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Some Identities Relating to Degenerate Bernoulli Polynomials
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Abstract. Recently, Carlitz degenerate Bernoulli numbers and polynomials have been studied by several
authors (see [3, 4]). In this paper, we consider new degenerate Bernoulli numbers and polynomials, different
from Carlitz degenerate Bernoulli numbers and polynomials, and give some formulae and identities related
to these numbers and polynomials.

1. Introduction

The ordinary Bernoulli numbers are defined by

B0 = 1, (B + 1)n
− Bn =

1, if n = 1,
0, if n > 1,

(1)

with the usual convention about replacing Bn by Bn.
The Bernoulli polynomials are defined by

Bn (x) =

n∑
l=0

(
n
l

)
Blxn−l, (see [1–20]) . (2)

From (1) and (2), we note that

∞∑
n=0

Bn (x)
tn

n!
(3)

=
t

et − 1
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=
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edt − 1

d−1∑
a=0
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2010 Mathematics Subject Classification. 11B75, 11B83, 11S80
Keywords. Degenerate Bernoulli numbers and polynomials
Received: 18 June 2015; Accepted: 16 September 2015
Communicated by Gradimir Milovanović and Yilmaz Simsek
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=

∞∑
n=0

dn−1
d−1∑
a=0

Bn

(a + x
d

) tn

n!
.

Thus, by (3), we get

Bn (x) = dn−1
d−1∑
a=0

Bn

(a + x
d

)
, (4)

where n ∈N ∪ {0} and d ∈N.
Let χ be a Dirichlet character with conductor d ∈N. The generalized Bernoulli numbers are defined by

Bn,χ = dn−1
d−1∑
a=0

χ (a) Bn

( a
d

)
, (n ≥ 0) , (see [12, 18, 20]) . (5)

Carlitz introduced the degenerate Bernoulli polynomials given by the generating function

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

β (x | λ)
tn

n!
, (see [3, 4]) . (6)

When x = 0, βn (λ) = βn (0 | λ) are called the degenerate Bernoulli numbers.
From (6), we note that

lim
λ→0

βn (x | λ) = Bn (x) , (n ≥ 0) . (7)

In this paper, we consider new degenerate Bernoulli numbers and polynomials, different from Carlitz
degenerate Bernoulli numbers and polynomials, and give some formulae and identities related to these
numbers and polynomials.

2. Degenerate Bernoulli Polynomials

Let us consider the new degenerate Bernoulli polynomials as follows:

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn,λ (x)
tn

n!
. (8)

When x = 0, βn,λ = βn,λ (0) are called the degenerate Bernoulli numbers. Note that limλ→0 βn,λ (x) = Bn (x).
From (8), we have

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
1
λ −

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

=
log (1 + λt)

λ
. (9)

We observe that

1
λ

log (1 + λt) =

∞∑
n=0

(−1)n λn

n + 1
tn+1. (10)

Thus, by (8), (9) and (10), we get

βn,λ (1) − βn,λ =

0 if n = 0,
(−λ)n−1 (n − 1)! if n ≥ 1,

, β0,λ = 1. (11)
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From (8), we note that

log (1 + λt)
1
λ (1 + λt)

x
λ (12)

=
(
(1 + λt)

1
λ − 1

)  ∞∑
m=0

βm,λ (x)
tm

m!


= t

∞∑
n=0

 n∑
l=0

(1 | λ)l+1

l + 1
βn−l,λ (x)

(
n
l

) tn

n!
,

where

(x | λ)n = x (x − λ) · · · (x − λ (n − 1)) .

It is known that Daehee numbers are given by the generating function

log (1 + t)
t

=

∞∑
n=0

Dn
tn

n!
.

Now, we observe that

log (1 + λt)
1
λ (1 + λt)

x
λ (13)

=

(
log (1 + λt)

λt

) (
t (1 + λt)

x
λ

)
= t

 ∞∑
n=0

 n∑
l=0

(
n
l

)
Dlλ

l (x | λ)n−l

 tn

n!

