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Abstract. In [9], Cetin et al. defined a new special finite sum which is denoted by C1(h, k). In this paper,
with the help of two-term polynomial relation, we will give the explicit values of the sum C1(h, k). We will
see that for the odd values of h and k, this sum only depends on one variable. After that we will give many
properties of this sum and connections with other well-known finite sums such as the Dedekind sums,
the Hardy sums and the Simsek sums Y(h, k). By using the Fibonacci numbers and two-term polynomial
relation, we will also give some relations for these sums.

1. Introduction

Finite arithmetic sums have great importance in analytic number theory, analysis and many other areas
of mathematics. These sums including the greatest integer function [x] , became more popular in the
nineteenth century. So mathematicians need to know more about [x] and also related functions like the
sawtooth function ((x)), where

((x)) =

{
x − [x] − 1/2 if x is not an integer

0 if x is an integer.

With the help of these functions, many finite arithmetic sums have been defined and studied. During this
paper, the set of positive integers will be shown byN+and the set of integers will be shown by Z.

In the nineteenth century, Richard Dedekind defined the sums called Dedekind sums as follows:

s(h, k) =

k−1∑
j=1

((
hj
k

)) ((
j
k

))
,

where h is an integer, k is a positive integer. The basic introduction to the arithmetic properties of the
Dedekind sum is [17]. Dedekind defined these sums with the help of the famous Dedekind eta function.
Although Dedekind sums arise in the transformation formula for the eta function, they can be defined
independently of the eta function. Dedekind sums have many interesting properties but most important
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one is the reciprocity theorem: When h and k are coprime positive integers, the following reciprocity law
holds [10]:

s(h, k) + s(k, h) = −
1
4

+
1

12

(
h
k

+
k
h

+
1
hk

)
. (1)

The first proof of (1) was given by Richard Dedekind in 1892 [10]. After R. Dedekind, Apostol [1] and
many authors have given many different proofs [17]. By using contour integration, in 1905, Hardy, [12],
gave another proof of the reciprocity theorem. In that work, Hardy also gave some finite arithmetical sums
which are called Hardy sums. These Hardy sums are also related to the Dedekind sums and have many
useful properties.

We are ready to recall the Hardy sums which are needed in the further sections: If h and k ∈ Z with
k > 0, the Hardy sums are defined by

S(h, k) =
∑

jmodk

(−1) j+1+[ jh
k ],

s1(h, k) =
∑

jmodk

(−1)[ jh
k ]

((
j
k

))
,

s2(h, k) =
∑

jmodk

(−1) j
((

j
k

)) ((
jh
k

))
, (2)

s3(h, k) =
∑

jmodk

(−1) j
((

jh
k

))
,

s4(h, k) =
∑

jmodk

(−1)[ jh
k ],

s5(h, k) =
∑

jmodk

(−1) j+[ hj
k ]

((
j
k

))
.

We also note that some authors have called Hardy sums as Hardy-Berndt sums. For s5(h, k), the below
equality also holds true:

s5(h, k) =
1
k

k−1∑
j=1

j(−1) j+
[ hj

k

]
(3)

when h and k are odd integers, [7]. Further, following equations will be necessary in the next section, [15]:

b−1∑
j=1

(−1) j+
[ cj

b

] ( j
b

)
= s5(c, b) −

1
2

S(c, b), (4)

c−1∑
j=1

(−1) j+
[ bj

c

] ( j
c

)
= s5(b, c) −

1
2

S(b, c).

Reciprocity law for the s5(h, k) is given by the following theorem:

Theorem 1.1. Let h and k be coprime positive integers. If h and k are odd, then

s5(h, k) + s5(k, h) =
1
2
−

1
2hk

, (5)

(cf. [2], [4], [7], [11], [12], [24] and the references cited in each of these works).
The proof of the next reciprocity theorem was given by Hardy [12] and Berndt [6]:
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Theorem 1.2. Let h and k be coprime positive integers. Then

S(h, k) + S(k, h) = 1 if h + k is odd. (6)

In the light of equation (6), Apostol [2] gave the below result:

Theorem 1.3. If both h and k are odd and (h, k) = 1, then

S(h, k) = S(k, h) = 0. (7)

In [21], Simsek gave the following new sums: Let h is an integer and k is a positive integer with (h, k) = 1.
Then

Y(h, k) = 4k
∑

jmodk

(−1) j+[ hj
k ]

((
j
k

))
.

We observe that Y(h, k) sums are also related to the Hardy sums s5(h, k). That is

Y(h, k) = 4ks5(h, k).

