On the Unified Family of Generalized Apostol-type Polynomials of Higher order and Multiple Power Sums

Veli Kurt
Akdeniz University, Faculty of Sciences Department of Mathematics, Antalya, TR-07058, Turkey

Abstract

In last last decade, many mathematicians studied the unification of the Bernoulli and Euler polynomials. Firstly Karande B. K. and Thakare N. K. in [6] introduced and generalized the multiplication formula. Ozden et. al. in [14] defined the unified Apostol-Bernoulli, Euler and Genocchi polynomials and proved some relations. M. A. Ozarslan in [13] proved the explicit relations, symmetry identities and multiplication formula. El-Desouky et. al. in ([3], [4]) defined a new unified family of the generalized Apostol-Euler, Apostol-Bernoulli and Apostol-Genocchi polynomials and gave some relations for the unification of multiparameter Apostol-type polynomials and numbers. In this study, we give some symmetry identities and recurrence relations for the unified Apostol-type polynomials related to multiple alternating sums.

1. Introduction, Definitions and Notations

Apostol-Bernoulli polynomials of higher order $\mathcal{B}_{n}^{(\alpha)}(x, \lambda)$, Apostol-Euler polynomials $\mathcal{E}_{n}^{(\alpha)}(x, \lambda)$ and Apostol-Genocchi polynomials $\mathcal{G}_{n}^{(\alpha)}(x, \lambda)$ are defined following equations, in Luo [11] respectively:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{B}_{n}^{(\alpha)}(x, \lambda) \frac{t^{n}}{n!}=\left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} e^{x t},\left(|t+\log \lambda|<2 \pi, 1^{\alpha}:=1\right) \\
& \sum_{n=0}^{\infty} \mathcal{E}_{n}^{(\alpha)}(x, \lambda) \frac{t^{n}}{n!}=\left(\frac{2}{\lambda e^{t}+1}\right)^{\alpha} e^{\alpha t},\left(|t+\log \lambda|<\pi, 1^{\alpha}:=1\right)
\end{aligned}
$$

and

$$
\sum_{n=0}^{\infty} \mathcal{G}_{n}^{(\alpha)}(x, \lambda) \frac{t^{n}}{n!}=\left(\frac{2 t}{\lambda e^{t}+1}\right)^{\alpha} e^{x t},\left(|t+\log \lambda|<\pi, 1^{\alpha}:=1\right)
$$

where α and λ are arbitrary real or complex parameters and $x \in \mathbb{R}$. When $\lambda=1$ in the above relations gives the classical Bernoulli polynomials $B_{n}(x)$, the classical Euler polynomials $E_{n}(x)$ and the classical Genocchi polynomials $G_{n}(x)$.

[^0]The following unified Apostol-Bernoulli, Euler and Genocchi polynomials are defined by Ozarslan and Ozden in ([13], [14]) as

$$
\begin{align*}
f_{a, b}^{(\alpha)}(x ; t, a, b) & =\left(\frac{2^{1-k_{t} k}}{\beta^{b} e^{t}-a^{b}}\right)^{\alpha} e^{\alpha t}=\sum_{n=0}^{\infty} \mathcal{P}_{n, \beta}^{(\alpha)}(x, k, a, b) \frac{t^{n}}{n!}, \tag{1}\\
k & \in \mathbb{N}_{0}, a, b \in \mathbb{R} \backslash\{0\}, \alpha, \beta \in \mathbb{C},
\end{align*}
$$

