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Abstract. In this paper, we present some important properties of matrices over hyperbolic split quater-
nions. We examine hyperbolic split quaternion matrices by their split quaternion matrix representation.

1. Introduction

The collection of hyperbolic numbers (double, perplex or split complex numbers) is two dimensional
commutative algebra over real numbers different from complex and dual numbers. Every hyperbolic
number has the form x+ yh where x and y are real numbers. The unit h is defined by the property h2 = 1.On
the other hand, the split quaternions (or coquaternions) are elements of four dimensional noncommutative
and associative algebra. The set of hyperbolic split quaternions is an extension of split quaternions by
hyperbolic number coefficients.
The matrices over noncommutative algebras is a new topic. Most well known studies about this topic are
related to quaternion matrices such as [10], [11], [4], [5]. Since the rotations in Minkowski 3 space can be
stated with timelike split quaternions in [7] such as expressing the Euclidean rotations using quaternions,
the set of matrices over split quaternions becomes an interesting area. Firstly, the set of split quaternion
matrices is introduced in [1]. Then, eigenvalues of split quaternion matrices are discussed in [2] and the
relations between the eigenvalues of a split quaternion matrix and its complex adjoint matrix are presented.
On the other hand, the complex split quaternions and their matrices are investigated in [3].
In this paper, we give a brief summary of split quaternions and their matrices. Then we present hyperbolic
split quaternions to provide the necessary background. And we introduce the matrices over hyperbolic
split quaternions and give some properties of them. Moreover, we define the 2n × 2n split quaternion
matrix representation S(A) of a n × n hyperbolic split quaternion matrix A. We prove that A is invertible if
and only if S(A) is invertible. Then, we obtain a method to find the inverse of hyperbolic split quaternion
matrices. And, we give the relations between left and right split quaternion eigenvalues of a hyperbolic
split quaternion matrix and its split quaternion matrix representation.
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2. Preliminaries

2.1. Split Quaternions and Their Matrices
The set of split quaternions, which was introduced by James Cockle in 1849, can be represented as

Ĥ = {q = q0 + q1i + q2 j + q3k : q0, q1, q2, q3 ∈ R}.

Here the imaginary units satisfy the following relations: i2 = −1, j2 = k2 = i jk = 1, i j = − ji = k, jk = −kj = −i,
ki = −ik = j.Unlike quaternion algebra, the set of split quaternions contains zero divisors, nilpotent elements
and nontrivial idempotents. For any q = q0 + q1i + q2 j + q3k ∈ Ĥ, we define scalar part of q as Sq = q0, vector
part of q as Vq = q1i + q2 j + q3k and conjugate of q as q = Sq −Vq = q0 − q1i− q2 j− q3k. If Sq = 0 then q is called
pure split quaternion. The set of pure split quaternions are identified with the Minkowski 3 space. The
Minkowski 3 space is Euclidean 3 space with the Lorentzian inner product 〈u, v〉L = −u1v1 + u2v2 + u3v3,
where u = (u1,u2,u3) and v = (v1, v2, v3) ∈ E3 and denoted by E3

1. The sum and product of two split
quaternions p = p0 + p1i + p2 j + p3k and q = q0 + q1i + q2 j + q3k are defined as p + q = Sp + Sq + Vp + Vq and
pq = SpSq +

〈
Vp,Vq

〉
L

+ SpVq + SqVp + Vp ×L Vq, respectively. Here ×L denotes Lorentzian vector product
and is defined as

u ×L v =

∣∣∣∣∣∣∣∣
−e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣∣∣ ,
for vectors u = (u1,u2,u3) and v = (v1, v2, v3) of Minkowski 3 space. The term Iq = qq = qq = q2

0 + q2
1 − q2

2 − q2
3

characterizes any split quaternion q. The split quaternion q is called spacelike, timelike or null, if Iq < 0,
Iq > 0 or Iq = 0, respectively. This characterization of split quaternions plays an important role on
expressing the Lorentzian rotations. Also, kind of rotation angle (spherical or hyperbolic) and rotation axis
of a Lorentzian rotation depends on characterization of the split quaternion. And the norm of q is defined

as Nq =
√∣∣∣q2

0 + q2
1 − q2

2 − q2
3

∣∣∣. If Nq = 1, then q is called unit split quaternion. If Iq , 0, then q−1 =
q
Iq
. For

details about split quaternions, see [8], [9].
The set of m × n matrices over split quaternions, which is denoted by Mm×n(Ĥ), with ordinary matrix
addition and multiplication is a ring with unity. For any A = (ai j) ∈Mm×n(Ĥ), the conjugate of A is defined
as A =

