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bDepartment of Mathematics, Faculty of Science, Karamanoğlu Mehmetbey University, Campus, 70100, Karaman, Turkey

cDepartment of Mathematics, Faculty of Science, Balikesir University, Campus, 10145, Balikesir, Turkey
dDepartment of Mathematics, Faculty of Science, Selcuk University, Campus, 42075, Konya, Turkey

Abstract. In this paper, we first define a new version of the crossed product of groups under the name
of two-sided crossed product. Then we present a generating and relator sets for this new product over cyclic
groups. In a separate section, by using the monoid presentation of the two-sided crossed product of
cyclic groups, we obtain the complete rewriting system and normal forms of elements of this new group
construction.

1. Introduction and Preliminaries

The classification of groups has taken so much interest for ages. For instance, in [3], the authors have
recently identified the related tensor degree of finite groups. On the other hand, some other part of the
classification is based on the usage of automorphism groups (see, for example, [8]) and this would give an
advantage of obtaining some new groups in the meaning of products of groups. As a consequence of that
the constructions such as direct and semidirect product of groups are current in mathematics. They are
used when new groups are constructed that inherit some properties of initial groups and they are also used
for some complex groups are reduced to some simple groups. In this paper, we will follow this idea to get
a new classification.

As known crossed product construction appears in different areas of algebra such as Lie algebras, C∗-
algebras and group theory. This product has also many applications in other fields of mathematics like
group representation theory and topology. Here, by considering crossed product construction from view
of group theory, we define a generalization of this product. We call this new generalization as two-sided
crossed product of groups. This new product is more important than the known group products since it
contains direct, semidirect, twisted ([10]), knit ([4]) and crossed products of groups. By considering this
new product, its identities and normal form of its elements, in the future works, one can consider the
solvability of decision problems, study some algebraic properties and algebraic computations over it. One
can also study this new product in many applications of Hopf algebra and C∗-algebra.
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Let H and G be two groups. A crossed system of these groups is a quadruple (H,G, α, f ), where
α : G→ Aut(H) and f : G × G→ H are two maps such that the following compatibility conditions hold:

11 /α (12 /α h) = f (11, 12)((1112) /α h) f (11, 12)−1, (1)
f (11, 12) f (1112, 13) = (11 /α f (12, 13)) f (11, 1213), (2)

for all 11, 12, 13 ∈ G and h ∈ H. The crossed system (H,G, α, f ) is called normalized if f (1, 1) = 1. The map
α : G → Aut(H) is called weak action and f : G × G → H is called an α-cocycle. (H,G, α, f ) is normalized
crossed system then f (1, 1) = f (1, 1) = 1 and 1 /α h = h, for any 1 ∈ G and h ∈ H. As α(1) ∈ Aut(H) we
have 1 /α 1 = 1 and 1 /α (h1h2) = (1 /α h1)(1 /α h2). The crossed product of H and G associated to the crossed
system, denoted by H# f

αG, is the set H × G with the multiplication

(h1, 11)(h2, 12) = (h1(11 /α h2) f (11, 12), 1112),

for all h1, h2 ∈ H and 11, 12 ∈ G. Then (H# f
αG, ·) is a group with the unit 1H# f

αG = (1, 1) if and only if (H,G, α, f )

is a normalized crossed system. It is easy to see that, for (h, 1) ∈ H# f
αG, (h, 1)−1 = ( f (1−1, 1)−11−1 /α h−1, 1−1).

Then H# f
αG is called the crossed product of H and G associated to the crossed system (H,G, α, f ) (cf. [1]).

The following result is one of the main applications of the crossed product construction which the proof
of it can be found in [1].

Proposition 1.1 ([1]). Let E be a group, H be normal subgroup of E and G be the quotient of E by H. Then there exist
maps α : G→ Aut(H) and f : G × G→ H such that (H,G, α, f ) is normalized crossed system and E � (H# f

αG, ·).

The organization of this paper is as follows: In the first section, we will recall the construction and
fundamental properties of crossed product of groups. After that, in Section 2, we will define the two-sided
crossed product of groups and also, as an application of the theory, we will obtain a presentation for the
two-sided crossed product of two cyclic groups. At the final section, we will present the complete rewriting
system for two-sided crossed product of two cyclic groups by using the monoid presentation version, and
then we will get the normal forms of elements of this group construction. As a result of this, we will get
the solvability of the word problem.

Throughout this paper, we order words in given alphabet in the deg-lex way by comparing two words
first with their degrees (lengths), and then lexicographically when the lengths are equal. Additionally, the
notation (i)∩ ( j) and (i)∪ ( j) will denote the intersection and inclusion overlapping words of left hand side
of relations (i) and ( j), respectively.