(for details on this subject, see Ozarslan [13]).
Remark 1.1. Setting $k=a=b=1$ and $\beta=\lambda$ in (1), we get

$$
\mathcal{P}_{n, \lambda}^{(\alpha)}(x, 1,1, \lambda)=\mathcal{B}_{n}^{(\alpha)}(x, \lambda)
$$

where $\mathcal{B}_{n}^{(\alpha)}(x, \lambda)$ are Apostol-Bernoulli polynomials of higher order.
Remark 1.2. Choosing $k+1=-a=b=1$ and $\beta=\lambda$ in (1), we get

$$
\mathcal{P}_{n, \lambda}^{(\alpha)}(x, 0,-1,1)=\mathcal{E}_{n}^{(\alpha)}(x, \lambda)
$$

where $\mathcal{E}_{n}^{(\alpha)}(x, \lambda)$ are Apostol-Euler polynomials of higher order.
Remark 1.3. Letting $k=-2 a=b=1$ and $2 \beta=\lambda$ in (1), we get

$$
\mathcal{P}_{n, \frac{\lambda}{2}}^{(\alpha)}\left(x, 1,-\frac{1}{2}, 1\right)=\mathcal{G}_{n}^{(\alpha)}(x, \lambda)
$$

where $\mathcal{G}_{n}^{(\alpha)}(x, \lambda)$ are Apostol-Genocchi polynomials of higher order.
Recently, Garg et. al. in ([5] and [20]) introduced the following generalization of the Hurwitz-Lerch zeta functions $\Phi(z, s, a)$;

$$
\begin{aligned}
& \Phi_{\mu, v}^{(\rho, \sigma)}(z, s, a)=\sum_{n=0}^{\infty} \frac{(\mu)_{\rho n}}{(v)_{\sigma n}} \frac{z^{n}}{(n+a)^{s}}, \\
& \binom{\mu \in \mathbb{C}, a, v \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \rho, \sigma \in \mathbb{R}, \rho<\sigma \text { when } s, z \in \mathbb{C},(|z|<1)}{\rho}
\end{aligned}
$$

It is obvious that

$$
\begin{equation*}
\Phi_{\mu, 1}^{(1,1)}(z, s, a)=\Phi^{*}(z, s, a)=\sum_{n=0}^{\infty} \frac{(\mu)_{n}}{n!} \frac{z^{n}}{(n+a)^{s}} \tag{2}
\end{equation*}
$$

(for details on this subject, see ([5], [20]).
The multiple power sums and λ-multiple power sum are defined by Luo in [12] as follows:

$$
\begin{equation*}
S_{k}^{(l)}(m, \lambda)=\sum_{\substack{0 \leq v_{1}<\cdots<v_{m}=l \\ v_{1}+\cdots+v_{m}=m}}\binom{l}{v_{1}, v_{2}, \cdots, v_{m}} \lambda^{v_{1}+2 v_{2}+\cdots+m v_{m}}\left(v_{1}+2 v_{2}+\cdots+m v_{m}\right)^{k} . \tag{3}
\end{equation*}
$$

From (3), we have

$$
\begin{equation*}
\left(\frac{1-\lambda^{m} e^{m t}}{1-\lambda e^{t}}\right)^{l}=\lambda^{(-l)} \sum_{n=0}^{\infty}\left\{\sum_{k=0}^{n}\binom{n}{k}(-l)^{n-k} S_{k}^{(l)}(m, \lambda)\right\} \frac{t^{n}}{n!} \tag{4}
\end{equation*}
$$

where the radius of convergence $\left|\lambda e^{t}\right|<1$.
From (4); for $l=1$, we have

$$
\begin{equation*}
\frac{1-\lambda^{m} e^{m t}}{1-\lambda e^{t}}=\frac{1}{\lambda} \sum_{n=0}^{\infty}\left\{\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} S_{k}(m, \lambda)\right\} \frac{t^{n}}{n!} \tag{5}
\end{equation*}
$$

where the radius of convergence $\left|\lambda e^{t}\right|<1$.
The generalized Stirling numbers $S(n, v, a, b, \beta)$ of the second kinds of order v are defined in [21] by follows:

$$
\begin{equation*}
\sum_{n=0}^{\infty} S(n, v, a, b, \beta) \frac{t^{n}}{n!}=\frac{\left(\beta^{b} e^{t}-a^{b}\right)^{v}}{v!} \tag{6}
\end{equation*}
$$

2. Explicit Relations for the Unified Family of Generalized Apostol-type Polynomials

In this section, we aim to obtain the explicit relations of the polynomials $\mathcal{P}_{n, \beta}^{(\alpha)}(x, k, a, b)$ and give the relation between the unified family of generalized Apostol-type polynomials and the Stirling numbers of second kind $S(n, v, a, b, \beta)$ of order v.