(
ai j

)
∈ Mm×n(Ĥ), the transpose of A is defined as AT =

(
a ji

)
∈ Mn×m(Ĥ) and conjugate transpose of

A is defined as A∗ = (a ji) ∈ Mn×m(Ĥ). For any n × n split quaternionic matrix A, if there exists any matrix
B ∈Mn×n(Ĥ) such that AB = BA = I then A is called invertible matrix and B is called the inverse of A. In the
study [1], it was proved that AB = I implies that BA = I for any A, B ∈Mn×n(Ĥ). So, the right inverse and left
inverse of any square split quaternion matrix are always equal. Since there exists a unique representation of
any split quaternion q as q = c1 + c2 j where c1 and c2 are complex numbers, we may write any A ∈Mn×n(Ĥ)
as A = A1 +A2 j where A1, A2 ∈Mn×n(C) are uniquely determined. Using this representation, we may define
the 2n × 2n complex matrix

χA =

[
A1 A2

A2 A1

]
which is called the complex adjoint matrix of A. Since the set of split quaternions are noncommutative, defining
a determinant function for matrices over split quaternion is a special problem. A determinant function is
defined by using complex adjoint matrix of A as |A|q = det(χA) and is called q determinant of A in [1]. For

some nonzero split quaternionic vector x, if λ ∈ Ĥ satisfies the equation Ax = λx, ( or Ax = xλ) then λ is
called left (or right) eigenvalue of A. The sets of left and right eigenvalues are denoted by σl(A) and σr(A),
respectively. The eigenvalues of split quaternion matrices are deeply discussed in [2] and [1]. The relation
between the right eigenvalue of a split quaternion matrix A and its complex adjoint matrix is found as
σr(A) ∩ C = σ(χA) in [2].
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2.2. Hyperbolic Numbers and Hyperbolic Split Quaternions
The set of hyperbolic numbers is defined as follows:

H = {A = a + ha∗ : a, a∗ ∈ R}

where the unit h satisfies h2 = 1. For any hyperbolic numbers A = a + ha∗ and B = b + hb∗, the sum and
product of A and B are defined as A + B = a + b + h(a∗ + b∗) and AB = ab + a∗b∗ + h(ab∗ + ba∗), respectively
[6]. The set of hyperbolic split quaternions, which can be considered as an extension of split quaternions
by hyperbolic numbers, is represented as

ĤH = {Q = Q0 + Q1i + Q2 j + Q3k : Q0, Q1, Q2, Q3 ∈ H}

where i2 = −1, j2 = k2 = 1, i j = − ji = k, jk = −kj = −i, ki = −ik = j, hi = ih, hj = jh, hk = kh, h2 = 1.
As a consequence of this representation, any hyperbolic split quaternion Q can also be written uniquely
as Q = q + hq∗ = q + q∗h where q, q∗ ∈ Ĥ. For any Q = Q0 + Q1i + Q2 j + Q3k = q + hq∗ ∈ ĤH, we define
the hyperbolic number part of Q as HQ = Q0, vector part of Q as VQ = Q1i + Q2 j + Q3k and Hamiltonian
conjugate of Q as Q = Q0 − Q1i − Q2 j − Q3k = HQ − VQ. If HQ = 0, then Q is called pure hyperbolic split
quaternion. The sum and product of two hyperbolic split quaternions Q = Q0 + Q1i + Q2 j + Q3k = q + hq∗

and P = P0 + P1i + P2 j + P3k = p + hp∗ are defined as Q + P = q + p + h(q∗ + p∗), QP = qp + q∗p∗ + h(qp∗ + q∗p),
respectively.

3. Hyperbolic Split Quaternion Matrices

We denote the m × n matrices with hyperbolic split quaternion entries by Mm×n(ĤH). The set of n × n
hyperbolic split quaternion matrices with standard matrix summation and multiplication is ring with
unity. For any A = (Ai j) ∈ Mm×n(ĤH) and Q ∈ ĤH, right and left scalar multiplications are defined as
AQ = (Ai jQ) and QA = (QAi j), respectively. So, Mm×n(ĤH) is both a left and a right module over ĤH.

For any A = (Ai j) ∈ Mm×n(ĤH), the Hamiltonian conjugate of A is defined as A =
(
Ai j

)
∈ Mm×n(ĤH),

the transpose of A is defined as AT =
(
A ji

)
∈ Mn×m(ĤH) and the conjugate transpose of A is defined as

A∗ = (A)T
∈ Mn×m(ĤH). Since any hyperbolic split quaternion Q has a unique representation as Q = q + hq∗

where q, q∗ ∈ Ĥ, then we may write any A ∈Mn×n(ĤH) as A = A1 + hA2 where A1, A2 ∈Mn×n(Ĥ).