2. Two-sided Crossed Product

Let H and G be two groups. Assume that

α : G→ Aut(H), f : G × G→ H and α′ : H→ Aut(G), f ′ : H ×H→ G (3)

be maps such that (1),(2) and the following compatability conditions hold:

h1 /α′ (h2 /α′ 1) = f ′(h1, h2)((h1h2) /α′ 1) f ′(h1, h2)−1, (4)
f ′(h1, h2) f ′(h1h2, h3) = (h1 /α′ f ′(h2, h3)) f ′(h1, h2h3), (5)

for all h1, h2, h3 ∈ H and 1 ∈ G. Then two-sided crossed product of H and G, denoted by H# f , f ′

α,α′G, with
respect to the actions given above is the set H × G endowed with the operation

(h1, 11)(h2, 12) = (h1(11 /α h2) f (11, 12), 11(h1 /α′ 12) f ′(h1, h2)), (6)

for all h1, h2 ∈ H and 11, 12 ∈ G.
Unlikely crossed products of groups, the two-sided crossed product need not always be a group. In

fact, the following first main result of this paper identify when this new product defines a group.
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Theorem 2.1. Let H and G be any groups. For all h1, h2, h ∈ H and 11, 12, 1 ∈ G, let us consider again the actions
given in (3) with the properties

1−1(h1 /α′ 1) f ′(h1, h2) ∈ Kerα , (7)
h−1(11 /α h) f (11, 12) ∈ Kerα′ . (8)

Then the two-sided normalized crossed product H# f , f ′

α,α′G defines a group.

Proof. We verify the group properties of the two-sided crossed product of groups. Firstly, we show the
associative property. To do that, for any h1, h2, h3 ∈ H and 11, 12, 13 ∈ G, let (h1, 11), (h2, 12), (h3, 13) ∈ H# f , f ′

α,α′G.
So the left hand side [(h1, 11)(h2, 12)](h3, 13) is equal to

= ((h1(11 /α h2) f (11, 12))(11(h1 /α′ 12) f ′(h1, h2) /α h3) f (11(h1 /α′ 12) f ′(h1, h2), 13),
11(h1 /α′ 12) f ′(h1, h2)(h1(11 /α h2) f (11, 12) /α′ 13) f ′(h1(11 /α′ h2) f (11, 12), h3))

= (h1h2(1112 /α h3) f (1112, 13) , 1112(h1h2 /α′ 13) f ′(h1h2, h3)) (by (7) and (8))

and the right hand side (h1, 11)[(h2, 12)(h3, 13)] is equal to

= (h1(11 /α (h2(12 /α h3) f (12, 13))) f (11, 12(h2 /α′ 13) f ′(h2, h3)),
11(h1 /α′ (12(h2 /α′ 13) f ′(h2, h3))) f ′(h1, h2(12 /α h3) f (12, 13)))

= (h1(11 /α h2)(11 /α (12 /α h3))(11 /α f (12, 13)) f (11, 12(h2 /α′ 13) f ′(h2, h3)),
11(h1 /α′ 12)(h1 /α′ (h2 /α′ 13))(h1 /α′ f ′(h2, h3)) f ′(h1, h2(12 /α h3) f (12, 13)))

= (h1(11 /α h2) f (11, 12)(1112 /α h3) f (11, 12)−1(11 /α f (12, 13)) f (11, 12(h2 /α 13) f ′(h2, h3)),
11(h1 /α′ 12) f ′(h1, h2)(h1h2 /α′ 13) f ′(h1, h2)−1(h1 /α′ f ′(h2, h3)) f ′(h1, h2(12 /α′ h3) f (12, 13)))

= (h1h2(1112 /α h3) f (11, 12)−1(11 /α f (12, 13)) f (11, 1213),
1112(h1h2 /α′ 13) f ′(h1, h2)−1(h1 /α′ f ′(h2, h3)) f ′(h1, h2h3)) (by (7) and (8))

= (h1h2(1112 /α h3) f (1112, 13) , 1112(h1h2 /α′ 13) f ′(h1h2, h3)). (by (2) and (5))

Now, for the identity elements 1H and 1G of groups H and G, respectively, we obtain

(h, 1)(1H, 1G) = (h(1 /α 1H) f (1, 1G), 1(h /α′ 1G) f ′(h, 1H)) = (h1H, 11G) = (h, 1) and
(1H, 1G)(h, 1) = (1H(1G /α h) f (1G, 1), 1G(1H /α′ 1) f ′(1H, h)) = (1Hh, 1G1) = (h, 1).

Finally, let us find the inverse element of (h, 1) ∈ H# f , f ′

α,α′G.

(h, 1)(h′, 1′) = (eH, eG) ⇒ (h(1 /α h′) f (1, 1′), 1(h /α′ 1′) f ′(h, h′)) = (eH, eG)
⇒ h(1 /α h′) f (1, 1′) = eH and 1(h /α′ 1′) f ′(h, h′)) = eG

Thus, we obtain 1′ = h−1 /α′ 1−1 f ′(h, h−1) and h′ = 1−1 /α h−1 f (1, 1−1). Hence the result.