Theorem 2.1. The following relation is true for the unified Apostol-type polynomials:

$$
\begin{equation*}
\mathcal{P}_{n-k \alpha, \beta}^{(\alpha-\gamma)}(x, k, a, b)=2^{(k-1) \gamma} \frac{(n-k \gamma)!}{n!} \sum_{l=0}^{n}\binom{n}{l} \mathcal{P}_{l, \beta}^{(\alpha)}(x, k, a, b) \sum_{p=0}^{\gamma}\binom{\gamma}{p} \beta^{b p}\left(-a^{b}\right)^{\gamma-p} p^{n-l} \tag{7}
\end{equation*}
$$

where $\gamma>0$.
Proof. From (1), we write as

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathcal{P}_{n, \beta}^{(\alpha-\gamma)}(x, k, a, b) \frac{t^{n}}{n!} & =\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right)^{(\alpha-\gamma)} e^{\alpha t} \\
& =\left(\frac{2^{1-k} t^{k}}{\beta^{b} e^{t}-a^{b}}\right)^{\alpha}\left(\beta^{b} e^{t}-a^{b}\right)^{\gamma} t^{-k \gamma} 2^{(k-1) \gamma} e^{\alpha t} \tag{8}
\end{align*}
$$

On the other hand,

$$
\left(\beta^{b} e^{t}-a^{b}\right)^{\gamma}=\sum_{p=0}^{\gamma}\binom{\gamma}{p} \beta^{b p} e^{p t}\left(-a^{b}\right)^{\gamma-p}=\sum_{n=0}^{\infty} \sum_{p=0}^{\gamma}\binom{\gamma}{p} \beta^{b p}\left(-a^{b}\right)^{\gamma-p} p^{n} \frac{t^{n}}{n!}
$$

Substituting this equation in the right-hand side of (8), we write as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) \ldots(n-k \gamma+1) \mathcal{P}_{n-k \gamma, \beta}^{(\alpha-\gamma)}(x, k, a, b) \frac{t^{n}}{n!} \\
= & 2^{(k-1) \alpha} \sum_{n=0}^{\infty} \mathscr{P}_{n, \beta}^{(\alpha)}(x, k, a, b) \frac{t^{n}}{n!} \sum_{n=0}^{\infty} \sum_{p=0}^{\gamma}\binom{\gamma}{p} \beta^{b p}\left(-a^{b}\right)^{\gamma-p} p^{n} \frac{t^{n}}{n!} .
\end{aligned}
$$

By using the Cauchy product and comparing the coefficients of $\frac{t^{n}}{n!}$ on the above equation. We have (7).

Theorem 2.2. There is the following recurrence relation for the unified Apostol-type polynomials $\mathcal{P}_{n, \beta}^{(\alpha)}(x, k, a, b)$;

$$
\begin{align*}
& \mathcal{P}_{n, \beta}(x, k, a, b) \\
= & \frac{-\beta^{b}}{1-k-x}\left\{\sum_{s=0}^{n-1}\binom{n-1}{s} \mathcal{P}_{n-s, \beta}(1,1, a, b) \mathcal{P}_{s, \beta}(x, k, a, b)\right\} . \tag{9}
\end{align*}
$$