 .
Thus, by (12) and (13), we get

n∑
l=0

(
n
l

)
(1 | λ)l+1

l + 1
βn−l,λ (x) =

n∑
l=0

(
n
l

)
Dlλ

l (x | λ)n−l . (14)

By (8), we easily get

βn,λ (x) =

n∑
l=0

(
n
l

)
βl,λ (x | λ)n−l , (n ≥ 0) . (15)

Therefore, by (14) and (15), we obtain the following theorem.

Theorem 2.1. For n ≥ 0, we have
n∑

l=0

(
n
l

)
(1 | λ)l+1

l + 1
βn−l,λ (x) =

n∑
l=0

(
n
l

)
Dlλ

l (x | λ)n−l ,

and

βn,λ (x) =

n∑
l=0

(
n
l

)
βl,λ (x | λ)n−l .

Moreover,

βn,λ (1) − βn,λ =

0, if n = 0,
(−λ)n−1 (n − 1)! if n ≥ 1, β0,λ = 1.
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By (8), we get

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (16)

=
log (1 + λt)

1
λ

(1 + λt)
d
λ − 1

d−1∑
a=0

(1 + λt)
a+x
λ

=
1
d

 log (1 + λt)
d
λ

(1 + λt)
d
λ − 1

d−1∑
a=0

(1 + λt)
a+x
λ


=

1
d

d−1∑
a=0

 ∞∑
n=0

βn, λd

(a + x
d

)
dn tn

n!


=

∞∑
n=0

dn−1
d−1∑
a=0

βn, λd

(a + x
d

) tn

n!
.

Thus, by (16), we obtain the following theorem.

Theorem 2.2. For n ≥ 0, we have

βn,λ (x) = dn−1
d−1∑
a=0

βn, λd

(a + x
d

)
.

It is not difficult to show that

log (1 + λt)
λ

n−1∑
l=0

(1 + λt)
l
λ (17)

=
log (1 + λt)

1
λ

(1 + λt)
1
λ − 1

(1 + λt)
n
λ −

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

=

∞∑
m=0

{
βm,λ (n) − βm,λ

} tm

m!

= t
∞∑

m=0

{
βm+1,λ (n) − βm+1,λ

m + 1

}
tm

m!
.

Thus we get

log (1 + λt)
λ

n−1∑
l=0

(1 + λt)
l
λ (18)

= t
(

log (1 + λt)
λt

) n−1∑
l=0

(1 + λt)
l
λ


=

t
∞∑

k=0

Dkλk

k!
tk


 ∞∑

m=0

n−1∑
l=0

(l | λ)m

 tm

m!


= t

∞∑
k=0

 k∑
i=0

(
k
i

)
Diλ

i
n−1∑
l=0

(l | λ)k−i

 tk

k!
.
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From (17) and (18), we have

βk+1,λ (n) − βk+1,λ

k + 1
=

n−1∑
l=0

 k∑
i=0

(
k
i

)
Diλ

i (l | λ)k−i

 . (19)

Therefore, by (19), we obtain the following theorem.

Theorem 2.3. For n ≥ 1 and k ≥ 0, we have

1
k + 1

{
βk+1,λ (n) − βk+1,λ

}
=

n−1∑
l=0

 k∑
i=0

(
k
i

)
Diλ

i (l | λ)k−i

 .
Replacing t by 1

λ log (1 + λt) in (3), we get

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ (20)

=

∞∑
n=0

Bn (x)λ−n 1
n!

(
log (1 + λt)

)n

=

∞∑
m=0

Bm (x)λ−m
∞∑

n=m

S1 (n,m)
λntn

n!

=

∞∑
n=0

 n∑
m=0

Bm (x)λn−mS1 (n,m)

 tn

n!
,

where S1 (n,m) is the Stirling number of the first kind.
On the other hand,

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn,λ (x)
tn

n!
. (21)

Therefore, by (20) and (21), we obtain the following theorem.

Theorem 2.4. For n ≥ 0, we have

βn,λ (x) =

n∑
m=0

Bm (x)λn−mS1 (n,m) .

Replacing t by 1
λ

(
eλt
− 1

)
in (8), we have

t
et − 1

ext =

∞∑
m=0

βm,λ (x)
1

m!

( 1
λ

(
eλt
− 1

))m

(22)

=

∞∑
m=0

βm,λ (x)λ−m
∞∑

n=m

S2 (n,m)
λntn

n!

