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Abstract. An operator T is said to be k-quasi-∗-paranormal if ||Tk+2x||||Tkx|| ≥ ||T∗Tkx||2 for all x ∈ H, where
k is a natural number. In this paper, we give the inclusion relation of k-quasi-∗-paranormal operators and
k-quasi-∗-A operators. And we prove that if T is a polynomially k-quasi-∗-paranormal operator, then T is
polaroid and has SVEP. We also show that if T is a polynomially k-quasi-∗-paranormal operator, then Weyl
type theorems hold for T.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on a complex infinite dimensional Hilbert
space H. Recall [3, 8, 9, 15, 16, 18] that T ∈ B(H) is hyponormal if T∗T ≥ TT∗, T is class ∗-A if |T2

| ≥ |T∗|2, T is
quasi-∗-A if T∗|T2

|T ≥ T∗|T∗|2T, T is k-quasi-∗-A, if T∗k|T2
|Tk
≥ T∗k|T∗|2Tk, T is ∗-paranormal, if ||T2x||||x|| ≥ ||T∗x||2

for all x ∈ H, T is k-quasi-∗-paranormal, if ||Tk+2x||||Tkx|| ≥ ||T∗Tkx||2 for all x ∈ H, and T is normaloid
if ||Tn

|| = ||T||n, for n ∈ N (equivalently, ||T|| = r(T), the spectral radius of T). In general the following
implications hold:
hyponormal⇒ class ∗ -A⇒ ∗-paranormal⇒ normaloid.
hyponormal⇒ class ∗ -A⇒ quasi- ∗ -A⇒ k-quasi- ∗ -A.

A 1-quasi-∗-paranormal operator is a quasi-∗-paranormal operator. We show that a k-quasi-∗-A operator
is a k-quasi-∗-paranormal operator (see Theorem 2.3). Hence we have the following implications:
hyponormal⇒ class ∗ -A⇒ ∗-paranormal⇒ k-quasi- ∗ -paranormal.
hyponormal⇒ class ∗ -A⇒ quasi- ∗ -A⇒ k-quasi- ∗ -A⇒ k-quasi- ∗ -paranormal.

We shall denote the set of all complex numbers and the complex conjugate of a complex number λ by C
and λ, respectively. The closure of a set M will be denoted by M and we shall henceforth shorten T − λI to
T − λ. If T ∈ B(H), write N(T) and R(T) for the null space and range space of T; σ(T), σa(T) and iso σ(T) for
the spectrum, the approximate point spectrum and the isolated spectrum points of T, respectively.

In section 2, we give the inclusion relation of k-quasi-∗-paranormal operators and k-quasi-∗-A operators.
Also, we obtain a sufficient condition for k-quasi-∗-paranormal operators to be normaloid. In section 3, we
prove that if T is a polynomially k-quasi-∗-paranormal operator, then T is polaroid and has SVEP. Finally
we show that Weyl’s theorem holds for polynomially k-quasi-∗-paranormal operators.
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2. k-quasi-∗-paranormal Operators

Lemma 2.1. [16] T is a k-quasi-∗-paranormal operator⇔ T∗k(T∗2T2
− 2λTT∗ + λ2)Tk

≥ 0 for all λ > 0.

Lemma 2.2. [16] Let T be a k-quasi-∗-paranormal operator, the range of Tk be not dense and

T =

(
T1 T2
0 T3

)
on H = R(Tk) ⊕ N(T∗k).

Then T1 is a ∗-paranormal operator, Tk
3 = 0 and σ(T) = σ(T1) ∪ {0}.

Theorem 2.3. Let T be a k-quasi-∗-A operator. Then T is a k-quasi-∗-paranormal operator.

Proof. If T is a k-quasi-∗-A operator, then

T∗k|T2
|Tk
≥ T∗k|T∗|2Tk,

which yields that
(T∗k|T2

|Tkx, x) ≥ (T∗k|T∗|2Tkx, x) for all x ∈ H,

and hence
||Tk+2x||||Tkx|| ≥ ||T∗Tkx||2.

