

On Modules over Groups

Mehmet Uca, Ortac Ones, Mustafa Alkan ${ }^{\text {b }}$
${ }^{a}$ Mehmet Akif Ersoy University Department of Mathematics Burdur, Turkey
${ }^{b}$ Akdeniz University, Department of Mathematics, Antalya, Turkey

Abstract

For a finite group G, by the endomorphism ring of a module M over a commutative ring R, we define a structure for M to make it an $R G$-module so that we study the relations between the properties of R-modules and $R G$-modules. Mainly, we prove that $\operatorname{Rad}_{R} M$ is an $R G$-submodule of M if M is an $R G$ module; also $\operatorname{Rad}_{R} M \subseteq \operatorname{Rad}_{R G} M$ where $\operatorname{Rad}_{A} M$ is the intersection of the maximal A-submodule of module M over a ring A. We also verify that M is an injective (projective) R-module if and only if M is an injective (projective) $R G$-module.

1. Introduction

Let R be a commutative ring with unity and G a finite abelian group. Let us recall the group ring $R G$.
$R G$ denote the set of all formal expressions of the form $\sum_{g \in G} m_{g} g$ where $m_{g} \in R$ and $m_{g}=0$ for almost every g. For elements $m=\sum_{g \in G} m_{g} g, n=\sum_{g \in G} n_{g} g \in R G$, by writing $m=n$ we mean $m_{g}=n_{g}$ for all $g \in G$.

The sum in $R G$ is componentwise as

$$
m+n=\sum_{g \in G} m_{g} g+\sum_{g \in G} n_{g} g=\sum_{g \in G}\left(m_{g}+n_{g}\right) g
$$

Moreover, $R G$ is a ring with the following multiplication;

$$
\mu \eta=\sum_{g \in G}\left(r_{g} k_{h}\right)(g h)=\sum_{g \in G} \sum_{h \in G}\left(r_{g} k_{h^{-1} g}\right) g
$$

where $\mu=\sum_{g \in G} r_{g} g, \eta=\sum_{h \in G} k_{h} h \in R G$.
Since G is finite, $R G$ is a finite dimensional R-algebra. Finite dimensional R-algebras (especially semisimple ones) have been more extensively investigated than finite groups; as a result $R G$ has historically been used as a tool of group theory. If G is infinite, however, the group theory and the ring theory is not considerably well-known compared to one another. In this case, the emphasis is given to the relations between the two.

[^0]Consider the cyclic subgroup $\langle x\rangle$ of G, where x is a nonidentity element. Since $R\langle x\rangle$ is in $R G$, we simply direct our attention to it. If x has finite order $n \geq 1$, then $1, x, \ldots, x^{n-1}$ are distinct powers of x and in view of the equation

$$
\begin{equation*}
(1-x)\left(1+x+\ldots+x^{n-1}\right)=1-x^{n}=0 \tag{1}
\end{equation*}
$$

$R\langle x\rangle$, and hence $R G$, has a proper divisor of zero. On the other hand, if x has infinite order, $R\langle x\rangle$ consists of all finite sums of the form $\sum a_{i} x^{i}$ since all powers of x are distinct. Therefore, elements of $R\langle x\rangle$ are polynomials in x divided by some sufficiently high power of x. Consequently, $R\langle x\rangle$ is contained in the Laurent polynomial ring $R\left[x, x^{-1}\right]$, which means it is an integral domain. In addition, the Laurent polynomial ring $R\left[x, x^{-1}\right]$ is isomorphic to the group ring of the group \mathbb{Z} of integers over R. In fact, the Laurent polynomial ring in n variables is isomorphic to the group ring of the free abelian group of rank n.

In this paper, we impose a new structure on an R-module M to make it an $R G$-module, so that we study the relations between the properties of these classes. Furthermore, we will give an alternative proof for Generalized Maschke's Theorem, and using the relations between $R G$-modules and R-modules, we will get a sufficient condition for M to be a free R-module, in case M is a projective R-module.