Proof. By using (1), we take the derivative according to t for $\alpha=1$. We write as

$$
\begin{aligned}
& \frac{d}{d t} \sum_{n=0}^{\infty} \mathcal{P}_{n, \beta}(x, k, a, b) \frac{t^{n}}{n!}=\frac{d}{d t}\left(\frac{2^{1-k} t^{k} e^{x t}}{\beta^{b} e^{t}-a^{b}}\right) \\
& =2^{1-k}\left\{\frac{\left(k t^{k-1}+x t^{k}\right) e^{x t}\left(\beta^{b} e^{t}-a^{b}\right)}{\left(\beta^{b} e^{t}-a^{b}\right)^{2}}-\frac{\beta^{b} e^{t} t^{k} e^{x t}}{\left(\beta^{b} e^{t}-a^{b}\right)^{2}}\right\}
\end{aligned}
$$

In the above equality, making the necessary operations, we have (9).

3. Some Symmetry Identities for the Unified Generalized Apostol-type Polynomials

W. Wang et. al. in [23] and Z. Zhang et. al. in [24] proved some symmetry identities and recurrence relations for the Apostol-type polynomials. Kurt in ([7], [8]) gave some symmetry identities for the Apostoltype polynomials related to multiple alternating sums.

In this section, we give some symmetry identities for the unified Apostol-type polynomials.
Theorem 3.1. There is the following relation between the unified Apostol-type polynomials and the Hurwitz-Lerch zeta functions $\Phi^{*}(z, s, a)$;

$$
\begin{align*}
& c^{k} \sum_{s=0}^{n-k \alpha}\binom{n-k \alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}\left(d,\left(\frac{\beta}{a}\right)^{b}\right) \\
& \times \mathcal{P}_{r, \beta}^{(\alpha-1)}(d y, k, a, b) c^{r} d^{n-s} \Phi_{\alpha}^{*}\left(\left(\frac{\beta}{a}\right)^{b}, s+k n-n, c x\right) \\
&= d^{k} \sum_{s=0}^{n-k \alpha}\binom{n-k \alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}\left(c,\left(\frac{\beta}{a}\right)^{b}\right) \\
& \quad \times \mathcal{P}_{r, \beta}^{(\alpha-1)}(c x, k, a, b) d^{r} c^{n-s} \Phi_{\alpha}^{*}\left(\left(\frac{\beta}{a}\right)^{b}, s+k n-n, d y\right) . \tag{10}
\end{align*}
$$

Proof. Using the generalized binomials theorem, we get

$$
(1+w)^{(-\alpha)}=\sum_{r=0}^{\infty}\binom{\alpha+r-1}{r}(-w)^{r},|w|<1 .
$$

Using (1), (2) and (4) in above equation:

$$
f(t)=\frac{t^{\alpha(2 k-1)} 2^{(1-k)(2 \alpha-1)} e^{c d x t}\left(\beta^{b d} e^{c d t}-a^{b d}\right)^{\alpha} e^{c d y t}}{\left(\beta^{b} e^{d t}-a^{b}\right)^{\alpha}\left(\beta^{b} e^{c t}-a^{b}\right)^{\alpha}}
$$

$$
\begin{aligned}
= & c^{(1-\alpha) k} 2^{(1-\alpha) k} a^{b(d-\alpha+1)}(-1)^{\alpha} t^{k \alpha} \sum_{m=0}^{\infty}\binom{m+\alpha-1}{m}\left(\frac{\beta}{a}\right)^{m b} e^{m d t} e^{c d x t} \frac{a^{b}}{\beta^{b}} \sum_{p=0}^{\infty} \sum_{q=0}^{p}\binom{p}{q}(-1)^{p-q} \\
& \times S_{q}\left(d,\left(\frac{\beta}{a}\right)^{b}\right) \frac{t^{p}}{p!} \sum_{r=0}^{\infty} \mathcal{P}_{r, \beta}^{(\alpha-1)}(d y, k, a, b) c^{r} \frac{r^{r}}{r!} .
\end{aligned}
$$

