$$\begin{aligned} ||T||^{3k-2} ||T^{k+2}|| &= ||T||^{2k-2} ||T||^k ||T^{k+2}|| \ge ||T^{*(k-1)}||^2 ||T^{k+2}||||T^k|| \\ &\ge ||T^{*(k-1)}||^2 ||T^*T^k||^2 \\ &\ge ||T^{*k}T^k||^2 \\ &= ||T^k||^4 \\ &= ||T||^{4k}, \end{aligned}$$

and therefore

$$||T^{k+2}|| = ||T||^{k+2}.$$

Hence by induction,

$$||T^{k+2j}|| = ||T||^{k+2j}$$
 for every $j \ge 1$.

Since $\{T^{k+2j}\}$ is a subsequence of $\{T^n\}$, and $\lim_{n\to\infty} ||T^n||^{\frac{1}{n}} = r(T)$, we have

$$\lim ||T^{k+2j}||^{\frac{1}{k+2j}} = \lim ||T^n||^{\frac{1}{n}} = r(T),$$

i.e.,

$$r(T) = \lim_{j \to \infty} \|T^{k+2j}\|^{\frac{1}{k+2j}} = \lim_{j \to \infty} (\|T\|^{k+2j})^{\frac{1}{k+2j}} = \|T\|.$$

Thus *T* is normaloid. \Box

We say that $T \in B(H)$ has the single valued extension property (abbrev. SVEP), if for every open set U of \mathbb{C} , the only analytic solution $f: U \to H$ of the equation $(T - \lambda)f(\lambda) = 0$ for all $\lambda \in U$ is the zero function on U.

The following theorem has been proved in [16], we give a new proof here.

Theorem 2.8. [16] Let T be a k-quasi-*-paranormal operator. Then T has SVEP.

Proof. If the range of T^k is dense, then T is a *-paranormal operator, T has SVEP by [10]. Next we can assume that the range of T^k is not dense. By Lemma 2.2, we have

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \text{ on } H = \overline{R(T^k)} \oplus N(T^{*k}).$$

Suppose (T - z)f(z) = 0, $f(z) = f_1(z) \oplus f_2(z)$ on $H = \overline{R(T^k)} \oplus N(T^{*k})$. Then we can write

$$\begin{pmatrix} T_1 - z & T_2 \\ 0 & T_3 - z \end{pmatrix} \begin{pmatrix} f_1(z) \\ f_2(z) \end{pmatrix} = \begin{pmatrix} (T_1 - z)f_1(z) + T_2f_2(z) \\ (T_3 - z)f_2(z) \end{pmatrix} = 0.$$

And T_3 is nilpotent, T_3 has SVEP, hence $f_2(z) = 0$, $(T_1 - z)f_1(z) = 0$. Since T_1 is a *-paranormal operator, T_1 has SVEP by [10], then $f_1(z) = 0$. Consequently, T has SVEP.

3. Polynomially k-quasi-*-paranormal Operators

An operator T is called Fredholm if R(T) is closed and both N(T) and $N(T^*)$ are finite dimensional. The index of a Fredholm operator T is given by $i(T) = \dim N(T) - \dim (H/R(T))$. An operator T is called Weyl if it is Fredholm of index zero. The Weyl spectrum w(T) of *T* is defined by [12], $w(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Weyl}\}$. We consider the sets

 $\Phi_+(H) := \{T \in B(H) : R(T) \text{ is closed and } \dim N(T) < \infty\};\$ $\Phi_+^-(H) := \{T \in B(H) : T \in \Phi_+(H) \text{ and } i(T) \le 0\}.$

We define

$$\sigma_{ea}(T) := \{\lambda \in \mathbb{C} : T - \lambda \notin \Phi^-_+(H)\};$$

$$\pi_{00}(T) := \{\lambda \in \text{iso } \sigma(T) : 0 < \dim N(T - \lambda) < \infty\};$$

$$\pi^a_{00}(T) := \{\lambda \in \text{iso } \sigma_a(T) : 0 < \dim N(T - \lambda) < \infty\}.$$

Following [13], we say that Weyl's theorem holds for T if $\sigma(T)\setminus w(T) = \pi_{00}(T)$, and that a-Weyl's theorem holds for *T* if $\sigma_a(T) \setminus \sigma_{ea}(T) = \pi^a_{00}(T)$.