2. Relations between R-modules and RG-modules

Let M be a module over a commutative ring R and $E n d M$ denotes the endomorphism ring of M. We use the notation $\operatorname{Rad}_{A} M$ for the intersection of maximal A-submodules of module M over a ring A.

Firstly, we define the structure of an $R-$ module M by making it an $R G$-module using the endomorphism ring of M. We also study the properties of $R G$-modules.

Let τ be a group homomorphism from G to $\operatorname{End}(M)$. So, for all $g \in G, m \in M$, we define the multiplication $m g$ as

$$
m g=\tau(g)(m)
$$

With this multiplication, it is easy to check that M is an $R G$-module. The group homomorphism τ in the multiplication is called a representation of G for M over R.

If $\tau(g)=1_{\operatorname{End}(M)}$ for all $g \in G$, the structure of $R G$-module is the same with the structure of R-module. The following is an example for the multiplication of an $R G$-module M.

Example 2.1. Let $R=\mathbb{Z}, M=\mathbb{Z} \oplus \mathbb{Z}, G=C_{2}=\{e, a\}$.
i)Consider the R-homomorphism f from M to M such that $f(x, y)=(3 x-4 y, 2 x-3 y)$. Clearly, f is an endomorphism of M.

Let define a map τ from G to EndM such that $\tau(e)=1$ and $\tau(a)=f$. Hence, τ is a group homomorphism and so M is an $R G$-module. For any $m=(x, y) \in M=\mathbb{Z} \oplus \mathbb{Z}$,

$$
\begin{aligned}
m a & =f(a)(m) \\
& =(3 x-4 y, 2 x-3 y)
\end{aligned}
$$

ii) Consider the R-homomorphism from M to M such that $f(x, y)=(x,-y)$. Clearly, f is an endomorphism of M.

Let define a map τ from G to EndM such that $\tau(e)=1$ and $\tau(a)=f$. Hence, τ is a group homomorphism and so M is an $R G$-module. For any $m=(x, y) \in M=\mathbb{Z} \oplus \mathbb{Z}$,

$$
\begin{aligned}
m a & =f(a)(m) \\
& =(x,-y) .
\end{aligned}
$$

From now on, by the multiplication above we can consider an R-module M as an $R G$-module. The R-module structure and the $R G$-module structure of M have many different properties. In the following example, although a submodule N of an $R G$-module M is indecomposable as an $R G$-submodule, it is decomposable as an R-submodule.

Example 2.2. Let $R=\mathbb{C}, M=\mathbb{C} \oplus \mathbb{C}, G=D_{8}=\left\langle a, b: a^{4}=b^{2}=e, b^{-1} a b=a^{-1}\right\rangle$. Consider the R-homomorphisms f_{1}, f_{2} from M to M such that

$$
f_{1}(x, y)=(-y, x), f_{2}(x, y)=(x,-y)
$$

Clearly, f_{1}, f_{2} are endomorphisms of M. Let define a map τ from G to EndM such that $\tau(e)=1$ and $\tau(a)=f_{1}$ and $\tau(b)=f_{2}$. Hence, τ is a group homomorphism. For any $m=(x, y) \in M$,

$$
\begin{aligned}
& m a=a(x, y)=f_{1}(x, y)=(-y, x) \\
& (x, y) a^{2}=(-x,-y),(x, y) a^{3}=(y,-x) \\
& m b=(x, y) b=f_{2}(x, y)=(x,-y) \\
& (x, y) b a=(y, x),(x, y) b a^{2}=(-x, y),(x, y) b a^{3}=(-y,-x)
\end{aligned}
$$

Moreover, M is a semisimple $R G$-module since $R G$ is a semisimple ring. Now we claim that M is an irreducible $R G$-module. If there is a proper $R G$-submodule N and $N \neq M, \operatorname{dim} N=1$, then $N=R G(\alpha, \beta)$ for $(\alpha, \beta) \in M$.