After taking the Cauchy product, we have

$$
\begin{aligned}
f(t)= & \sum_{n=k \alpha}^{\infty}\left\{\frac{n!}{(n-k \alpha)!} c^{(1-\alpha) k} 2^{(1-\alpha) k} \beta^{-b} a^{b(d-\alpha)}(-1)^{\alpha} \sum_{s=0}^{n-k \alpha}\binom{n-k \alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}\right. \\
& \left.\times(-1)^{s-r-q} S_{q}\left(d,\left(\frac{\beta}{a}\right)^{b}\right) \mathcal{P}_{r, \beta}^{(\alpha-1)}(d y, k, a, b) c^{r} d^{n-k \alpha-s} \Phi_{\alpha}^{*}\left(\left(\frac{\beta}{a}\right)^{b}, s+k n-n, c x\right)\right\} \frac{t^{n}}{n!} .
\end{aligned}
$$

We also set

$$
f(t)=\frac{t^{\alpha(2 k-1)} 2^{(1-k)(2 \alpha-1)} e^{c d y t}\left(\beta^{b d} e^{c d t}-a^{b d}\right)^{\alpha} e^{c d x t}}{\left(\beta^{b} e^{c t}-a^{b}\right)^{\alpha}\left(\beta^{b} e^{d t}-a^{b}\right)^{\alpha}}
$$

Using (1), (2) and (4) in above equation, we get;

$$
\begin{aligned}
= & d^{(1-\alpha) k} 2^{(1-\alpha) k} a^{b(d-\alpha+1)}(-1)^{\alpha} t^{k \alpha} \sum_{m=0}^{\infty}\binom{m+\alpha-1}{m}\left(\frac{\beta}{a}\right)^{m b} e^{m c t} e^{c d y t}\left(\frac{a}{\beta}\right)^{b} \sum_{p=0}^{\infty} \sum_{q=0}^{p}\binom{p}{q}(-1)^{p-q} \\
& \times S_{q}\left(c,\left(\frac{\beta}{a}\right)^{b}\right) \frac{t^{p}}{p!} \sum_{r=0}^{\infty} \mathcal{P}_{r, \beta}^{(\alpha-1)}(c x, k, a, b) d^{r} \frac{t^{r}}{r!} .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
f(t)= & \sum_{n=k \alpha}^{\infty}\left\{\frac{n!}{(n-k \alpha)!} d^{(1-\alpha) k} 2^{(1-\alpha) k} \beta^{-b} a^{b(d-\alpha)}(-1)^{\alpha} \sum_{s=0}^{n-k \alpha}\binom{n-k \alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}\right. \\
& \left.\times(-1)^{s-r-q} S_{q}\left(c,\left(\frac{\beta}{a}\right)^{b}\right) \mathcal{P}_{r, \beta}^{(\alpha-1)}(c x, k, a, b) d^{r} c^{n-k \alpha-s} \Phi_{\alpha}^{*}\left(\left(\frac{\beta}{a}\right)^{b}, s+k n-n, c, d y\right)\right\} \frac{\}^{n}}{n!} .
\end{aligned}
$$

Comparing the coefficients of $\frac{t^{n}}{n!}$ in both sides of the above equation, we have (10).
Remark 3.2. Let $c, d \in \mathbb{N}, m, r, s, q \in \mathbb{N}_{0}$. For $k=a=b=1, \beta=\lambda$ in (10), we have the following symmetry identities for Apostol-Bernoulli polynomials of higher order:

$$
\begin{aligned}
& c \sum_{s=0}^{n-\alpha}\binom{n-\alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}(d, \lambda) \mathcal{B}_{n}^{(\alpha-1)}(d y ; \lambda) c^{r} d^{n-s} \Phi_{\alpha}^{*}(\lambda, s, c x) \\
= & d \sum_{s=0}^{n-\alpha}\binom{n-\alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}(c, \lambda) \mathcal{B}_{n}^{(\alpha-1)}(c x ; \lambda) d^{r} c^{n-s} \Phi_{\alpha}^{*}(\lambda, s, d y) .
\end{aligned}
$$