Now, as consequences of Theorem 2.1, we can give the following results according to the cases of maps
α, α′, f and f ′.

Corollary 2.2. Let (H,G, α, f ) and (G,H, α′, f ′) be two crossed systems.

1. Assume α, α′, f and f ′ are trivial maps. Then H# f , f ′

α,α′G is the direct product of H and G.

2. Assume f and f ′ are trivial maps. Then H# f , f ′

α,α′G is the knit product H ./α,α′ G of H and G.

Corollary 2.3. Let (H,G, α, f ) and (G,H, α′, f ′) be two crossed systems.

1. Let f , f ′, α′(α) be trivial maps. Then H# f , f ′

α,α′G is the semi-direct product of H by G (or of G by H), denoted by
H oα G ( or G oα′ H).

2. Let α′(α), f ′( f ) be trivial maps. Then H# f , f ′

α,α′G is the crossed product of H by G (or of G by H), denoted by

H# f
αG (or G# f ′

α′H).
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3. Let f ′( f ) be a trivial map. Then H# f , f ′

α,α′G is a mix of semi-direct and crossed products of H by G (or of G by
H) and denoted by H\G ( or G\H). This new construction is a group with the multiplications (h1, 11)(h2, 12) =
(h1(11 /α h2) f (11, 12), 11(h1 /α′ 12)) and (11, h1)(12, h2) = (11(h1 /α′ 12) f ′(h1, h2), h1(11 /α h2)), for all h1, h2 ∈ H
and 11, 12 ∈ G, under the conditions given in Theorem 2.1.

Corollary 2.4. Let (H,G, α, f ) and (G,H, α′, f ′) be two crossed systems such that for all h1, h2, h3 ∈ H and 11, 12, 13 ∈

G the following compatibility conditions hold:

Im( f ) ⊆ Z(H), f (11, 12) f (1112, 13) = f (12, 13) f (11, 1213) and
Im( f ′) ⊆ Z(G), f ′(h1, h2) f ′(h1h2, h3) = f ′(h2, h3) f ′(h1, h2h3).

Then we have the following cases.

1. Let α, α′, f ′( f ) be trivial maps. Then H# f , f ′

α,α′G is the twisted product of H by G (or of G by H), denoted by
H × f G (G × f ′ H).

2. Let α, α′ be trivial maps. Then H# f , f ′

α,α′G is the two-sided twisted product H and G, denoted by H × f , f ′ G.
This new product is a mix of twisted products H × f G and G × f ′ H. This construction is a group with the
multiplication (h1, 11)(h2, 12) = (h1h2 f (11, 12), 1112 f ′(h1, h2)) under the conditions given in Theorem 2.1.

3. Let α′(α) be a trivial map. Then H# f , f ′

α,α′G is a mix of twisted and crossed products of H by G (or of G by H) and
denoted by H ∦ G ( or G ∦ H). This new construction is a group with the multiplications (h1, 11)(h2, 12) =
(h1(11 /α h2) f (11, 12), 1112 f ′(h1, h2)) and ((11, h1)(12, h2) = (11(h1 /α′ 12) f ′(h1, h2), h1h2 f (11, 12))), under the
conditions given in Theorem 2.1.

Corollary 2.5. Let (H,G, α, f ) and (G,H, α′, f ′) be crossed systems. Then

1→ H
iH
→ H# f

αG
πG
→ G→ 1 and 1→ G

iG
→ G# f ′

α′H
πH
→ H→ 1 ,

where iH(h) := (h, 1), iG(1) := (1, 1), πG(h, 1) := 1 and πH(1, h) := h for all h ∈ H, 1 ∈ G are exact sequences of
groups, i.e. (H# f

αG, iH, πG) and (G# f ′

α′H, iG, πH) are extensions of H by G and of G by H, respectively.

2.1. Two-Sided Crossed Products of Cyclic Groups
In this subsection, we obtain a presentation for two-sided crossed product of two cyclic groups. To do

that, let Cn and Cm be cyclic groups of order n and m generated by a and b, respectively. As a result of
Theorem 2.1, we have the following result that the proof can be done easily.

Theorem 2.6. Two-sided normalized crossed product Cn# f , f ′

α,α′Cm is a group such that α : Cn → Aut(Cm), a 7→ a/αb =

b−1, α′ : Cm → Aut(Cn), b 7→ b /α′ a = a−1, f : Cn × Cn → Cm, f (at1 , 1) = f (1, at1 ) = f (1, 1) = 1 and f (at1 , at2 ) =
b, f ′ : Cm × Cm → Cn , f ′(bk1 , 1) = f ′(1, bk1 ) = f ′(1, 1) = 1 and f ′(bk1 , bk2 ) = a, for all at1 , at2 ∈ Cn (t1, t2 , 0) and
bk1 , bk2 ∈ Cm (k1, k2 , 0).