$$
\begin{aligned}
& (\alpha, \beta) a=f_{1}(\alpha, \beta)=(-\beta, \alpha) \\
& (\alpha, \beta) b=f_{2}(\alpha, \beta)=(\alpha,-\beta)
\end{aligned}
$$

Since N is an RG-submodule of $M,(\alpha, \beta),(-\beta, \alpha),(\alpha,-\beta) \in N$. Moreover, $(\alpha, \beta)+(\alpha,-\beta)=(2 \alpha, 0) \in N$ and $(2 \alpha, 0)=(\alpha, \beta) r_{1}$ for some $0 \neq r_{1} \in R G$. Hence $\beta=0$. Also, $(\alpha, \beta)-(\alpha,-\beta)=(0,2 \beta) \in N$ and $(0,2 \beta)=r_{2}(\alpha, \beta)$ for some $0 \neq r_{2} \in R G$. Hence $\alpha=0$. So we get $\alpha=\beta=0$. Thus, $N=\{0\}$ and M is an irreducible $R G-$ module. Then M is a cyclic $R G$-module, $(m \in M, R G m=M)$. On the other hand, $\operatorname{dim}_{R} M=2$ and there are proper R-submodules in M.

It is clear that any $R G$-submodule of M is an R-submodule, but in generally the converse is not true. Now we study some properties of $R G$-modules. Obviously, for a group homomorphism τ from G to $\operatorname{End}(M)$ we have $\tau(G) \subseteq \operatorname{End}(M)$. Then we define τ-fully invariant submodule as:

Definition 2.3. An R-submodule N of an $R G$-module M is called τ-fully invariant if for all $f \in \tau(G)$,

$$
f(N) \subseteq N .
$$

Lemma 2.4. Let N be an R-submodule of an $R G$-module M. Then $N G=\sum_{g \in G} N g$ is a minimal $R G$-submodule containing N.

Proof. Clearly, $N G$ is an $R G$-submodule. So we show that $N G$ is a minimal $R G$-submodule containing N. Assume that N_{1} is an $R G$-submodule such that $N \subset N_{1} \subset N G$. Take an element $n \in N$ and so for all $g \in G$, we get $n g \in N_{1}$ since N_{1} is an $R G$-submodule containing N. This means that that $N_{1}=N G$.

Lemma 2.5. Let N be a maximal R-submodule of an $R G$-module M. Then $N G=N$ or $N G=M$.
Furthermore, if N is τ-fully invariant then $N G=N$. If N is not τ-fully invariant then $N G=M$.
Proof. Clearly, $N \subseteq N G \subseteq M$. If N is τ-fully invariant, then $f(N) \subseteq N$ for all $f \in \tau(G)$ and so $N g \subseteq N$ for all $g \in G$. Therefore, $N G=N$. On the other hand, if N is not τ-fully invariant, then clearly $N G=M$ since N is maximal.

Theorem 2.6. Let M be a finitely generated $R G$-module and N the only maximal R-submodule of M. If N is not τ-fully invariant, then M is a cyclic $R G$-module.

Proof. Since N is not τ-fully invariant, we get $N \neq N G$ and $N G=M$. So there exists $n g \in N G, n g \notin N$ for some $g \in G, n \in N$. Thus we have an $R G$-submodule $n g R G$ of M and $n g R G$ is not in N. On the other hand, $n g R G$ is also an R-submodule of M. Since N is the only maximal R-submodule of M, we get $n g R G=M$.

Following [1, page 72], recall that a submodule K of an R-module M is essential (or large) in M, abbreviated $K \unlhd M$, in case for every submodule L of $M, K \cap L=0$ implies $L=0$. Moreover, a submodule K of an R-module M is superfluous (or small) in M, abbreviated $K \ll M$, in case for every submodule L of M, $K+L=M$ implies $L=M$.