Consequently, T is a k-quasi-∗-paranormal operator.

But the converse of Theorem 2.3 is not true. We shall give an operator which is a 2-quasi-∗-paranormal
operator but not a 2-quasi-∗-A operator.

By straightforward computations, we have the following Lemma 2.4.

Lemma 2.4. Let K = ⊕+∞
n=1Hn, where Hn � H. For given positive operators A and B on H, define the operator TA,B

on K as follows:

TA,B =



0 0 0 0 0 0 · · ·

A 0 0 0 0 0 · · ·

0 A 0 0 0 0 · · ·

0 0 B 0 0 0 · · ·

0 0 0 B 0 0 · · ·

0 0 0 0 B 0 · · ·

...
...

...
...

...
...

. . .


.

Then i) TA,B belongs to 2-quasi-∗-A if and only if

A2(B2
− A2)A2

≥ 0.

ii) TA,B belongs to 2-quasi-∗-paranormal if and only if

A2(B4
− 2λA2 + λ2)A2

≥ 0 for all λ > 0.

Example 2.5. A non-2-quasi-∗-A and 2-quasi-∗-paranormal operator.

Proof. Take A and B as

A =

(
1 1
1 2

) 1
2

B =

(
1 2
2 8

) 1
4

.
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Then

B4
− 2λA2 + λ2 =

(
(1 − λ)2 2(1 − λ)
2(1 − λ) λ2

− 4λ + 8

)
≥ 0 for all λ > 0,

hence
A2(B4

− 2λA2 + λ2)A2
≥ 0 for all λ > 0.

Thus TA,B is a 2-quasi-∗-paranormal operator.
On the other hand, by using the Maple program,

A2(B2
− A2)A2 =

(
−0.2850 · · · 0.0432 · · ·

0.0432 · · · 1.1449 · · ·

)
� 0.

Hence TA,B is not a 2-quasi-∗-A operator.

Lemma 2.6. [15] Let T be a quasi-∗-paranormal operator. Then T is normaloid.

If k > 1, a nilpotent operator is a k-quasi-∗-paranormal operator, but it is not normaloid. However we
have the following result.

Theorem 2.7. Let T be a k-quasi-∗-paranormal operator and ||Tk
|| = ||T||k. Then T is normaloid.

Proof. Suppose that T is a k-quasi-∗-paranormal operator, i.e.,

||Tk+2x||||Tkx|| ≥ ||T∗Tkx||2 for every x ∈ H,

which implies that
||Tk+2

||||Tk
|| ≥ ||T∗Tk

||
2.

Now assume that
||Tk
|| = ||T||k,

then, by the above inequality,

||T||3k−2
||Tk+2

|| = ||T||2k−2
||T||k||Tk+2

|| ≥ ||T∗(k−1)
||

2
||Tk+2

||||Tk
||

≥ ||T∗(k−1)
||

2
||T∗Tk

||
2

≥ ||T∗kTk
||

2

= ||Tk
||

4

= ||T||4k,

and therefore
||Tk+2

|| = ||T||k+2.

Hence by induction,
||Tk+2 j

|| = ||T||k+2 j for every j ≥ 1.

Since {Tk+2 j
} is a subsequence of {Tn

}, and lim
n→∞
||Tn
||

1
n = r(T), we have

lim ||Tk+2 j
||

1
k+2 j = lim||Tn

||
1
n = r(T),

i.e.,
r(T) = lim

j→∞
||Tk+2 j

||
1

k+2 j = lim
j→∞

(||T||k+2 j)
1

k+2 j = ||T||.

Thus T is normaloid.
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We say that T ∈ B(H) has the single valued extension property (abbrev. SVEP), if for every open set U
of C, the only analytic solution f : U → H of the equation (T − λ) f (λ) = 0 for all λ ∈ U is the zero function
on U.

The following theorem has been proved in [16], we give a new proof here.

Theorem 2.8. [16] Let T be a k-quasi-∗-paranormal operator. Then T has SVEP.