More generally, Berkani investigated generalized Weyl's theorem which extends Weyl's theorem. Berkani investigated B-Fredholm theory as follows (see [4-6]). An operator T is called B-Fredholm if there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and the induced operator

$$T_{[n]}: R(T^n) \ni x \to Tx \in R(T^n)$$

is Fredholm, i.e., $R(T_{[n]}) = R(T^{n+1})$ is closed, dim $N(T_{[n]}) < \infty$ and dim $N(T^*_{[n]}) < \infty$. Similarly, a *B*-Fredholm operator *T* is called *B*-Weyl if $i(T_{[n]}) = 0$.

The *B*-Weyl spectrum $\sigma_{BW}(T)$ is defined by

$$\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not } B - Weyl\}$$

We say that generalized Weyl's theorem holds for *T* if

 $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$

where E(T) denotes the set of all isolated points of the spectrum which are eigenvalues. Note that, if the generalized Weyl's theorem holds for *T*, then so does Weyl's theorem [5]. Recently in [4] Berkani and Arroud showed that if *T* is hyponormal, then generalized Weyl's theorem holds for *T*.

We define $T \in SBF_+(H)$ if there exists a positive integer *n* such that $R(T^n)$ is closed, $T_{[n]} : R(T^n) \ni x \rightarrow Tx \in R(T^n)$ is upper semi-Fredholm (i.e., $R(T_{[n]}) = R(T^{n+1})$ is closed, dim $N(T_{[n]}) = \dim N(T) \cap R(T^n) < \infty$) and $i(T_{[n]}) \le 0$ [6]. We define $\sigma_{SBF_+}(T) = \{\lambda \in \mathbb{C} : T - \lambda \notin SBF_+(H)\}$. Let $E^a(T)$ denote the set of all isolated points λ of $\sigma_a(T)$ with $0 < \dim N(T - \lambda)$. We say that generalized *a*-Weyl's theorem holds for *T* if

$$\sigma_a(T) \setminus \sigma_{SBF_+}(T) = E^a(T).$$

It's known from [5, 17] that if $T \in B(H)$ then we have

generalized *a*-Weyl's theorem \Rightarrow *a*-Weyl's theorem;

generalized *a*-Weyl's theorem \Rightarrow generalized Weyl's theorem \Rightarrow Weyl's theorem.

We say that *T* is a polynomially *k*-quasi-*-paranormal operator if there exists a nonconstant complex polynomial *p* such that p(T) is a *k*-quasi-*-paranormal operator. From the above definition, *T* is a polynomially *k*-quasi-*-paranormal operator, then so is $T - \lambda$ for each $\lambda \in \mathbb{C}$.

The following example provides an operator which is a polynomially 2-quasi-*-paranormal operator but not a 2-quasi-*-paranormal operator.

Example 3.1. Let $T = \begin{pmatrix} I & 0 \\ I & I \end{pmatrix} \in B(l_2 \oplus l_2)$. Then T is a polynomially 2-quasi-*-paranormal operator but not a 2-quasi-*-paranormal operator.

Proof. Since

$$T^* = \left(\begin{array}{cc} I & I \\ 0 & I \end{array}\right),$$

we have

$$T^{*2}T^2 - 2\lambda TT^* + \lambda^2 = \begin{pmatrix} (\lambda^2 - 2\lambda + 5)I & (-2\lambda + 2)I\\ (-2\lambda + 2)I & (\lambda^2 - 4\lambda + 1)I \end{pmatrix}.$$

Then

$$T^{*2}(T^{*2}T^2 - 2\lambda TT^* + \lambda^2)T^2 = \begin{pmatrix} (5\lambda^2 - 26\lambda + 17)I & (2\lambda^2 - 10\lambda + 4)I \\ (2\lambda^2 - 10\lambda + 4)I & (\lambda^2 - 4\lambda + 1)I \end{pmatrix}.$$

Since $(5\lambda^2 - 26\lambda + 17)I$ is not a positive operator for $\lambda = 1$,

$$T^{*2}(T^{*2}T^2 - 2\lambda TT^* + \lambda^2)T^2 \not\geq 0.$$

Therefore *T* is not a 2-quasi-*-paranormal operator.

On the other hand, consider the complex polynomial $h(z) = (z - 1)^2$. Then h(T) = 0, and hence *T* is a polynomially *k*-quasi-*-paranormal operator.

We know that Weyl's theorem holds for hermitian operators [19], which has been extended from hermitian operators to hyponormal operators [7], to algebraically hyponormal operators by [11], to algebraically quasi-*-A operators [21], and to polynomially *-paranormal operators [20]. In this section, we prove polynomially *k*-quasi-*-paranormal operators satisfy generalized *a*-Weyl's theorem.