Lemma 2.7. Let M be an $R G$-module. If N is an essential R-submodule of M, then $N G$ is an essential $R G$-submodule of M.

Proof. Let L be an $R G$-submodule of M such that $N G \cap L=0$. Thus $N \cap L=0$ and so $L=0$ since N is an essential R-submodule of M. Hence $N G$ is an essential $R G$-submodule of M.

Lemma 2.8. Let τ be a group homomorphism from G to $\operatorname{End}(M)$. If N is a superfluous R-submodule of M, then $N g=\tau(g)(N)$ is a superfluous $R G$-submodule of M.

Proof. Let L be an $R G$-submodule of M and assume $L+\tau(g)(N)=M$. Then $(\tau(g))^{-1}(L)+N=M$ and so $M=(\tau(g))^{-1}(L)$ since N is a superflous R-submodule of M. This means that $L=M$ and so $N g$ is a superfluous $R G$-submodule of M.

Lemma 2.9. Let M be a finitely generated $R G$-module. If N is a superfluous R-submodule of M then $N G$ is a superfluous $R G$-submodule of M.

Proof. Assume that $N G=M$. Then we get

$$
N G=\sum_{g \in G} N g=N e+N g_{1}+\ldots+N g_{k}=M
$$

where $G=\left\{e, g_{1}, \ldots, g_{k}\right\}$. Since N is a superfluous R-submodule of M, we get $N g_{1}+\ldots+N g_{k}=M$. Then by Lemma 2.8, $N g_{1}$ is a superfluous submodule of M and we get $N g_{2}+\ldots+N g_{k}=M$ and so on. Since $N g_{k-1}$ is also a superfluous submodule of M, we get $N g_{k}=M$, a contradiction. Therefore, $N G \neq M$.

On the other hand, $N G=N+N g_{1}+\ldots+N g_{n}$ is a sum of homomorphic images of superfluous $R-$ submodules of M. Hence $N G$ is a superfluous R-submodule of M. Let L be an $R G$-submodule of M such that $N G+L=M$. L is also an R-submodule of M and $N G+L=M$. Thus $L=M$ and so $N G$ is also a superfluous $R G$-submodule of M.

Theorem 2.10. Let M be an $R G$-module. Then $\operatorname{Rad}_{R} M$ is an $R G$-submodule of M and $\operatorname{Rad}_{R} M \subseteq \operatorname{Rad}_{R G} M$.
Proof. It is known that $\operatorname{Rad}_{R} M$ is the sum of superfluous R-submodules of M and $\operatorname{Rad}_{R} M$ is a fully invariant R-submodule of M and so $\left(\operatorname{Rad}_{R} M\right) G=\operatorname{Rad} d_{R} M$. This means that $\operatorname{Rad}_{R} M$ is an $R G$-submodule of M. On the other hand, by Lemma 2.9, we get

$$
\operatorname{Rad}_{R} M=\sum_{N \ll_{R} M} N \subseteq \sum_{N \ll_{R G} M} N G \subseteq \operatorname{Rad}_{R G} M
$$

Hence, $\operatorname{Rad}_{R} M \subseteq \operatorname{Rad}_{R G} M$.

3. Projectivity and Injectivity as $R G$-modules

In this section, we will show some relations about projectivity and injectivity between R-modules and $R G$-modules. Moreover, we will give an alternative proof for Generalized Maschke's Theorem at the end of the section.

Lemma 3.1. Let M be a free $R G$-module and H be a subgroup of G. Then M is a free $R H$-module and a free R-module.