Theorem 2.7. A finite group E is isomorphic to a two-sided crossed product Cn# f , f ′

α,α′Cm if and only if E is a group
generated by two generators a and b subject to the relations

an = bi2 , bm = ai1 , ba = a j1 b j2 , (9)

where 0 ≤ i1 ≤ n − 1, 0 ≤ i2 ≤ m − 1, 1 ≤ | j1| ≤ n − 1 and 1 ≤ | j2| ≤ m − 1 such that

i1.( j1 − 1) ≡ 0(mod n), jm1 ≡ 1(mod n), i2.( j2 − 1) ≡ 0(mod m), jn2 ≡ 1(mod m). (10)

Proof. Suppose that the groups E1 and E2 are isomorphic to crossed products Cn# f
αCm and Cm# f ′

α′Cn, respec-
tively. So, there exists a normal subgroup Cn of E1 such that Cn E E1 and E1/Cn � Cm. It follows that
Cn = 〈an = 1〉 E E1 and there exists b ∈ E1 such that E1/Cn = {Cn, bCn, · · · , bm−1Cn} and bm

∈ Cn. This shows
that there exists 0 ≤ i1 ≤ n − 1 such that bm = ai1 . Since Cn E E1, we obtain that b−1ab ∈ Cn and so we get
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b−1ab = a j1 for 0 ≤ j1 ≤ n− 1. Similarly, since Cm EE2 and E2/Cm � Cn, we obtain that an = bi2 and a−1ba = b j2

(0 ≤ i2, j2 ≤ m − 1).
By bm = ai1 and b−1ab = a j1 , we have b−1ai1 b = b−1bmb = bm = ai1 and b−1ai1 b = ai1 j1 . It follows that

ai1( j1−1) = 1 and so i1( j1 − 1) ≡ 0 (mod n). By using the similar argument, we obtain b−mabm = a−i1 aai1 = a and
a j21 = (b−1ab) j1 = b−1a j1 b = b−2ab2. By induction process we get b−mabm = a jm1 . Hence, we have a = a jm1 , that is
jm1 ≡ 0 (mod n). Similarly, we obtain that i2( j2 − 1) ≡ 0 (mod m) and jn2 ≡ 0 (mod m).

Let δ j1 (1 ≤ | j1| ≤ n − 1) and ψ j2 (1 ≤ | j2| ≤ m − 1) be automorphisms of Cn and Cm, respectively. Since
a jm1 = a and b jn2 = b, we have mappings b 7→ Aut(Cn) and a 7→ Aut(Cm). These induce homomorphisms
α : Cm → Aut(Cn), b 7→ δm

j1
and α′ : Cn → Aut(Cm), a 7→ ψn

j2
if and only if δm

j1
= 1Cn and ψn

j2
= 1Cm . By the

assumption on the generator a, the homomorphisms δm
j1

and 1Cn are equal if and only if δm
j1

[a] = [a]. Similarly,
by the assumption on b, ψn

j2
and 1Cm are equal if and only if ψn

j2
[b] = [b]. These imply that ba = a j1 b j2 .

Conversely, let us suppose that the relations in (9) and conditions in (10) hold. We aim to show that CnEE1
and Cm E E2, that is xatx−1

∈ Cn (0 ≤ t ≤ n − 1) and ybly−1
∈ Cm (0 ≤ l ≤ m − 1), for every x ∈ E1 and y ∈ E2.

Since x ∈ E1 and y ∈ E2, we can take x = x1x2 · · · xk1 and y = y1y2 · · · yk2 , where k1, k2 ∈N, xs1 ∈ {a, a−1, bi2 , b−i2 }

and ys2 ∈ {b, b−1, ai1 , a−i1 }, 0 ≤ s1 ≤ k1, 0 ≤ s2 ≤ k2, 0 ≤ i1 ≤ n − 1, 0 ≤ i2 ≤ m − 1. This gives that
xatx−1 = x1x2 · · · xk1 atx−1

k1
· · · x−1

2 x−1
1 and ybly−1 = y1y2 · · · yk2 bly−1

k2
· · · y−1

2 y−1
1 . By a direct computation, we get

xatx−1
∈ Cn and ybly−1

∈ Cm. Hence CnEE1 and CmEE2. By a similar way, it can be showed that every element
of groups E1 and E2 can be written as ap1 bq1 and bp2 aq2 for p1, p2, q1, q2 ∈ Z, respectively. Hence |E1| = |E2| = mn
and so |E1/Cn| = m, |E2/Cm| = n. So thus; E1/Cn = {Cn, bCn, · · · , bm−1Cn} and E2/Cm = {Cm, aCm, · · · , an−1Cm},
that is, the groups E1 and E2 have normal subgroups Cn and Cm, respectively. Therefore by [2, Theorem
1.3], there exists crossed systems (Cn,Cm, α, f ) and (Cm,Cn, α′, f ′) such that E1 � Cn# f

αCm and E2 � Cm# f ′

α′Cn.
Hence the result.

