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On A Characterization of Compactness and the Abel-Poisson
Summability of Fourier Coefficients In Banach Spaces
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Abstract. In this paper, for an isometric strongly continuous linear representation denoted by α of the
topological group of the unit circle in complex Banach space, we study an integral representation for Abel-
Poisson mean Aα

r (x) of the Fourier coefficients family of an element x, and it is proved that this family is
Abel-Poisson summable to x. Finally, we give some tests which are related to characterizations of relatively
compactness of a subset by means of Abel-Poisson operator Aα

r and α.

1. Introduction

Let T = {z ∈ C : |z| = 1} be the topological group of the unit circle with Euclidean topology and multipli-
cation operation, H be a complex Banach space, α be an isometric strongly continuous linear representation
of T in H, x ∈ H and {Fαn(x)}n∈Z be the family of Fourier coefficients of x with respect to α.

This paper is organized as follows. In Section 2 and 3, we provide some necessary preliminaries which
play an important role for this work. In Section 4, we obtain an integral representation for the rth Abel-
Poisson mean Aα

r (x) of the family {Fαn(x)}, and using this integral representation, we prove that the family
{Fαn(x)}n∈Z is Abel-Poisson summable to x ∈ H. As it is known that there are many characterizations of
compactness in metric spaces, especially normed spaces by sequences in literature. We focus on the family
{Fαn(x)}n∈Z and give some relatively compactness tests for a subset S ⊂ H in terms of the rth Abel-Poisson
operator Aα

r and α.

2. Preliminaries

Let I be a nonempty arbitrary index set and let {xn}n∈I be an indexed family of vectors in H. The
summability, absolutely summability of this family and its sum denoted by x :=

∑
n∈I

xn are of the sense given

in ([1],p.218-233;[10],p.340-348).

Definition 2.1. Let a, b ∈ R, an indexed family of functions { fn}n∈I defined on [a, b] with values in H and f be a
function from [a, b] to H.

(i) The family { fn}n∈I is said to be pointwise summable on [a, b] if the family { fn(t)}n∈I is summable for each
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t ∈ [a, b].
(ii) The family { fn}n∈I is said to be uniformly summable with sum f on [a, b] if for every ε > 0 there exists a finite

subset Iε ⊂ I such that for every finite subset F with Iε ⊂ F ⊂ I and ∀t ∈ [a, b] , ‖ f (t) −
∑
n∈F

fn(t)‖ < ε.

It is clear that if the family { fn}n∈I is uniformly summable, then it is pointwise summable and f (t) =
∑
n∈I

fn(t) for

every t ∈ [a, b].

Proposition 2.1. Let a, b ∈ R and { fn}n∈I be an indexed family of functions defined on [a, b] with values in H. If
there exists a non-negative summable family {an}n∈I ⊂ R such that ‖ fn(t)‖ ≤ an for ∀n ∈ I and ∀t ∈ [a, b], then the
family { fn}n∈I is uniformly summable.

Proof. It is easily seen from Proposition 29.18 in [1]and Theorem 5.27 in [10].

Proposition 2.2. Let a, b ∈ R, { fn}n∈I be a uniformly summable indexed family of functions defined on [a, b] with
values in H and f =

∑
n∈I

fn. If fn is continuous for every n ∈ I, then f is continuous on [a, b].

Proof. Since the family { fn}n∈I is uniformly summable on [a, b] with sum f , for every ε > 0 there exists
a finite subset Iε ⊂ I such that ‖ f (t) −

∑
n∈Iε

fn(t)‖ <
ε
3

for all t ∈ [a, b]. Let to ∈ [a, b] be an arbitrary fixed

point. Since the finite sum
∑

n∈Iε
fn is continuous at the point to ∈ [a, b], there exists a δ(to, ε) > 0 such

that for ∀t, 0 ≤ |t − to| < δ(to, ε), we have ‖
∑

n∈Iε
fn(t) −

∑
n∈Iε

fn(to)‖ <
ε
3

. Hence for ∀t, 0 ≤ |t − to| < δ(to, ε),

‖ f (t) − f (to)‖ ≤ ‖ f (t) −
∑

n∈Iε
fn(t)‖ + ‖

∑
n∈Iε

fn(t) −
∑

n∈Iε
fn(to)‖ + ‖

∑
n∈Iε

fn(to) − f (to)‖ < ε. So, f is continuous on

[a, b].