Proof. Let $S=\left\{m_{i}: i \in I\right\}$ be an $R G$-basis of M and take an element m of M. Then m is written uniquely by S such that $m=\sum_{i \in I} r_{i} m_{i}$ as a finite sum where $r_{i}=\sum_{g_{i} \in G} g_{i} r_{g_{i}} \in R G$. Let the set $T=\left\{y_{j}: y_{j} \in G, j \in J\right\}$ be a right transversal for H in G. Then for any i, there is $j \in J$ such that $g_{i} \in H y_{j}$ and so $g_{i}=h_{j i} y_{j}$ for some $h_{j i} \in H$. Then $r_{i}=\sum_{h_{j i} \in T} h_{j i} r_{h_{j i}} y_{j}$ where $r_{h_{j i}}=r_{g_{i}}$, and $m=\sum_{h_{j i} \in T} h_{j i} r_{h_{j i}}\left(y_{j} m_{i}\right)$ where m is written as a lineer combination of the elements in RH. Hence, we have a new set $S^{\prime}=\left\{y_{j} m_{i}: i \in I, j \in J\right\}$.

We will show that S^{\prime} is linearly independent. Suppose that $\sum_{i \in I, j \in J}\left(y_{j} m_{i}\right) r_{j i}=0$ where $r_{j i} \in R H$ for some $i \in I, j \in J$. Since $y_{j} r_{j i} \in R G$ and S an $R G$-basis of M, it follows that $\left(y_{j} r_{j i}\right)=0$ for all $i \in I, j \in J$. This implies that $r_{j i}=0$ and so $S^{\prime}=\left\{y_{j} m_{i}: i \in I, j \in J\right\}$ is linearly independent. Therefore, M is a free $R H$-module.

In particular, for $H=\{e\}, M$ is a free $R\{e\}$-module which implies M is a free R-module.
It is clear that converse of the lemma above is not true, in general.
Theorem 3.2. Let M be an $R G$-module, G a finite group and $|G|$ invertible in R. Then M is a projective R-module if and only if M is a projective $R G$-module.

Proof. Assume that M is a projective R-module. Let A, B be $R G$-modules and α, β be $R G$-homomorphisms. Then we should have the following diagram

$$
\left.A \underset{\alpha}{ } \begin{array}{c}
\\
\\
\\
\\
\\
\\
\downarrow^{\beta} \\
\\
\end{array}\right] \quad \longrightarrow 0
$$

Obviously, A, B are also R-modules, α, β are R-homomorphisms. Then there exists an R-homomorphism φ from M to A such that $\beta=\alpha \varphi$. Consider the following map $\bar{\varphi}$ from M to A

$$
\bar{\varphi}(m)=\frac{1}{|G|} \sum_{g \in G} \varphi(m g) g^{-1}
$$

for all $m \in M$. Then clearly, $\bar{\varphi}$ is an R-homomorphism. Moreover, for any $m \in M, h \in G$, we get

$$
\begin{aligned}
\bar{\varphi}(m h) & =\frac{1}{|G|} \sum_{g \in G} \varphi(m h g) g^{-1}=\frac{1}{|G|} \sum_{g^{\prime} \in G} \varphi\left(m g^{\prime}\right) g^{\prime-1} h, \text { where } g^{\prime}=h g \\
& =\left(\frac{1}{|G|} \sum_{g^{\prime} \in G} \varphi\left(m g^{\prime}\right) g^{\prime-1}\right) h=\bar{\varphi}(m) h
\end{aligned}
$$

Hence, $\bar{\varphi}$ is an $R G$-homomorphism. Furthermore,

$$
\begin{aligned}
\alpha \bar{\varphi}(m) & =\alpha\left(\frac{1}{|G|} \sum_{g \in G} \varphi(m g) g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G} \alpha\left(\varphi(m g) g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G}(\alpha \varphi(m g)) g^{-1} \\
& =\frac{1}{|G|} \sum_{g \in G} \beta(m g) g^{-1}=\frac{1}{|G|} \sum_{g \in G} \beta\left(m g g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G} \beta(m)=\frac{1}{|G|}|G| \beta(m) \\
& =\beta(m)
\end{aligned}
$$

Thus, $\bar{\varphi}$ is the desired $R G$-homomorphism and M is a projective $R G$-module.
Conversely, let M be a projective $R G$-module. Then there is a free $R G$-module F and an $R G$-module N such that $F=M \oplus N$. By Lemma 3.1, F is a free $R-$ module and so M is a projective $R-$ module.