Corollary 2.8. Let us consider the two-sided crossed product Cn# f , f ′

α,α′Cm with a presentation〈
a, b ; an = bi2 , bm = ai1 , ba = a j1 b j2

〉
.

Also assume that i1 = i2 = 0.

1. If j1 = j2 = 1, then Cn# f , f ′

α,α′Cm becomes the direct product of Cn and Cm.

2. If j1 = 1 and j2 > 0, then Cn# f , f ′

α,α′Cm becomes the semi-direct product of Cm by Cn.

3. If j2 = 1 and j1 > 0, then Cn# f , f ′

α,α′Cm becomes the semi-direct product of Cn by Cm.

4. If | j1|, | j2| > 0, then Cn# f , f ′

α,α′Cm becomes the knit product of Cn and Cm.

Corollary 2.9. Let us consider the two-sided crossed product Cn# f , f ′

α,α′Cm with a presentation〈
a, b ; an = bi2 , bm = ai1 , ba = a j1 b j2

〉
.

Assume also that i1 = 0.

1. If j1 = j2 = 1, then Cn# f , f ′

α,α′Cm becomes the twisted product of Cm by Cn.

2. If j1 = 1 and j2 > 1, then Cn# f , f ′

α,α′Cm becomes the crossed product of Cm by Cn.

3. If i2 > 0, then Cn# f , f ′

α,α′Cm becomes the semi-direct crossed product of Cm by Cn.

Corollary 2.10. Let us consider the two-sided crossed product Cn# f , f ′

α,α′Cm with a presentation〈
a, b ; an = bi2 , bm = ai1 , ba = a j1 b j2

〉
.

1. If j1 = j2 = 1, then Cn# f , f ′

α,α′Cm becomes the two-sided twisted product of Cn and Cm.

2. If j1 = 1, then Cn# f , f ′

α,α′Cm becomes the twisted crossed product of Cm by Cn.

3. If j2 = 1, then Cn# f , f ′

α,α′Cm becomes the twisted crossed product of Cn by Cm.
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3. Rewriting Systems for Cn# f, f ′

α,α′
Cm

In this section, by considering the monoid presentation version, we will obtain the complete rewriting
system for two-sided crossed product of two cyclic groups and thus, we get normal forms of elements of
this group construction. To do that, let us recall some fundamental material that will be needed in the proof
of Theorem 3.1 below (which is the first main result of this section).

Let X be a set and let X∗ be the free monoid consists of all words obtained by the elements of X. A
(string) rewriting system on X∗ is a subset R ⊆ X∗ × X∗ and an element (u, v) ∈ R, also can be written as
u→ v, is called a rule of R. The idea for a rewriting system is an algorithm for substituting the right-hand
side of a rule whenever the left-hand side appears in a word. In general, for a given rewriting system R,
we write x → y for x, y ∈ X∗ if x = uv1w, y = uv2w and (v1, v2) ∈ R. Also we write x →∗ y if x = y or
x→ x1 → x2 → · · · → y for some finite chain of reductions and↔∗ is the reflexive, symmetric, and transitive
closure of→. Furthermore an element x ∈ X∗ is called irreducible with respect to R if there is no possible
rewriting (or reduction) x→ y; otherwise x is called reducible. The rewriting system R is called

• Noetherian if there is no infinite chain of rewritings x→ x1 → x2 → · · · for any word x ∈ X∗,

• Confluent if whenever x→∗ y1 and x→∗ y2, there is a z ∈ X∗ such that y1 →
∗ z and y2 →

∗ z,

• Complete if R is both Noetherian and confluent.

A rewriting system is finite if both X and R are finite sets. A critical pair of a rewriting system R is a pair of
overlapping rules if one of the forms (i) (r1r2, s), (r2r3, t)∈ R with r2 , 1 or (ii) (r1r2r3, s) (r2, t)∈ R, is satisfied.
Also a critical pair is resolved in R if there is a word z such that sr3 →

∗ z and r1t→∗ z in the first case or s→∗ z
and r1tr3 →

∗ z in the second. A Noetherian rewriting system is complete if and only if every critical pair is
resolved ([11]). Knuth and Bendix have developed an algorithm for creating a complete rewriting system R′

which is equivalent to R, so that any word over X has an (unique) irreducible form with respect to R′. By
considering overlaps of left-hand sides of rules, this algorithm basicly proceeds forming new rules when
two reductions of an overlap word result in two distinct reduced forms.