Proof. If the range of Tk is dense, then T is a ∗-paranormal operator, T has SVEP by [10]. Next we can assume
that the range of Tk is not dense. By Lemma 2.2, we have

T =

(
T1 T2
0 T3

)
on H = R(Tk) ⊕N(T∗k).

Suppose (T − z) f (z) = 0, f (z) = f1(z) ⊕ f2(z) on H = R(Tk) ⊕N(T∗k). Then we can write(
T1 − z T2

0 T3 − z

) (
f1(z)
f2(z)

)
=

(
(T1 − z) f1(z) + T2 f2(z)

(T3 − z) f2(z)

)
= 0.

And T3 is nilpotent, T3 has SVEP, hence f2(z) = 0, (T1 − z) f1(z) = 0. Since T1 is a ∗-paranormal operator, T1
has SVEP by [10], then f1(z) = 0. Consequently, T has SVEP.

3. Polynomially k-quasi-∗-paranormal Operators

An operator T is called Fredholm if R(T) is closed and both N(T) and N(T∗) are finite dimensional. The
index of a Fredholm operator T is given by i(T) = dim N(T)−dim (H/R(T)).An operator T is called Weyl if it is
Fredholm of index zero. The Weyl spectrum w(T) of T is defined by [12], w(T) := {λ ∈ C : T−λ is not Weyl}.

We consider the sets

Φ+(H) := {T ∈ B(H) : R(T) is closed and dim N(T) < ∞};
Φ−+(H) := {T ∈ B(H) : T ∈ Φ+(H) and i(T) ≤ 0}.

We define
σea(T) := {λ ∈ C : T − λ < Φ−+(H)};

π00(T) := {λ ∈ iso σ(T) : 0 < dim N(T − λ) < ∞};

πa
00(T) := {λ ∈ iso σa(T) : 0 < dim N(T − λ) < ∞}.

Following [13], we say that Weyl’s theorem holds for T if σ(T)\w(T) = π00(T), and that a-Weyl’s theorem
holds for T if σa(T)\σea(T) = πa

00(T).
More generally, Berkani investigated generalized Weyl’s theorem which extends Weyl’s theorem.

Berkani investigated B-Fredholm theory as follows (see [4–6]). An operator T is called B-Fredholm if
there exists n ∈N such that R(Tn) is closed and the induced operator

T[n] : R(Tn) 3 x→ Tx ∈ R(Tn)

is Fredholm, i.e., R(T[n]) = R(Tn+1) is closed, dim N(T[n]) < ∞ and dim N(T∗[n]) < ∞. Similarly, a B-Fredholm
operator T is called B-Weyl if i(T[n]) = 0.

The B-Weyl spectrum σBW(T) is defined by

σBW(T) = {λ ∈ C : T − λ is not B−Weyl}.

We say that generalized Weyl’s theorem holds for T if

σ(T) \ σBW(T) = E(T)
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where E(T) denotes the set of all isolated points of the spectrum which are eigenvalues. Note that, if the
generalized Weyl’s theorem holds for T, then so does Weyl’s theorem [5]. Recently in [4] Berkani and
Arroud showed that if T is hyponormal, then generalized Weyl’s theorem holds for T.

We define T ∈ SBF−+(H) if there exists a positive integer n such that R(Tn) is closed, T[n] : R(Tn) 3 x →
Tx ∈ R(Tn) is upper semi-Fredholm (i.e., R(T[n]) = R(Tn+1) is closed, dim N(T[n]) = dim N(T) ∩ R(Tn) < ∞)
and i(T[n]) ≤ 0 [6]. We define σSBF−+ (T) = {λ ∈ C : T − λ < SBF−+(H)}. Let Ea(T) denote the set of all isolated
points λ of σa(T) with 0 < dim N(T − λ). We say that generalized a-Weyl’s theorem holds for T if

σa(T) \ σSBF−+ (T) = Ea(T).

It’s known from [5, 17] that if T ∈ B(H) then we have
generalized a-Weyl’s theorem⇒ a-Weyl’s theorem⇒Weyl’s theorem;
generalized a-Weyl’s theorem⇒ generalized Weyl’s theorem⇒Weyl’s theorem.