Proposition 2.3. Let a, b ∈ R, { fn}n∈I be a uniformly summable indexed family of functions defined on [a, b] with

values in H and f :=
∑
n∈I

fn. If fn is continuous on [a, b] for every n ∈ I, then the family {
b∫

a
fn(t)dt}n∈I is summable

and
∑
n∈I

b∫
a

fn(t)dt =
b∫

a
f (t)dt.

Proof. Since { fn}n∈I is uniformly summable on [a, b] with sum f , for every ε > 0 there exists a finite subset
Iε ⊂ I such that ‖ f (t) −

∑
n∈F

fn(t)‖ <
ε

b − a
for every finite subset F with Iε ⊂ F ⊂ I and for all t ∈ [a, b]. From

the Proposition 2.2, f is continuous on [a, b], so f −
∑
n∈F

fn is continuous. Then, f −
∑
n∈F

fn and f are integrable

functions on [a, b] for every finite subset F with Iε ⊂ F ⊂ I, hence by Theorem 3.3.5 in ([4],p.96-97), we get

‖

b∫
a

f (t)dt −
∑
n∈F

b∫
a

fn(t)dt‖ = ‖
b∫

a
( f (t) −

∑
n∈F

fn(t))dt‖ ≤
b∫

a
‖ f (t) −

∑
n∈F

fn(t)‖dt < ε.

Remark 2.1. Propositions 2.2 and 2.3 are generalizations of two theorems given in ([3],p.240).

Now let us consider an indexed family {xn}n∈Z of vectors in H, whereZ is the set of all integer numbers.

For an integer n ≥ 0 and every r with 0 ≤ r < 1, let us set Sn :=
n∑

k=−n
xk, σn :=

S0 + · · · + Sn

n + 1
and Ar :=

∑
k∈Z

r|k|xk

if {r|k|xk}k∈Z is summable for 0 ≤ r < 1. We call σn and Ar to be the nth Cesàro mean, and the rth Abel-
Poisson mean of the indexed family {xn}n∈Z, respectively. Following ([12],p.53,54;[13],p.20,153), let us give
a definition:

Definition 2.2. Let {xn}n∈Z be an indexed family in H.
(i) {xn}n∈Z is said to be summable in the sense of Cesaro with the sum s if the limit lim

n→∞
σn exists and say s.

(ii) {xn}n∈Z is said to be summable in the sense of Abel-Poisson if {r|k|xk}k∈Z is summable for every 0 ≤ r < 1 with
sum Ar and lim

r→1−
Ar exists. The limit lim

r→1−
Ar is called Abel-Poisson sum of {xn}n∈Z.
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We shall use the following notations. Let GL(H) be the group of all invertible bounded linear operators
from H to itself, T := {eit : −π ≤ t < π} be the topological group of the unit circle. Let us define the function
ϕ : R → T, ϕ(t) := eit. This function is a surjective group homomorphism and with kernel 2πZ. By the
first isomorphism theorem we have that T � R/2πZ. Further, functions on T naturally identified with
2π-periodic functions on R.

The following definitions are given in [11].

Definition 2.3. A group homomorphism α : T→ GL(H) is called a linear representation of T in H.

Definition 2.4. Let α be a linear representation of T in H. Then,
(i) α is said to be an isometric linear representation of T in H if ‖α(t)(x)‖ = ‖x‖ for all x ∈ H and t ∈ T.
(ii) α is said to be a bounded linear representation of T in H if there exists an M such that ‖α(t)‖ ≤ M for every

t ∈ T.
(iii) α is called a strongly continuous linear representation of T in H if lim

t→0
α(t)(x) = x for all x ∈ H.