Theorem 3.2. Let T be a quasinilpotent polynomially k-quasi-*-paranormal operator. Then T is nilpotent.

Proof. We first assume that *T* is a *k*-quasi-*-paranormal operator. Consider two cases, Case I: If the range of T^k is dense, then *T* is a *-paranormal operator, which leads to that *T* is normaloid, hence T = 0. Case II: If the range of T^k is not dense, then

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} on H = \overline{R(T^k)} \oplus N(T^{*k})$$

where T_1 is a *-paranormal operator, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$ by Lemma 2.2. Since $\sigma(T) = \{0\}$, we obtain $\sigma(T_1) = \{0\}$, then $T_1 = 0$. Thus

$$T^{k+1} = \begin{pmatrix} 0 & T_2 \\ 0 & T_3 \end{pmatrix}^{k+1} = \begin{pmatrix} 0 & T_2 T_3^k \\ 0 & T_3^{k+1} \end{pmatrix} = 0.$$

Now, suppose that *T* is a polynomially *k*-quasi-*-paranormal operator. Then there exists a nonconstant polynomial *p* such that p(T) is a *k*-quasi-*-paranormal operator. If $(p(T))^k$ has dense range, then p(T) is a *-paranormal operator. Thus *T* is a polynomially *-paranormal operator. It follows from [20] that it is nilpotent. If $(p(T))^k$ does not have a dense range, then, by Lemma 2.2 we can represent p(T) as the upper triangular matrix

$$p(T) = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
 on $H = \overline{R((p(T))^k)} \oplus N((p(T))^{*k})$,

where $A := p(T)|R((p(T))^k)$ is a *-paranormal operator. Since $\sigma(T) = \{0\}$ and $\sigma(p(T)) = p(\sigma(T)) = \{p(0)\}$, the operator p(T) - p(0) is quasinilpotent. But $\sigma(p(T)) = \sigma(A) \cup \{0\}$, thus $\sigma(A) \cup \{0\} = \{p(0)\}$. So p(0) = 0, and hence p(T) is quasinilpotent. Since p(T) is a *k*-quasi-*-paranormal operator, by the previous argument p(T) is nilpotent. On the other hand, since p(0) = 0, $p(z) = cz^m(z - \lambda_1)(z - \lambda_2) \cdots (z - \lambda_n)$ for some natural number m. $p(T) = cT^m(T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n)$, then there exists $q \in \mathbb{N}$ such that

$$(p(T))^q = c^q T^{mq} (T - \lambda_1)^q (T - \lambda_2)^q \cdots (T - \lambda_n)^q = 0.$$

Since *T* is quasinilpotent, $(T - \lambda_1), (T - \lambda_2), \dots, (T - \lambda_n)$ is invertible, we have $T^{mq} = 0$, i.e., *T* is nilpotent.

Recall that an operator *T* is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of *T* and polaroid if every isolated point of $\sigma(T)$ is a pole of the resolvent of *T*. In general, if *T* is polaroid then it is isoloid. However, the converse is not true. In [16] it is showed that every *k*-quasi-*-paranormal operator is isoloid, we can prove more.

Theorem 3.3. Let T be a polynomially k-quasi-*-paranormal operator. Then T is polaroid.

Proof. Suppose *T* is a polynomially *k*-quasi-*-paranormal operator. Then p(T) is a *k*-quasi-*-paranormal operator for some nonconstant polynomial *p*. Let $\lambda \in iso \sigma(T)$ and E_{λ} be the Riesz idempotent associated to λ defined by $E_{\lambda} := \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$, where *D* is a closed disk of center λ which contains no other point of $\sigma(T)$. We can represent *T* as the direct sum in the following form:

$$T = \left(\begin{array}{cc} T_1 & 0\\ 0 & T_2 \end{array}\right),$$

where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) \setminus \{\lambda\}$, we have

$$p(T) = \left(\begin{array}{cc} p(T_1) & 0\\ 0 & p(T_2) \end{array}\right),$$

since p(T) is a *k*-quasi-*-paranormal operator, then $p(T_1)$ is a *k*-quasi-*-paranormal operator, i.e., T_1 is a polynomially *k*-quasi-*-paranormal operator, so is $T_1 - \lambda$. But $\sigma(T_1 - \lambda) = \{0\}$, it follows from Theorem 3.2 that $T_1 - \lambda$ is nilpotent, thus $T_1 - \lambda$ has finite ascent and descent. On the other hand, since $T_2 - \lambda$ is invertible, clearly it has finite ascent and descent. $T - \lambda$ has finite ascent and descent, and hence λ is a pole of the resolvent of T, therefore T is polaroid. \Box

Corollary 3.4. Let T be a polynomially k-quasi-*-paranormal operator. Then T is isoloid.