We say that T is a polynomially k-quasi-∗-paranormal operator if there exists a nonconstant complex
polynomial p such that p(T) is a k-quasi-∗-paranormal operator. From the above definition, T is a polyno-
mially k-quasi-∗-paranormal operator, then so is T − λ for each λ ∈ C.

The following example provides an operator which is a polynomially 2-quasi-∗-paranormal operator
but not a 2-quasi-∗-paranormal operator.

Example 3.1. Let T =

(
I 0
I I

)
∈ B(l2 ⊕ l2). Then T is a polynomially 2-quasi-∗-paranormal operator but not a

2-quasi-∗-paranormal operator.

Proof. Since

T∗ =

(
I I
0 I

)
,

we have

T∗2T2
− 2λTT∗ + λ2 =

(
(λ2
− 2λ + 5)I (−2λ + 2)I

(−2λ + 2)I (λ2
− 4λ + 1)I

)
.

Then

T∗2(T∗2T2
− 2λTT∗ + λ2)T2 =

(
(5λ2

− 26λ + 17)I (2λ2
− 10λ + 4)I

(2λ2
− 10λ + 4)I (λ2

− 4λ + 1)I

)
.

Since (5λ2
− 26λ + 17)I is not a positive operator for λ = 1,

T∗2(T∗2T2
− 2λTT∗ + λ2)T2 � 0.

Therefore T is not a 2-quasi-∗-paranormal operator.
On the other hand, consider the complex polynomial h(z) = (z − 1)2. Then h(T) = 0, and hence T is a

polynomially k-quasi-∗-paranormal operator.

We know that Weyl’s theorem holds for hermitian operators [19], which has been extended from hermi-
tian operators to hyponormal operators [7], to algebraically hyponormal operators by [11], to algebraically
quasi-∗-A operators [21], and to polynomially ∗-paranormal operators [20]. In this section, we prove
polynomially k-quasi-∗-paranormal operators satisfy generalized a-Weyl’s theorem.

Theorem 3.2. Let T be a quasinilpotent polynomially k-quasi-∗-paranormal operator. Then T is nilpotent.

Proof. We first assume that T is a k-quasi-∗-paranormal operator. Consider two cases, Case I: If the range of
Tk is dense, then T is a ∗-paranormal operator, which leads to that T is normaloid, hence T = 0. Case II: If
the range of Tk is not dense, then

T =

(
T1 T2
0 T3

)
on H = R(Tk) ⊕N(T∗k)



F. Zuo, J. Shen / Filomat 30:2 (2016), 313–319 318

where T1 is a ∗-paranormal operator, Tk
3 = 0 and σ(T) = σ(T1) ∪ {0} by Lemma 2.2. Since σ(T) = {0}, we

obtain σ(T1) = {0}, then T1 = 0. Thus

Tk+1 =

(
0 T2
0 T3

)k+1

=

(
0 T2Tk

3
0 Tk+1

3

)
= 0.

Now, suppose that T is a polynomially k-quasi-∗-paranormal operator. Then there exists a nonconstant
polynomial p such that p(T) is a k-quasi-∗-paranormal operator. If (p(T))k has dense range, then p(T) is
a ∗-paranormal operator. Thus T is a polynomially ∗-paranormal operator. It follows from [20] that it is
nilpotent. If (p(T))k does not have a dense range, then, by Lemma 2.2 we can represent p(T) as the upper
triangular matrix

p(T) =

(
A B
0 C

)
on H = R((p(T))k) ⊕N((p(T))∗k),

where A := p(T)|R((p(T))k) is a ∗-paranormal operator. Since σ(T) = {0} and σ(p(T)) = p(σ(T)) = {p(0)}, the
operator p(T) − p(0) is quasinilpotent. But σ(p(T)) = σ(A) ∪ {0}, thus σ(A) ∪ {0} = {p(0)}. So p(0) = 0, and
hence p(T) is quasinilpotent. Since p(T) is a k-quasi-∗-paranormal operator, by the previous argument p(T)
is nilpotent. On the other hand, since p(0) = 0, p(z) = czm(z−λ1)(z−λ2) · · · (z−λn) for some natural number
m. p(T) = cTm(T − λ1)(T − λ2) · · · (T − λn), then there exists q ∈N such that

(p(T))q = cqTmq(T − λ1)q(T − λ2)q
· · · (T − λn)q = 0.