We note that the reader is referred to [5] and [11] for a detailed survey on (complete) rewriting sytems.
It is not hard to see that the monoid presentation for Cn# f , f ′

α,α′Cm is given as〈
a, b, a−1, b−1 ; an = bi2 , bm = ai1 , ba = a j1 b j2 , aa−1 = a−1a = 1, bb−1 = b−1b = 1

〉
, (11)

where 0 ≤ i1 < n, 0 ≤ i2 < m, 1 ≤
∣∣∣ j1∣∣∣ < n, 1 ≤

∣∣∣ j2∣∣∣ < m such that i1( j1 − 1) ≡ 0 (mod n), jm1 ≡ 1 (mod n),
i2( j2 − 1) ≡ 0 (mod m) and jn2 ≡ 1 (mod m).

Let us order the generators as a > a−1 > b > b−1. Now we have the following theorem.

Theorem 3.1. A complete rewriting system for the monoid presentation in (11) consists of the following relations:

Case 1: Let n ≥ m.

• For 0 ≤ i1 < m < n, we obtain
1) an

→ bi2 , 2) bm
→ ai1 , 3) a j1 b j2 → ba, 4) abi2 → bi2 a, 5) ai1 b→ bai1 ,

6) aa−1
→ 1, 7) a−1a→ 1, 8) bb−1

→ 1, 9) b−1b→ 1.

• For m ≤ i1 < n, we obtain
1) an

→ bi2 , 2) ai1 → bm, 3) a j1 b j2 → ba, 4) abi2 → bi2 a, 5) abm
→ bma,

6) aa−1
→ 1, 7) a−1a→ 1, 8) bb−1

→ 1, 9) b−1b→ 1.

Case 2: Let m > n.

• For 0 ≤ i2 ≤ n < m, we obtain
1) an

→ bi2 , 2) bm
→ ai1 , 3) a j1 b j2 → ba, 4) abi2 → bi2 a, 5) ai1 b→ bai1 ,

6) aa−1
→ 1, 7) a−1a→ 1, 8) bb−1

→ 1, 9) b−1b→ 1.
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• For n < i2 < m, we obtain
1) bi2 → an, 2) bm

→ ai1 , 3) a j1 b j2 → ba, 4) anb→ ban, 5) ai1 b→ bai1 ,
6) aa−1

→ 1, 7) a−1a→ 1, 8) bb−1
→ 1, 9) b−1b→ 1.

Proof. Since the ordering has chosen a > a−1 > b > b−1, there are no infinite reduction steps for all overlapping
words. Thus the rewriting system is Noetherian for both cases in theorem. Now, to catch up the aim, we
need to show that the confluent property holds for each cases separately.
• For 0 ≤ i1 < m < n in Case 1, we have the following overlapping words and corresponding critical

pairs.

(1) ∩ (1) : an+1, (abi2 , bi2 a), (1) ∩ (3) : anb j2 , (an− j1 ba, bi2 b j2 ), (1) ∩ (4) : anbi2 , (an−1bi2 a, bi2 bi2 )
(1) ∩ (5) : anb, (an−i1 bai1 , bi2 b), (1) ∩ (6) : ana−1, (an−1, bi2 a−1), (2) ∩ (2) : bm+1, (ai1 b, bai1 ),
(2) ∩ (8) : bmb−1, (ai1 b−1, bm−1), (3) ∩ (2) : a j1 bm, (babm− j2 , a j1 ai1 ), (3) ∩ (4) : a j1 bi2 , (babi2− j2 , a j1−1bi2 a),
(3) ∪ (4) : a j1 b j2 , (a j1−1bi2 ab j2−i2 , ba), (3) ∪ (5) : a j1 b j2 , (a j1−i1 bai1 b j2−1, ba), (3) ∩ (8) : a j1 bi2 b−1, (bab−1, a j1 b j2−1)

and

(4) ∩ (2) : abm, (bi2 abm−i2 , aai1 ), (4) ∩ (8) : abi2 b−1, (bi2 ab−1, abi2−1), (5) ∩ (2) : ai1 bm, (bai1 bm−1, ai1 ai1 ),
(5) ∩ (3) : ai1 b j2 , (bai1 b j2−1, ai1− j1 ba), (5) ∩ (4) : ai1 bi2 , (bai1 bi2−1, ai1−1bi2 a), (5) ∩ (8) : ai1 bb−1, (bai1 b−1, ai1 bi2 a),
(6) ∩ (7) : aa−1a, (a, a), (7) ∩ (1) : a−1an, (an−1, a−1bi2 ), (7) ∩ (3) : a−1a j1 b j2 , (a j1−1b j2 , a−1ba),
(7) ∩ (5) : a−1ai1 b, (ai1−1b, a−1bai1 ), (7) ∩ (6) : a−1aa−1, (a−1, a−1), (8) ∩ (9) : bb−1b, (b, b),
(9) ∩ (2) : b−1bm, (bm−1, b−1ai1 ).