Theorem 3.1. For any A, B ∈Mn×n(ĤH), if AB = I, then BA = I.

Proof. Let A = A1 + hA2 and B = B1 + hB2 be any elements of Mn×n(ĤH) where A1, A2, B1, B2 ∈ Mn×n(Ĥ).
Suppose that AB = I, then we may write

AB = A1B1 + A2B2 + h(A1B2 + A2B1) = I + h0

where I denotes n × n identity matrix and 0 denotes n × n zero matrix. This implies that A1B1 + A2B2 = I
and A1B2 + A2B1 = 0. Using these two equalities, we can write the following matrix equality[

A1 A2
A2 A1

] [
B1 B2
B2 B1

]
=

[
I 0
0 I

]
.

Since this theorem holds for split quaternion matrices [1], we may write[
B1 B2
B2 B1

] [
A1 A2
A2 A1

]
=

[
I 0
0 I

]
.

This implies that B1A1 + B2A2 = I and B2A1 + B1A2 = 0. By using these equalities, we have I = I + h0 =
B1A1 + B2A2 + h(B2A1 + B1A2) = BA.
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Definition 3.2. Let A = A1 + hA2 ∈Mn×n(ĤH) where A1, A2 ∈Mn×n(Ĥ).We define the 2n× 2n split quaternionic
matrix[

A1 A2
A2 A1

]
as split quaternion matrix representation of A and denote by S(A).

Theorem 3.3. For any A, B ∈Mn×n(ĤH), the followings are satisfied;
i. S(In) = I2n;
ii. S(A + B) = S(A) + S(B);
iii. S(AB) = S(A)S(B);
iv. If A is invertible then S(A)−1 = S(A−1).

Proof. Let A = A1 + hA2 and B = B1 + hB1 be any elements of Mn×n(ĤH) where A1, A2, B1, B2 ∈Mn×n(Ĥ).
i.

S(In) = S(In + h0n) =

[
In 0n
0n In

]
= I2n.

ii. We have A + B = (A1 + B1) + h(A2 + B2). By definition, we get

S(A + B) =

[
A1 + B1 A2 + B2
A2 + B2 A1 + B1

]
=

[
A1 A2
A2 A1

]
+

[
B1 B2
B2 B1

]
= S(A) + S(B).

iii. We have AB = (A1B1 + A2B2) + h(A1B2 + A2B1). We obtain

S(AB) =

[
A1B1 + A2B2 A1B2 + A2B1
A1B2 + A2B1 A1B1 + A2B2

]
=

[
A1 A2
A2 A1

] [
B1 B2
B2 B1

]
= S(A)S(B).

iv. Suppose A is invertible that is AA−1 = A−1A = I. By using the properties i. and iii., we may write

I2n = S(In) = S(AA−1) = S(A)S(A−1) and I2n = S(In) = S(A−1A) = S(A−1)S(A).

This implies S(A) is also invertible and S(A)−1 = S(A−1).

Theorem 3.4. For any A ∈Mn×n(ĤH), if S(A) is invertible then A is invertible.

Proof. Let A = A1 + hA2 ∈Mn×n(ĤH) where A1, A2 ∈Mn×n(Ĥ). Suppose that S(A) is invertible and

S(A)−1 =

[
B1 B3
B2 B4

]
where B1, B2, B3, B4 ∈Mn×n(Ĥ). Then we have

S(A)S(A)−1 =

[
A1 A2
A2 A1

] [
B1 B3
B2 B4

]
=

[
In 0n
0n In

]
.

By this relation, we get A1B1 +A2B2 = In and A1B2 +A2B1 = 0n. If we chose B = B1 +hB2, then we get AB = In.
By Theorem 3.1, we have BA = In that is A is also invertible and A−1 = B1 + hB2.

Corollary 3.5. For any A ∈Mn×n(ĤH), A is invertible if and only if S(A) is invertible.
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Remark 3.6. For any invertible split quaternion matrix A ∈Mn×n(Ĥ), we know that the complex adjoint matrix χA
of A is also invertible by the study [1]. If we have

(χA)−1 =

[
C1 C2
C3 C4

]
where C1, C2, C3, C4 ∈Mn×n(C), then A−1 = C1 + C2 j. By using the proof of above theorem, we can also find inverse
of any hyperbolic split quaternion matrix with its split quaternion matrix representation. The following example is
given to show how to find the inverse of any hyperbolic split quaternion matrix.