Since T is quasinilpotent, (T−λ1), (T−λ2), · · · , (T−λn) is invertible, we have Tmq = 0, i.e., T is nilpotent.

Recall that an operator T is said to be isoloid if every isolated point of σ(T) is an eigenvalue of T and
polaroid if every isolated point of σ(T) is a pole of the resolvent of T. In general, if T is polaroid then it is
isoloid. However, the converse is not true. In [16] it is showed that every k-quasi-∗-paranormal operator is
isoloid, we can prove more.

Theorem 3.3. Let T be a polynomially k-quasi-∗-paranormal operator. Then T is polaroid.

Proof. Suppose T is a polynomially k-quasi-∗-paranormal operator. Then p(T) is a k-quasi-∗-paranormal
operator for some nonconstant polynomial p. Let λ ∈ iso σ(T) and Eλ be the Riesz idempotent associated to
λ defined by Eλ := 1

2πi

∫
∂D(µ − T)−1dµ, where D is a closed disk of center λ which contains no other point of

σ(T). We can represent T as the direct sum in the following form:

T =

(
T1 0
0 T2

)
,

where σ(T1) = {λ} and σ(T2) = σ(T)\{λ}, we have

p(T) =

(
p(T1) 0
0 p(T2)

)
,

since p(T) is a k-quasi-∗-paranormal operator, then p(T1) is a k-quasi-∗-paranormal operator, i.e., T1 is a
polynomially k-quasi-∗-paranormal operator, so is T1 − λ. But σ(T1 − λ) = {0}, it follows from Theorem
3.2 that T1 − λ is nilpotent, thus T1 − λ has finite ascent and descent. On the other hand, since T2 − λ is
invertible, clearly it has finite ascent and descent. T − λ has finite ascent and descent, and hence λ is a pole
of the resolvent of T, therefore T is polaroid.

Corollary 3.4. Let T be a polynomially k-quasi-∗-paranormal operator. Then T is isoloid.

Theorem 3.5. Let T be a polynomially k-quasi-∗-paranormal operator. Then T has SVEP.
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Proof. Suppose that T is a polynomially k-quasi-∗-paranormal operator. Then p(T) is a k-quasi-∗-paranormal
operator for some nonconstant complex polynomial p, and hence p(T) has SVEP by Theorem 2.8. Therefore
T has SVEP by [14, Theorem 3.3.9].

If T ∈ B(H) has SVEP, then T and T∗ satisfy Browder’s (equivalently, generalized Browder’s) theorem
and a-Browder’s (equivalently, generalized a-Browder’s) theorem. A sufficient condition for an operator T
satisfying Browder’s (generalized Browder’s) theorem to satisfy Weyl’s (resp., generalized Weyl’s) theorem
is that T is polaroid. Then we have the following result:

Theorem 3.6. Let T ∈ B(H). If T is a polynomially k-quasi-∗-paranormal operator, then generalized Weyl’s theorem
holds for T, so does Weyl’s theorem.

Proof. It is obvious from Theorem 3.3, Theorem 3.5 and the statements of the above.

Theorem 3.7. Let T ∈ B(H).
i) If T∗ is a polynomially k-quasi-∗-paranormal operator, then generalized a-Weyl’s theorem holds for T.
ii) If T is a polynomially k-quasi-∗-paranormal operator, then generalized a-Weyl’s theorem holds for T∗.

Proof. i) It is well known that T is polaroid if and only if T∗ is polaroid [2, Theorem 2.11]. Now since a
polynomially k-quasi-∗-paranormal operator is polaroid and has SVEP, [2, Theorem 3.10] gives us the result
of the theorem. For ii) we can also apply [2, Theorem 3.10].
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