=

∞∑
n=0

 n∑
m=0

βm,λ (x)λn−mS2 (n,m)

 tn

n!
,

where S2 (n,m) is the Stirling number of the second kind.
Thus, by (22), we obtain the following theorem.
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Theorem 2.5. For n ≥ 0, we have

Bn (x) =

n∑
m=0

βm,λ (x)λn−mS2 (n,m) .

For d ∈ N, let χ be a Dirichlet character with conductor d. Then, we define the generalized degenerate
Bernoulli numbers attached to χ:

log (1 + λt)
1
λ

(1 + λt)
d
λ − 1

d−1∑
a=0

χ (a) (1 + λt)
a
λ =

∞∑
n=0

βn,χ,λ
tn

n!
. (23)

From (8) and (23), we have

∞∑
n=0

βn,χ,λ
tn

n!
=

log (1 + λt)
1
λ

(1 + λt)
d
λ − 1

d−1∑
a=0

χ (a) (1 + λt)
a
λ (24)

=
1
d

d−1∑
a=0

χ (a)
log (1 + λt)

d
λ

(1 + λt)
d
λ − 1

(1 + λt)
a
λ

=
1
d

d−1∑
a=0

χ (a)
∞∑

n=0

βn, λd

( a
d

) dntn

n!

=

∞∑
n=0

dn−1
d−1∑
a=0

χ (a) βn, λd

( a
d

) tn

n!
.

Therefore, by (24), we obtain the following theorem.

Theorem 2.6. For n ≥ 0, d ∈N, we have

βn,χ,λ = dn−1
d−1∑
a=0

χ (a) βn, λd

( a
d

)
.

3. Further Remark

Let p be a fixed prime number. Throughout this section, Zp, Qp and Cp will denote the ring of p-adic
integers, the field of p-adic rational numbers and the completion of the algebraic closure of Qp. The p-adic

norm is normalized as
∣∣∣p∣∣∣p = 1

p . Let us assume that λ, t ∈ Cp with |λt|p < p−
1

p−1 . In Section 2, we introduced
the degenerate Bernoulli polynomials given by the generating function

log (1 + λt)
1
λ

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞∑
n=0

βn,λ (x)
tn

n!
.

Let d be a positive integer with
(
d, p

)
= 1. Then we set

X = lim
←N

(
Z/dpNZ

)
;

a + dpNZp =
{
x ∈ X| x ≡ a (mod dpN)

}
;

X∗ =
⋃

0<a<dp
p-a

(
a + dpZp

)
.

We shall usually take 0 ≤ a < dpN when we write a + dpNZp. Now, we will use Theorem 2.2 to prove a
p-adic distribution result.
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Theorem 3.1. For k ≥ 0, let µk,β be defined by

µ(λ)
k,β

(
a + dpNZp

)
=

(
dpN

)k−1
βk, λ

dpN

(
a

dpN

)
. (25)

Then µ(λ)
k,β extends to a Cp-valued distribution on compact open sets U ⊂ X.

Proof. It suffices to show that

p−1∑
i=0

µ(λ)
k,β

(
a + idpN + dpN+1Zp

)
=

(
dpN+1

)k−1
p−1∑
i=0

βk, λ
dpN+1

(
a + idpN

dpN+1

)

=
(
dpN

)k−1
pk−1

p−1∑
i=0

β
k,

λ
dpN

p

 a
dpN + i

p


=

(
dpN

)k−1
βk, λ

dpN

(
a

dpN

)
= µ(λ)

k,β

(
a + dpNZp

)
.

The locally constant function χ can be integrated against the distribution µk,β defined by (25), and the
result is ∫

X
χ (x) dµ(λ)

k,β (x) (26)

= lim
N→∞

dpN
−1∑

x=0

χ (x)µ(λ)
k,β

(
x + dpNZp

)
= lim

N→∞

(
dpN

)k−1
dpN
−1∑

x=0

χ (x) βk, λ
dpN

(
x

dpN

)
= βk,χ,λ.

From (26), we have∫
X
χ (x) dµk,β (λ) (x) = βk,χ,λ, (k ≥ 0) .
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