Remark 3.3. Let $c, d \in \mathbb{N}, m, r, s, q \in \mathbb{N}_{0}$. For $k=0, a=-1, b=1, \beta=\lambda$ in (10), we have the following symmetry identities for Apostol-Euler polynomials of higher order:

$$
\begin{aligned}
& \sum_{s=0}^{n}\binom{n}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}(d,-\lambda) \mathcal{E}_{n}^{(\alpha-1)}(d y ; \lambda) c^{r} d^{n-s} \Phi_{\alpha}^{*}(\lambda, s-n, c x) \\
= & \sum_{s=0}^{n}\binom{n}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}(c,-\lambda) \mathcal{E}_{n}^{(\alpha-1)}(c x ; \lambda) d^{r} c^{n-s} \Phi_{\alpha}^{*}(\lambda, s-n, d y) .
\end{aligned}
$$

Remark 3.4. Let $c, d \in \mathbb{N}, m, r, s, q \in \mathbb{N}_{0}$. For $k=1, a=-\frac{1}{2}, b=1, \beta=\frac{\lambda}{2}$ in (10), we have the following symmetry identities for the generalized Apostol-Genocchi polynomials of higher order:

$$
\begin{aligned}
& c \sum_{s=0}^{n-\alpha}\binom{n-\alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}(d,-\lambda) \mathcal{G}_{n}^{(\alpha-1)}(d y ; \lambda) c^{r} d^{n-s} \Phi_{\alpha}^{*}(\lambda, s, c x) \\
= & d \sum_{s=0}^{n-\alpha}\binom{n-\alpha}{s} \sum_{r=0}^{s}\binom{s}{r} \sum_{q=0}^{s-r}\binom{s-r}{q}(-1)^{s-r-q} S_{q}(c,-\lambda) \mathcal{G}_{n}^{(\alpha-1)}(c x ; \lambda) d^{r} c^{n-s} \Phi_{\alpha}^{*}(\lambda, s, d y) .
\end{aligned}
$$

Theorem 3.5. The unified Apostol-type polynomials satisfy the following symmetry identities:

$$
\begin{align*}
& \sum_{p=0}^{n}\binom{n}{p} \mathcal{P}_{n-p, \beta}^{(\alpha)}(c x, k, a, b) d^{n-p-k \alpha} c^{p} \sum_{r=0}^{p}\binom{p}{r}(-\alpha)^{p-r} S_{r}^{(\alpha)}\left(d,\left(\frac{\beta}{a}\right)^{b}\right) \\
= & \sum_{p=0}^{n}\binom{n}{p} \mathcal{P}_{n-p, \beta}^{(\alpha)}(d x, k, a, b) c^{n-p-k \alpha} d^{p} \sum_{r=0}^{p}\binom{p}{r}(-\alpha)^{p-r} S_{r}^{(\alpha)}\left(c,\left(\frac{\beta}{a}\right)^{b}\right) . \tag{11}
\end{align*}
$$

Proof. Let

$$
g(t)=\frac{\left(2^{1-k} t^{k}\right)^{\alpha} e^{c d x t}\left(\beta^{b d} e^{c d t}-a^{b d}\right)^{\alpha}}{\left(\beta^{b} e^{d t}-a^{b}\right)^{\alpha}\left(\beta^{b} e^{c t}-a^{b}\right)^{\alpha}}=\frac{1}{d^{k \alpha}}\left(\frac{2^{1-k}(d t)^{k}}{\beta^{b} e^{d t}-a^{b}}\right)^{\alpha} e^{c d x t} a^{(d-1) b \alpha}\left(\frac{\left(\frac{\beta}{a}\right)^{b d} e^{d c t}-1}{\left(\frac{\beta}{a}\right)^{b} e^{c t}-1}\right)^{\alpha}
$$