The reciprocity law for this sum was given by Simsek in [21, p. 5, Theorem 4] as below:

hY(h, k) + kY(k, h) = 2hk − 2. (8)

Simsek gave two different proofs of this reciprocity law. Another proof of (8) was also given in [9].
The below theorem was given by Sitaramachandrarao in [24]:

Theorem 1.4. Let h and k be coprime positive integers. If k is an odd integer, then

2s3(h, k) − s4(k, h) = 1 −
h
k
.

In this paper we study the Hardy sums, the Simsek sums Y(h, k) and the Dedekind sums s(h, k) which
are related to the symmetric pairs, [13], and the Fibonacci numbers. Before starting our results, we need
some properties of the Fibonacci numbers which are given as follows: The Fibonacci numbers are defined
by means of the following generating function [14]:

F(x) =
1

1 − x − x2 =

∞∑
n=0

Fnxn. (9)

One can easily derive the following recurrence relation from (9):

Fn+1 = Fn + Fn−1.

From (9), we also easily compute the first few Fibonacci numbers as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, · · ·
In [13], Meyer studied a special case of the Dedekind sums. In that paper, Meyer investigated the pairs

of integers {h, k} for which s(h, k) = s(k, h). Meyer defined that {h, k} is a symmetric pair if this property holds
and he showed that {h, k} is a symmetric pair if and only if h = F2n+1 and k = F2n+3 for n ∈Nwhere Fm is the
m−th Fibonacci number. In [13], Meyer proved the following theorem:

Theorem 1.5. If (h, k) = 1 and {h, k} is a symmetric pair, then s(h, k) = 0.

In [9], Cetin et al. defined the sum C1(h, k) as follows:

C1(h, k) =

k−1∑
j=1

((
hj
k

))
(−1) j+

[ hj
k

]

where h, k are positive integers with (h, k) = 1.
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2. A New Special Finite Sum and Its Properties

As we mentioned above, in [9], Cetin et al. defined the sum C1(h, k). Now, in this paper, we will give
its explicit values when h and k are odd numbers with k > 0. We will see that the explicit values of the
sum C1(h, k) depend on only one variable. After that, we will give the reciprocity law for the sum C1(h, k).
The sum C1(h, k) has relations with the reciprocity laws of the Hardy sums s3(h, k), s4(h, k) and s5(h, k), the
Dedekind sum s(h, k) and the Simsek sum Y(h, k). So we will give those relations. Berndt and Dieter [5]
showed that

1
2 (k−1)∑

j=1

[
hj
k

]
+

1
2 (h−1)∑

j=1

[
kj
h

]
= (h − 1)(k − 1), (10)

where h and k are odd, distinct primes. This relation plays very important role in the proof of Gauss’ law
of quadratic reciprocity. We will give the equation 10 in terms of the sum C1(h, k). Finally, we will give
relations between s(h, k) and C1(h, k) with the help of the Fibonacci numbers and in the light of that, we will
give a new equality for C1(h, k) which depends on the Fibonacci numbers. Similarly we will show how can
we write the reciprocity laws of the Hardy sum s5(h, k) and the Simsek sum Y(h, k) when h and k are special
Fibonacci numbers.

Many authors in many papers studied two and three term relations because they are related to the
Dedekind sums, the Hardy sums and many other finite sums. In [15], [5], [3] and [19] new theorems on
three-term relations for the Hardy sums were found by applying derivative operator to the three-term
polynomial relation. In [9], we also deeply study about two and three term relations and we gave a new
proof of the reciprocity law of the sum Y(h, k). Now in this paper, we will use two-term polynomial relation
again. So we remind it as a corollary below:

Corollary 2.1. (Two-term polynomial relation) If a, b, and c are pairwise coprime positive integers, then

(u − 1)
a−1∑
x=1

ux−1v[ bx
a ] + (v − 1)

b−1∑
y=1

vy−1u[ ay
b ] = ua−1vb−1

− 1. (11)

Equation (11) is originally due to Berndt and Dieter [5]. We now give explicit values of the sum C1(h, k) by
the following theorem:

Theorem 2.2. If (h, k) = 1, h and k are odd integers with k > 0, then we have

C1(h, k) =
1
2
−

1
2k
. (12)

Proof. We are motivated by the two-term polynomial relation for this theorem. We consider the identity
(11). We know that when we take the partial derivative of (11) with respect to u, and substitute u = v = −1,
then we have

h−1∑
x=1

(−1)x+[ kx
h ] − 2

h−1∑
x=1

x(−1)x+[ kx
h ] − 2

k−1∑
y=1

[
hy
k

]
(−1)y+

[ hy
k

]
= (h − 1)(−1)h+k−1.