Example 3.7. Consider the 2 × 2 hyperbolic split quaternion matrix

A =

[
i 1 + i
0 k

]
+ h

[
1 0
i k

]
.

Here the split quaternion matrix representation of A is found as

S(A) =


i 1 + i 1 0
0 k i k
1 0 i 1 + i
i k 0 k

 .
Since |S(A)|q = 5 , 0, then S(A) is invertible. So that A is also invertible. By using complex adjoint matrix of S(A)
and the method given in above remark, we find the inverse of S(A) as

S(A)−1 =
1
5


0 5i 0 −5i

2 + i 4 + 2i + 3 j + 4k −1 + 2i −4 − 2i
3 − i 1 − 2i + 2 j − 4k 1 − 2i −1 + 2i
−2 − i −4 − 2i − 3 j + k 1 − 2i 4 + 2i

 .
Here we get

B1 =
1
5

[
0 5i

2 + i 4 + 2i + 3 j + 4k

]
and B2 =

1
5

[
3 − i 1 − 2i + 2 j − 4k
−2 − i −4 − 2i − 3 j + k

]
.

Thus, we find

A−1 = B1 + B2h =
1
5

[
0 5i

2 + i 4 + 2i + 3 j + 4k

]
+

h
5

[
3 − i 1 − 2i + 2 j − 4k
−2 − i −4 − 2i − 3 j + k

]
.

Definition 3.8. Let A ∈ Mn×n(ĤH) and λ ∈ ĤH. If λ satisfies the equation Ax = λx for some nonzero hyperbolic
split quaternion vector x, then λ is called a left eigenvalue of A. The set of left eigenvalues of A is called left spectrum
of A and denoted by

σl(A) = {λ ∈ ĤH : Ax = λx and x , 0}.

If λ satisfies the equation Ax = xλ for some nonzero hyperbolic split quaternion vector x, then λ is called a right
eigenvalue of A. The set of right eigenvalues of A is called right spectrum of A and denoted by

σr(A) = {λ ∈ ĤH : Ax = xλ and x , 0}.

Theorem 3.9. For any A ∈Mn×n(ĤH), the following relations are satisfied:

σl(A) ∩ Ĥ = σl(S(A)) and σr(A) ∩ Ĥ = σr(S(A)).
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Proof. We will prove only first relation, the second one can be done by similar way. Let A = A1 + hA2 ∈

Mn×n(ĤH) where A1,A2 ∈Mn×n(Ĥ) and λ ∈ Ĥ be a left eigenvalue of A. So there exists at least one nonzero
hyperbolic split quaternion vector x = x1 + hx2 such that Ax = λx. Here x1 and x2 are split quaternionic
vectors. Thus we may write

(A1 + hA2)(x1 + hx2) = λ(x1 + hx2)⇒ (A1x1 + A2x2) + h(A1x2 + A2x1) = (λx1) + h(λx2).

We get A1x1 + A2x2 = λx1 and A1x2 + A2x1 = λx2. Using these two equalities, we get[
A1 A2
A2 A1

] [
x1
x2

]
= λ

[
x1
x2

]
.

This means λ ∈ σl(S(A)). Now, suppose that λ ∈ σl(S(A)). That is S(A)x = λx for any nonzero split
quaternionic vector x = (x1, x2) where x1, x2 are n dimensional split quaternionic vectors. So we may write[

A1 A2
A2 A1

] [
x1
x2

]
= λ

[
x1
x2

]
.

This matrix equation implies that A1x1 + A2x2 = λx1 and A1x2 + A2x1 = λx2. Using these equations, we
obtain

(A1x1 + A2x2) + h(A1x2 + A2x1) = (λx1) + h(λx2)⇒ (A1 + hA2)(x1 + hx2) = λ(x1 + hx2).

Thus, we get λ ∈ σl(A) ∩ Ĥ.

Theorem 3.10. For any A ∈Mn×n(ĤH), the following relation holds

σr(A) ∩ C = σ(χS(A)).

Proof. Let A ∈ Mn×n(ĤH) and λ ∈ C be any right eigenvalue of A. Since C ⊂ Ĥ, we have λ ∈ σr(A) ∩ Ĥ. By
previous theorem, we get λ ∈ σr(S(A)). By Theorem 7 in the study [2], we know that σr(SA) ∩ C =σ(χS(A)).
Thus, we obtain λ ∈ σ(χS(A)). Now suppose that λ ∈ σ(χS(A)). This implies λ ∈ σr(S(A)) ∩ C. By previous
theorem, we get λ ∈ σr(A) ∩ C.