In fact, all these above critical pairs are resolved by reduction steps which some of them can be shown as
follows.

(1) ∩ (3) : anb j2 , (an− j1 ba, bi2 b j2 ),

anb j2 −→

{
an− j1 ba→ bi2 a− j1 ba→ a− j1 ba→ ba
bi2 b j2 → b j2 → a j1 b j2 → ba

(3) ∪ (5) : a j1 b j2 , (a j1−1bai1 b j2−1, ba)

ai1 bm
−→

{
ba→ ai1 bab→ babai1

a j1−i1 bai1 b j2−1
→ a j1 bai1 b j2 → a j1 b j2 bai1 → babai1

• For m ≤ i1 < n, the following overlapping words and corresponding criticial pairs are obtained:

(1) ∩ (1) : an+1, (abi2 , bi2 a), (1) ∩ (2) : an, (an−i1 bm, bi2 ), (1) ∩ (3) : anb j2 , (an− j1 ba, bi2 b j2 ),
(1) ∩ (4) : anbi2 , (an−1bi2 a, bi2 bi2 ), (1) ∩ (5) : anbm, (an−1bma, bi2 bm), (1) ∩ (6) : ana−1, (bi2 a, an−1),
(2) ∩ (1) : an, (bman−i1 , bi2 ), (2) ∩ (2) : ai1+1, (abm, bma), (2) ∩ (3) : ai1 bi2 , (ai1− j1 ba, bmb j2 ),
(2) ∩ (4) : ai1 bi2 , (ai1−1bi2 a, bmbi2 ), (2) ∩ (5) : ai1 bm, (ai1−1bma, bmbm), (2) ∩ (6) : ai1 a−1, (bma, ai1−1),
(3) ∪ (2) : a j1 b j2 , (bma j1−i1 b j2 , ba), (3) ∩ (4) : a j1 bi2 , (a j1−1bi2 a, babi2− j2 ), (3) ∪ (4) : a j1 b j2 , (a j1−1bi2 ab j2−i2 , ba),
(3) ∩ (5) : a j1 bm, (a j1−1bma, babm− j2 ), (3) ∩ (8) : a j1 b j2 b−1, (bab−1, a j1 b j2−1), (4) ∩ (8) : abi2 b−1, (bi2 ab−1, abi2−1)

and

(5) ∪ (4) : abm, (bi2 abm−i2 , bma), (5) ∩ (8) : abmb−1, (bmab−1, abm−1), (6) ∩ (7) : aa−1a, (a, a),
(7) ∩ (1) : a−1an, (an−1, a−1bi2 ), (7) ∩ (2) : a−1ai1 , (ai1−1, a−1bm), (7) ∩ (3) : a−1a j1 b j2 , (a j1−1b j2 , a−1ba),
(7) ∩ (4) : a−1anb, (an−1b, a−1ban), (7) ∩ (5) : a−1ai1 b, (ai1−1b, a−1bai1 ), (7) ∩ (6) : a−1aa−1, (a−1, a−1),
(8) ∩ (9) : bb−1b, (b, b), (9) ∩ (8) : b−1bb−1, (b−1, b−1).

At this point we note that the overlapping words and corresponding critical pairs for 0 ≤ i2 ≤ n < m in
Case 2 are the same with overlapping words and critical pairs given for 0 ≤ i1 < m < n in Case 1.
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• Finally, let us check the conditions for n < i2 < m in Case 2.

(1) ∩ (1) : bi2+1, (anb, ban), (1) ∩ (2) : bm, (anbm−i2 , ai1 ), (1) ∩ (8) : bi2 b−1, (anb−1, bi2−1),
(2) ∩ (1) : bm, (bm−i2 an, ai1 ), (2) ∩ (2) : bm+1, (ai1 b, bai1 ), (2) ∩ (8) : bmb−1, (ai1 b−1, bm−1),
(3) ∪ (1) : a j1 b j2 , (a j1 b j2−i2 an, ba), (3) ∩ (1) : a j1 bi2 , (babi2− j2 , a j1 an), (3) ∩ (2) : a j1 bm, (babm− j2 , a j1 ai1 ),
(3) ∩ (8) : a j1 b j2 b−1, (bab−1, a j1 b j2−1), (3) ∪ (5) : a j1 b j2 , (a j1−i1 bai1 b j2−1, ba), (4) ∩ (1) : anbi2 , (banbi2−1, anan),
(4) ∩ (2) : anbm, (banbm−1, anai1 ), (4) ∩ (3) : anb j2 , (banb j2−1, an− j1 ba), (4) ∪ (5) : anb, (an−i1 bai1 , ban),
(4) ∩ (8) : anbb−1, (banb−1, an), (5) ∩ (1) : ai1 bi2 , (bai1 bi2−1, ai1 an), (5) ∩ (2) : ai1 bm, (bai1 bm−1, ai1 ai1 ),