Theorem 3.3. Let M be a finitely generated projective R-module. If there are a decomposition $G=A B$ for subgroups A, B of G such that $R B$ is an indecomposable $R B$-module and $R A$ is isomorphic to $\oplus_{i=1}^{n} R$ as a ring where n is order of A, then M is a free R-module.

Proof. If M is a projective R-module then M is a projective $R G$-module and so there is a positive integer m and an $R G$-module N such that $\oplus_{i=1}^{m} R G \cong M \oplus N$.

By the hypothesis, $R A$ is isomorphic to $\oplus_{i=1}^{n} R$ as a ring. Then we also get $R G=R(A B)=(R A) B$ by [6, page 458] so that $R G$ is isomorphic to $\oplus_{i=1}^{n} R B$ as a ring. Finally, we get that $K=\oplus_{i=1}^{m}\left(\oplus_{i=1}^{n} R B\right) \cong M \oplus N$. So by Krull-Schmitt theorem, M is isomorphic to direct sum of a finite number of indecomposable $R B$-submodules of K. On the other hand, by the hypothesis, $R B$ is an indecomposable $R B$-module and so M is isomorphic to direct sum of $R B s$. Hence, M is a free $R B$-module. So by Lemma 3.1, M is a free R-module.

Theorem 3.4. Let M be an $R G$-module, G a finite group and $|G|$ invertible in R. Then M is an injective $R-$ module if and only if M is an injective $R G$-module.

Proof. Assume that M is an injective R-module. Let I be an ideal of a ring $R G$ and α be $R G$-homomorphisms, i is the injection $R G$-map. Hence, both I and $R G$ are R-modules, α is an R-homomorphism and i is the injection R-map. Since M is an injective R-module, there is an $R G$-homomorphism φ such that $\varphi i=\alpha$. i.e we have the following commutative diagram

$$
\begin{gathered}
M \\
0 \\
\uparrow^{\alpha} \\
I
\end{gathered} \underset{i}{\nwarrow^{\varphi}} R G
$$

Consider the following map $\bar{\varphi}$ from $R G$ to M

$$
\bar{\varphi}(m)=\frac{1}{|G|} \sum_{g \in G} \varphi(m g) g^{-1}
$$

for $m \in M$. We have already proved that $\bar{\varphi}$ is an $R G$-homomorphism. Furthermore,

$$
\begin{aligned}
\bar{\varphi} i(m) & =\bar{\varphi}(m)=\frac{1}{|G|} \sum_{g \in G} \varphi(m g) g^{-1}=\frac{1}{|G|} \sum_{g \in G} \varphi(i(m g)) g^{-1}=\frac{1}{|G|} \sum_{g \in G} \alpha(m g) g^{-1} \\
& =\frac{1}{|G|} \sum_{g \in G} \alpha\left(m g g^{-1}\right)=\frac{1}{|G|} \sum_{g \in G} \alpha(m)=\frac{1}{|G|}|G| \alpha(m)=\alpha(m) .
\end{aligned}
$$

Thus, $\bar{\varphi}$ is the desired $R G$-homomorphism and M is an injective $R G$-module.
Assume that M is an injective $R G$-module. Let I be an ideal of a ring R and f an R-homomorphism, i the injection R-map.

$$
\begin{gathered}
\\
\\
0
\end{gathered} \longrightarrow \quad \stackrel{\uparrow f}{I} \xrightarrow[i]{ } \quad R
$$