Theorem 3.5. Let T be a polynomially k-quasi-*-paranormal operator. Then T has SVEP.

Proof. Suppose that *T* is a polynomially *k*-quasi-*-paranormal operator. Then p(T) is a *k*-quasi-*-paranormal operator for some nonconstant complex polynomial *p*, and hence p(T) has SVEP by Theorem 2.8. Therefore *T* has SVEP by [14, Theorem 3.3.9]. \Box

If $T \in B(H)$ has SVEP, then T and T^* satisfy Browder's (equivalently, generalized Browder's) theorem and *a*-Browder's (equivalently, generalized *a*-Browder's) theorem. A sufficient condition for an operator Tsatisfying Browder's (generalized Browder's) theorem to satisfy Weyl's (resp., generalized Weyl's) theorem is that T is polaroid. Then we have the following result:

Theorem 3.6. Let $T \in B(H)$. If T is a polynomially k-quasi-*-paranormal operator, then generalized Weyl's theorem holds for T, so does Weyl's theorem.

Proof. It is obvious from Theorem 3.3, Theorem 3.5 and the statements of the above. \Box

Theorem 3.7. Let $T \in B(H)$.

i) If T* is a polynomially k-quasi-*-paranormal operator, then generalized a-Weyl's theorem holds for T.
ii) If T is a polynomially k-quasi-*-paranormal operator, then generalized a-Weyl's theorem holds for T*.

Proof. i) It is well known that *T* is polaroid if and only if T^* is polaroid [2, Theorem 2.11]. Now since a polynomially *k*-quasi-*-paranormal operator is polaroid and has SVEP, [2, Theorem 3.10] gives us the result of the theorem. For ii) we can also apply [2, Theorem 3.10]. \Box

References

- [1] P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
- P. Aiena, E. Aponte and E. Balzan, Weyl type theorems for left and right polaroid operators, Integr. Equ. Oper. Theory 66(2010), 1-20.
- [3] S.C. Arora and J.K. Thukral, On a class of operators, Glas. Math. Ser. III 21(1986), 381-386.
- [4] M. Berkani and A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Austra. Math. Soc. 76(2004), no.2, 291-302.
- [5] M. Berkani and J.J. Koliha, Weyl type theorems for bounded linear operators, Acta. Sci. Math. (Szeged) 69(2003), no.1-2, 359-376.
- [6] M. Berkani and M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43(2001), no.3, 457-465.
- [7] L.A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13(1966), 285-288.
- [8] B.P. Duggal, I.H. Jeon and I.H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436(2012), 954-962.
- [9] T. Furuta, Invitation to Linear Operators, Londons and New York, 2001.
- [10] Y.M. Han and A.H. Kim, A note on *-paranormal operators, Integr. Equ. Oper. Theory 49(2004), 435-444.
- [11] Y.M. Han and W.Y. Lee, Weyl's theorem holds for algebraically hyponormal operators, Proc. Amer. Math. Soc. 128(2000), 2291-2296.
- [12] R.E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [13] R.E. Harte and W.Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349(1997), no.5, 2115-2124.
- [14] K.B. Laursen and M.M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [15] S. Mecheri, Isolated points of spectrum of k-quasi-*-class Å operators, Studia Math. 208(2012), 87-96.
- [16] S. Mecheri, On a new class of operators and Weyl type theorems, Filomat 27(2013), 629-636.
- [17] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10(1989), 915-919.
- [18] J.L. Shen, F. Zuo and C.S. Yang, On operators satisfying $T^*|T^2|T \ge T^*|T^*|^2T$, Acta Mathematica Sinica (English Series) 26(2010), 2109-2116.
- [19] H. Weyl, Über beschränkte quadratische Formen, deren Dierenz vollsteig ist, Rend. Circ. Mat. Palermo 27(1909), 373-392.
- [20] L. Zhang, K. Tanahashi, A. Uchiyama and M. Chō, On polynomially *-paranormal operators, Functional Analysis, Approximation and Computation 5(2013), 11-16.
- [21] F. Zuo and H.L. Zuo, Weyl's theorem for algebraically quasi-*-A operators, Banach J. Math. Anal. 7(2013), 107-115.