By using same method in Theorem 3.4, we get the proof of Theorem 3.5. We omit the proof.
Remark 3.6. Let $c, d \in \mathbb{N}, m, r, s, q \in \mathbb{N}_{0}$. For $k=a=b=1, \beta=\lambda$ in (11), we have the following symmetry identities for Apostol-Bernoulli polynomials of higher order and the multiple alternating sums:

$$
\begin{aligned}
& \sum_{p=0}^{n}\binom{n}{p} \mathcal{B}_{n-p}^{(\alpha)}(c x, \lambda) d^{n-2 p-\alpha} c^{p} \sum_{r=0}^{p}\binom{p}{r}(-\alpha)^{p-r} S_{r}^{(\alpha)}(d, \lambda) \\
= & \sum_{p=0}^{n}\binom{n}{p} \mathcal{B}_{n-p}^{(\alpha)}(d x, \lambda) c^{n-2 p-\alpha} d^{p} \sum_{r=0}^{p}\binom{p}{r}(-\alpha)^{p-r} S_{r}^{(\alpha)}(c, \lambda) .
\end{aligned}
$$

Theorem 3.7. For all $c, d, m, \gamma \in \mathbb{N}, n, p, r \in \mathbb{N}_{0}$, there is the following symmetry identity:

$$
\begin{align*}
& d^{k} c^{k(m+1)} \sum_{\gamma=0}^{n}\binom{n}{\gamma}\left\{\mathcal{P}_{n-\gamma, \beta}^{(m+1)}(c x, k, a, b) d^{n-\gamma} \sum_{p=0}^{\gamma}\binom{\gamma}{p}\right. \\
& \left.\times \sum_{r=0}^{p}\binom{p}{r}(-m)^{p-r} S_{r}^{(m)}\left(d,\left(\frac{\beta}{a}\right)^{b}\right) \mathcal{P}_{\gamma-p, \beta}(d y, k, a, b) c^{\gamma-p}\right\} \\
& =c^{k} d^{k(m+1)} \sum_{\gamma=0}^{n}\binom{n}{\gamma}\left\{\boldsymbol{P}_{n-\gamma, \beta}^{(m+1)}(d y, k, a, b) c^{n-\gamma} \sum_{p=0}^{\gamma}\binom{\gamma}{p}\right. \\
& \left.\quad \times \sum_{r=0}^{p}\binom{p}{r}(-m)^{p-r} S_{r}^{(m)}\left(c,\left(\frac{\beta}{a}\right)^{b}\right) \mathcal{P}_{\gamma-p, \beta}(c x, k, a, b) d^{\gamma-p}\right\} \tag{12}
\end{align*}
$$

Proof. Let

$$
h(t)=\frac{t^{k(m+2)} 2^{(1-k)(m+2)} e^{c d x t}\left(\beta^{b d} e^{c d t}-a^{b d}\right)^{m} e^{c d y t}}{\left(\beta^{b} e^{d t}-a^{b}\right)^{m+1}\left(\beta^{b} e^{c t}-a^{b}\right)^{m+1}}
$$

By using same calculations in Theorem 3.4, we get the desired result. Because this is straightforward calculations of the algebric results.