On the other hand, $I G$ is an ideal of $R G$ and consider the following map \bar{f} such that

$$
\bar{f}\left(\sum_{g \in G} r_{g} g\right)=\sum_{g \in G} f\left(r_{g}\right) g .
$$

Clearly, \bar{f} is an $R G$-homomorphism by

$$
\bar{f}\left(\sum_{g \in G} r_{g} g h\right)=\sum_{g \in G} f\left(r_{g}\right) g h=\left(\sum_{g \in G} f\left(r_{g}\right) g\right) h=\bar{f}\left(\sum_{g \in G} r_{g} g\right) h
$$

where $r_{g} \in I . \bar{f}\left(\sum_{g \in G} r_{g} g\right)=m\left(\sum_{g \in G} r_{g} g\right)$ for some $m \in M$ since M is injective $R G$-module. Moreover, for $x \in I$, $x e \in I G$. Then $\bar{f}(x e)=f(x) e$ and also

$$
\bar{f}(x e)=m x e=m e x=m x=f(x) e=f(x) .
$$

Thus the desired R-homomorphism g from R to M is defined as $g(r)=m r$ for $r \in R$. So, M is an injective R-module.

Theorem 3.5. Let R be a ring, G a finite group and $|G|$ invertible in R. Then $R G$ is semisimple if and only if R is semisimple.

Proof. Let $R G$ be semisimple, G a finite group and $|G|$ invertible in R. For any R-module M, M is an $R G$-module by $\tau: G \longrightarrow \operatorname{End}(M), g \mapsto 1$ for all $g \in G$. By Theorem 3.4, any injective $R G$-module M is an injective R-module. Therefore, every right module over R is injective and so R is semisimple.

Conversely, let R be semisimple, G a finite group and $|G|$ invertible in R. For any $R G-$ module M, M is an R-module. Since R is semisimple, M is an injective R-module. By Theorem 3.4, any injective $R-$ module M is an injective $R G$-module. Therefore, every module over $R G$ is injective and so $R G$ is semisimple.

Acknowledgement

The third author was supported by the Scientific Research Project Administration of Akdeniz University. The authors are deeply grateful to the referees for their useful pointed comments and suggestions.

References

[1] Anderson, F.W., Fuller, K.R. , Rings and Categories of Modules, Springer-Verlag, New York, (1992).
[2] Auslander, M.: On regular group rings. Proc. Am. Math. Soc. 8, 658-664 (1957).
[3] Connell, I.G.: On the group ring. Canadian J. Math. 15, 650-685 (1963).
[4] Farkas, D.: Self-injective group algebras. J. Algebra 25, 313-315 (1973).
[5] Lam, T.Y.: A First Course in Noncommutative Rings, 2nd edn. Grad. Texts Math. 131. Springer, New York (2001).
[6] Karpilovsky, G., The Jaconson Radical of Group Algebras, North-Holland, Amsterdam, (1987).
[7] Nicholson, W.K., Yousif, M.F.: Quasi-Frobenius rings. Camb. Tracts Math. 158. Cambridge University Press (2003).
[8] Rim, D.S. Modules Over Finite Groups, Annals of Math. 69 (3) (1959).
[9] Passmann, D.S., The Algebraic Structure of Group Rings, Dover Publications, Inc. , New York(2011).
[10] Osofsky, B.: A generalization of quasi-Frobenius rings. J. Algebra 4, 373-387 (1966).

[^0]: 2010 Mathematics Subject Classification. 13C11, 15D50,16S34, 20C05
 Keywords. Gruop rings, Projective modules and Injective modules
 Received: 07 July 2015; Accepted: 14 August 2015
 Communicated by Gradimir Milovanović and Yilmaz Simsek
 The present investigation was supported by the Scientific Research Project Administration of Akdeniz University
 Email addresses: mehmetuc@mehmetakif.edu.tr (Mehmet Uc), ortacns@gmail.com and alkan@akdeniz.edu.tr (Ortac Ones, Mustafa Alkan)