and

(5) ∩ (3) : ai1 b j2 , (bai1 bi2−1, ai1− j1 ba), (5) ∩ (8) : ai1 bb−1, (bai1 b−1, ai1 ), (6) ∩ (7) : aa−1a, (a, a),
(7) ∩ (3) : a−1a j1 b j2 , (a j1−1b j2 , a−1ba), (7) ∩ (4) : a−1anb, (an−1b, a−1ban), (7) ∩ (5) : a−1ai1 b, (ai1−1b, a−1bai1 ),
(7) ∩ (6) : a−1aa−1, (a−1, a−1), (8) ∩ (9) : bb−1b, (b, b), (9) ∩ (1) : b−1bi2 , (bi2−1, b−1an),
(9) ∩ (2) : b−1bm, (bm−1, b−1ai1 ), (9) ∩ (8) : b−1bb−1, (b−1, b−1).

After all these above processes, we see that all critical pairs can be resolved (as we applied for some
couples after the case 0 ≤ i1 < m < n). Hence the result.

As a first consequence of Theorem 3.1, we have the following result.

Corollary 3.2. Let us consider the words w1, w2, w3, w4 ∈ Cn# f , f ′

α,α′Cm. Thus, for the orderings 0 ≤ i1 < m < n,
m ≤ i1 < n, 0 ≤ i2 ≤ n < m and n < i2 < m, respectively, the normal forms of these words are given as

• C(w1) = bk1 al1 bk2 al2 · · · bks als , 0 ≤ k1 ≤ m − 1, 0 ≤ lδ ≤ i1 − 1 (1 ≤ δ ≤ s), 0 ≤ kε ≤ i2 − 1 (2 ≤ ε ≤ s).

• C(w2) = bk1 al1 bk2 al2 · · · bks als , 0 ≤ lδ ≤ j1 − 1 (1 ≤ δ ≤ s), 0 ≤ kε ≤ i2 − 1 (1 ≤ ε ≤ s).

• C(w3) = bk1 al1 bk2 al2 · · · bks als , 0 ≤ k1 ≤ m − 1, 0 ≤ lδ ≤ i1 − 1 (1 ≤ δ ≤ s), 0 ≤ kε ≤ i2 − 1 (2 ≤ ε ≤ s).

• C(w4) = bk1 al1 bk2 al2 · · · bks als , 0 ≤ lδ ≤ i1 − 1 (1 ≤ δ ≤ s − 1), 0 ≤ kε ≤ i2 − 1 (1 ≤ ε ≤ s), ls ∈ Z.

By Theorem 3.1 and Corollary 3.2, we have the following result.

Corollary 3.3. Let us consider the product Cn# f , f ′

α,α′Cm with a monoid presentation as in (11). Then the word problem
for it is solvable.

Conjecture 3.4. For a future work, one may obtain the general presentation for the two-sided crossed product of
arbitrary two groups, and then get the complete rewriting system in the meaning of its monoid presentation. Therefore,
the general version of Corollary 3.3 is obtained.
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valuable comments.

References

[1] A. L. Agore, G. Militaru, Crossed product of groups, applications, Arabian J. Sci. Eng. 33 (2008) 1-17.
[2] A. L. Agore, D. Fratila, Crossed product of cyclic groups, Czechoslovak Mathematical Journal 60 (2010) 889-901.
[3] A. M. Alghamdi, F. G. Russo, Remarks on the Relative Tensor Degree of Finite Groups, Filomat 28-9 (2014) 1929-1933.
[4] F. Ates, A. S. Cevik, Knit products of some groups and their applications, Randiconti del Seminario Mathematics delta Universita

di Padova 2 (2009) 1-12.
[5] R. V. Book, F. Otto, String-Rewriting Systems, Springer-Verlag, New York, 1993.
[6] M. G. Brin, On the Zappa-Szep product, Comm. Algebra 33 (2005) 393-424.
[7] A. Emin, F. Ates, S. Ikikardes, I. N. Cangul, A new monoid construction under crossed products, Journal of Inequalities and

Applications 244 (2013).
[8] S.-E. Han, Non-Ultra Regular Digital Covering Spaces with Nontrivial Automorphism Groups, Filomat 27-7 (2013) 1205-1218.
[9] P. W. Michor, Knit products of graded Lie algebras and groups, Suppl. Rendiconti Circolo Matematico di Palermo Ser. II, 22 (1989)

171-175.
[10] M. A. Rudkovskii, Twisted product of Lie groups, Siberian Math. Journal, 38 (1997) 1120-1129.
[11] C. C. Sims, Computation for Finitely Presented Groups, Cambridge University Press, 1994.