References

[1] Bayad A., Simsek Y. and Srivastava H. M.; Some array polynomials associated with special numbers and polynomials, App. Math. and Comp., 244 (2014) 149-157.
[2] Dere R., Simsek Y. and Srivastava H. M.; Unified presentation of three families of generalized Apostol-type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. of Number Theory, 13 (2013), 3245-3265.
[3] El-Desouky B. S. and Gamma R. S.; A new unified family of generalized Apostol-Euler, Bernoulli and Genocchi polynomials, App. Math. and Comp., 247 (2014), 695-702.
[4] El-Desouky B. S. and Gamma R. S.; New extension of unified family of Apostol-type of polynomials and numbers, arXiv:1412.8258[math.Co] 2014.
[5] Garg M., Jain K. and Srivastava H. M.; A generalization of the Hurwitz-Lerch zeta functions, Integral trans. Special Func., 19 (2008), 65-79.
[6] Karande B. K. and Thakare N. K.; On the unification of the Bernoulli and Euler polynomials, Indian J. of Pure App. Math., 6(1)(1975), 98-107.
[7] Kurt V.; A further symmetric relation on the analogue of the Apostol-Bernoulli and the analogue of the Apostol-Genocchi polynomials, App. Math. Sci., 3 (2009), 53-56.
[8] Kurt V.; Some symmetry identities for the Apostol-type polynomials related to multiple alternating sums, Adv. in Diff. Equa., 32 (2013), 2013.32.
[9] Liu H. and Wang W.; Some identities on the Bernoulli, Euler and Genocchi polynomials via power sums and alternate power sums, Discrete Math., 309 (2009), 3346-3363.
[10] Luo Q.-M. and Srivastava H. M.; Some identities involving the Apostol-type and related polynomials, Comp. Math. App., 62 (2011), 3591-3602.
[11] Luo Q.-M.; The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Trans. Special Func., 20 (2009), 377-391.
[12] Luo Q.-M.; Multiplication formulas for Apostol-type polynomails and multiple alternating sums, Math. Notes, 2012 vol.91, 46-57.
[13] Ozarslan M. A.; Unified Apostol-Bernoulli,Euler and Genocchi polynomials, Comp. Math. App., 62(2011), 2452-2462.
[14] Ozden H., Simsek Y. and Srivastava H. M.; A unified presentation of the generating function of the generalized Bernoulli, Euler and Genocchi polynomials, Comp. and Math. with Appl, 60(2010), 2779-2789.
[15] Ozden H. and Simsek Y.; Modification and unification of the Apostol-type numbers and polynomials, App. Math. and Comp., 235(2014), 338-351.
[16] Srivastava H. M.; Some generalization and basic $(o r-q)$ extension of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. and Infor. Sci., 5(3) (2011) 390-444.
[17] Srivastava H. M. and Choi J.; Zeta and q-zeta functions and associated series and integers, Elsevier Sciences Publ., Amsterdam, London and N. York, 2012.
[18] Srivastava H. M., Ozden H., Cangul I. N. and Simsek Y.; A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the L-functions, App. Math. and Comp., 219(2012), 3903-3913.
[19] Srivastava H. M., Kurt B. and Simsek Y.; Some families of Genocchi type polynomials and their interpolation functions, Integr. Trans. and Special Func., 23 (2012), 919-938.
[20] Srivastava H. M., Garg M. and Choudhary S.; A new generalization of the Bernoulli and related polynomials, Russian J. Math. Phys., 20 (2010), 251-261.
[21] Simsek Y.; Generating functions for generalized Stirling type numbers, array type polynomials, Eulerian type polynomials and their application, Fixed Point Theory App., 87 (2013).
[22] Tuenter H. J. H.; The Frobenius problem, sums of power of integers and recurrences for the Bernoulli numbers, J. of Number Theo., 117 (2006), 376-386.
[23] Wang W. and Wang W.; Some results on power sums and Apostol-type polynomials, Integral Trans. and Special Func., 21(4) (2010) 307-318.
[24] Zhang Z. and Yang H.; Several identities for the generalized Apostol-Bernoulli polynomials, Comp. and Math. with Appl., 56 (2008) 2993-2999.

[^0]: 2010 Mathematics Subject Classification. Primary 05A10; Secondary 11B73, 11 B68.
 Keywords. Apostol-type polynomials, Recurrence relation, Multiple power sums
 Received: 24 June 2015; Accepted: 10 October 2015
 Communicated by Gradimir Milovanović and Yilmaz Simsek
 Email address: vkurt@akdeniz.edu.tr (Veli Kurt)