Corollary 3.11. For any A ∈Mn×n(ĤH), A has at most 4n different complex right eigenvalues.

Example 3.12. Consider the 2 × 2 hyperbolic split quaternion matrix

A =

[
i j

1 + k 0

]
+ h

[
1 i
0 k

]
.

Then complex adjoint matrix of S(A) is obtained as

χS(A) =



i 0 1 i 0 1 0 0
1 0 0 0 i 0 0 i
1 i i 0 0 0 0 1
0 0 1 0 0 i i 0
0 1 0 0 −i 0 1 −i
−i 0 0 −i 1 0 0 0
0 0 0 1 1 −i −i 0
0 −i −i 0 0 0 1 0


By long and tedious computations, we find that one of the eigenvalues of χS(A) as λ = 1+ i. Since σr(A)∩C = σ(χS(A)),
then λ = 1 + i is a right eigenvalue of A. Really, for the nonzero hyperbolic split quaternion vector

x =

[
−1

i + j

]
+ h

[
−1

i + j

]
the relation Ax = λx is satisfied.
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4. Applications

Consider the following linear hyperbolic split quaternionic equations

a11x1 + a12x2 + ... + a1nxn = b1,

a21x1 + a22x2 + ... + a2nxn = b2,

...

an1x1 + an2x2 + ... + annxn = bn,

where xi are hyperbolic split quaternionic unknowns for i = 1, 2, ...,n. Here ai j ∈ ĤH for all i, j = 1, 2, ...,n
and bi ∈ ĤH for i = 1, 2, ...,n. This system of equation can be rewritten as Ax = b where

A = (ai j) ∈Mn×n(ĤH), x =


x1
x2
...

xn

 and b =


b1
b2
...

bn

 .
We may write A = A1 + hA2, x = y + hz, b = c + hd. Here A1,A2 ∈ Mn×n(Ĥ) and y, z, c and d are split
quaternionic column vectors. So, the equation Ax = b is equivalent to the following split quaternionic
system with 2n split quaternion unknowns;

A1y + A2z = c and A1z + A2y = d.

This system can be written as follows;[
A1 A2
A2 A1

] [
y
z

]
=

[
c
d

]
.

Let us denote

X =

[
y
z

]
and B =

[
c
d

]
.

So, the linear equation of the form Ax = b with n unknowns is equivalent to split quaternionic system
S(A)X = B with 2n split quaternion unknowns.

Example 4.1. Consider the hyperbolic split quaternion equations

(i + hk)x + (1 + j + h(1 − i))y = 1 + h(1 + i), jx + (1 − hk)y = j + h(1 + k)

where x and y are hyperbolic split quaternion unknowns. This equation is equivalent the linear system Ax = b[
i + hk 1 + j + h(1 − i)

j 1 − hk

] [
x
y

]
=

[
1 + h(1 + i)
j + h(1 + k)

]
.

The above hyperbolic split quaternion matrix can be written as follows

A =

[
i + hk 1 + j + h(1 − i)

j 1 − hk

]
=

[
i 1 + j
j 1

]
+ h

[
k 1 − i
0 −k

]
.

The given system is equivalent to split quaternionic system S(A)x = b that is
i 1 + j k 1 − i
j 1 0 −k
k 1 − i i 1 + j
0 −k j 1




x1
x2
y1
y2

 =


1
j

1 + i
1 + k
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where x = x1 + hx2, y = y1 + hy2. Here, we find

χS(A) =



i 1 0 1 − i 0 1 i 0
0 1 0 0 1 0 0 −i
0 1 − i i 1 i 0 0 1
0 0 0 1 0 −i 1 0
0 1 −i 0 −i 1 0 1 + i
1 0 0 i 0 1 0 0
−i 0 0 1 0 1 + i −i 1
0 i 1 0 0 0 0 1


and |S(A)|q = det(χS(A)) = 48 , 0. This means S(A) is invertible and the system S(A)X = B has a unique solution.
By long and tedious computations, we find

X =


x1
x2
y1
y2

 =
1

12


6 − 15i + 9 j

−6 + 3i + 3 j − 6k
−3i − 3 j − 6k

9 − 3i + 3 j + 3k

 .
Therefore, the unique solution of given hyperbolic split quaternion system is obtained as

x =
1

12
(6 − 15i + 9 j) +

h
12

(−6 + 3i + 3 j − 6k), y =
1

12
(−3i − 3 j − 6k) +

h
12

(9 − 3i + 3 j + 3k).

Note that the unique solution case appears when S(A) is invertible.
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