After some elementary calculations we have,

−

h−1∑
x=1

(−1)x+[ kx
h ]−1
− 2

h−1∑
x=1

x(−1)x+[ kx
h ] − 2h

k−1∑
y=1

y
k

(−1)y+
[ hy

k

]

+2
h−1∑
y=1

((
hy
k

))
(−1)y+

[ hy
k

]
−

k−1∑
y=1

(−1)y+
[ hy

k

]
−1 = 1 − h.
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By using (4), (3) and Theorem 1.3, we have

−2h (s5(k, h) + s5(h, k)) + 2C1(h, k) = 1 − h.

Finally from (5), we have

C1(h, k) =
1
2
−

1
2k
.

Now we give the reciprocity law for the sum C1(h, k):

Theorem 2.3 (Reciprocity law for the sum C1(h, k) for odd case). If (h, k) = 1, h and k are positive odd integers,
then we have

C1(h, k) + C1(k, h) = 1 −
1
2

(1
h

+
1
k

)
.

Proof. By using Theorem 2.2, we have

C1(h, k) + C1(k, h) =
(1

2
−

1
2k

)
+

(1
2
−

1
2h

)
= 1 −

1
2

(1
h

+
1
k

)
.

Thus we get the desired result.

Corollary 2.4. Let a, h, k be odd positive integers with (a, hk) = 1. Then we have

s5(h, k) + s5(k, h) = C1(a, hk). (13)

Proof. It can be obtained easily from (5) and Theorem 2.2.

Corollary 2.5. Let a, h, k be odd positive integers with (a, hk) = 1. Then we have

hY(h, k) + kY(k, h) = 4hkC1(a, hk). (14)

Proof. It can be obtained directly from Theorem 2.2 and (8).

Corollary 2.6. Let a, h, k be odd positive integers with (a, hk) = 1. Then we have

s(h, k) + s(k, h) = −
1
6

+
1

12

(
h
k

+
k
h
− 2C1(a, hk)

)
.

Proof. From Theorem 2.2, we can write

1 − 2C1(h, k) =
1
k
.

So we can obtain the equalities below:

h
k

= h − 2hC1(h, k),

k
h

= k − 2kC1(k, h), (15)

1
hk

= 1 − 2C1(a, hk).

If we put (15) into (1) and make some easy calculations, desired result can be obtained.
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Corollary 2.7. Let h, k be odd positive integers with (h, k) = 1, then we have

2s3(h, k) − s4(k, h) = 1 − h + 2hC1(h, k).

Proof. It can be directly obtained from Theorem 1.4 and Theorem 2.2.

Theorem 2.8. Let h and k be distinct odd primes. Then

1
2 (k−1)∑

j=1

[
hj
k

]
+

1
2 (h−1)∑

j=1

[
kj
h

]
= 4hkC1(h, k)C1(k, h).

Proof. After some elementary calculations, we get

2kC1(h, k) = k − 1,

and

2hC1(k, h) = h − 1

from Theorem 2.2. If we put these equations into (10), then we have the desired result.

Now we can prove the main theorem by means of all the results above:

Theorem 2.9. Let a, h, k ∈ Z with k > 0 and {h, k} is a symmetric pair. If (h, k) = 1, h = F6n−1 and k = F6n+1 with
n ∈N, where Fm is the m−th Fibonacci number, then

s(h, k) = −
1
12

+
1

24

(
h
k

+
k
h
− 2C1(a, hk)

)
. (16)

Proof. We know from Corollary 2.6 that

s(h, k) + s(k, h) = −
1
6

+
1

12

(
h
k

+
k
h
− 2C1(a, hk)

)
where a, h, k ∈ Z with k > 0, (h, k) = 1, h and k are odd numbers. We also know from [13] that if {h, k} is a
symmetric pair, then

s(h, k) = s(k, h).

If we add these two equations side by side, then we have the desired result.

Corollary 2.10. Let a, h, k ∈ Z with k > 0 and {h, k} is a symmetric pair. If (h, k) = 1, h = F6n−1 and k = F6n+1 with
n ∈N, where Fm is the m−th Fibonacci number, then

C1(a, hk) =
h
2k

+
k

2h
− 1 (17)

Proof. It can be found from (16) and Theorem 1.5.

Corollary 2.11. Let a, h, k ∈ Z with k > 0 and {h, k} is a symmetric pair. If (h, k) = 1, h = F6n−1 and k = F6n+1 with
n ∈N, where Fm is the m-th Fibonacci number, then

s5(h, k) + s5(k, h) =
1
2

(
h
k

+
k
h
− 2

)
,

and

hY(h, k) + kY(k, h) = 2h2 + 2k2
− 4hk.

Proof. It can be easily obtained from (17), (13) and (14).
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