It is easily proved that if α is a strongly continuous linear representation of T in H, then the orbit maps
αx : T→ H, αx(t) := α(t)(x) for all x ∈ H are continuous on T. Hence, because of the compactness of T, there
exists an Mx > 0 for ∀x ∈ H such that ‖α(t)(x)‖ ≤ Mx. This shows that the family {α(t)}t∈T of operators is
pointwise bounded. By Banach-Steinhaus Theorem it is uniformly bounded. Furthermore, by corollary
given in ([11],p.82) there exists an equivalent norm ‖ ‖α to the norm ‖ ‖ in H relative to α which is an
isometric strongly continuous linear representation. Then, in sequel we consider only an isometric strongly
continuous linear representation of T in H. We write an isometric strongly continuous representation
instead of isometric strongly continuous linear representation.

Let α be an isometric strongly continuous representation of T in H and x ∈ H. Then, since the function

e−intα(t)(x) is continuous on T for every n ∈ Z, the vector valued integral
1

2π

π∫
−π

e−intα(t)(x)dt exists ([4],p.93).

Definition 2.5. Let α be an isometric strongly continuous representation of T in H,n ∈ Z and x ∈ H. Then, Fαn(x)

defined by Fαn(x) :=
1

2π

π∫
−π

e−intα(t)(x)dt is called the nth Fourier coefficient of x with respect to α. ([11],p.12)

Note that, since α is an isometric strongly continuous representation, Fαn : H → H is a bounded linear
operator and ‖Fαn(x)‖ ≤ ‖x‖ for every n ∈ Z, and x ∈ H ([8], Proposition 2).

In [6–8] it is proved that the family {Fαn(x)}n∈Z is summable with sum x in sense of Cesàro. In this work,
we shall prove directly that the family {Fαn(x)}n∈Z is summable with sum x in sense of Abel-Poisson.

3. Poisson Kernel

In this section we remind that Poisson Kernel being a vital tool for our main results and give its
fundamental properties. By Corollary 29.19 in [1] and Proposition 2.1, it is proved that

∑
n∈Z

r|n|eint is uniformly

summable on T for every 0 ≤ r < 1 with the sum Pr(t) =
1 − r2

1 − 2rcost + r2 ,where Pr(t) is called Poisson Kernel

and it has the following nice properties.

Theorem 3.1. ([2],p.256,257) The Poisson Kernel satisfies the following:

(i)
1

2π

π∫
−π

Pr(t)dt = 1 for all r ∈ [0, 1);

(ii) Pr(t) > 0 for all t,Pr(t) = Pr(−t) and Pr(t) is periodic in t with period 2π;
(iii) Pr(t) < Pr(δ) if 0 < δ < |t| ≤ π, 0 ≤ r < 1;
(iv) for each δ > 0, lim

r→1−
Pr(t) = 0 uniformly in t for 0 < δ < |t| ≤ π.
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4. Main Results

Theorem 4.1. Let α be an isometric strongly continuous representation of T in H and x ∈ H. Then, the indexed
family {r|n|Fαn(x)}n∈Z is summable for every 0 ≤ r < 1, and its sum denoted by Aα

r (x), it has the following integral

representation Aα
r (x) =

1
2π

π∫
−π

Pr(t)α(t)(x)dt.

Proof. Since the series
∞∑

n=0
rn and

−1∑
n=−∞

r−n are convergent for every 0 ≤ r < 1 and ‖r|n|Fαn(x)‖ ≤ r|n|‖x‖

for each n ∈ Z, 0 ≤ r < 1; Corollaries 29.8,29.13,29.18 and 29.19 given in ([1],ch.29) imply that the in-
dexed family {r|n|Fαn(x)}n∈Z is uniformly and absolutely summable. Let Aα

r (x) :=
∑

n∈Z
r|n|Fαn(x) for every

0 ≤ r < 1. Since α is an isometric strongly continuous representation, we have ‖e−intr|n|α(t)(x)‖ ≤ r|n|‖x‖
for all n ∈ Z, 0 ≤ r < 1 and x ∈ H. Hence the same Corollaries above and Proposition 2.1 show that
indexed function family {e−intr|n|α(t)(x)}n∈Z is uniformly summable on T, and by Proposition 2.3, we get
π∫
−π

∑
n∈Z

r|n|e−intα(t)(x)dt =
∑

n∈Z

π∫
−π

r|n|e−intα(t)(x)dt. Therefore, Aα
r (x) =

∑
n∈Z

r|n|Fαn(x) =
∑

n∈Z
r|n|(

1
2π

π∫
−π

e−intα(t)(x)dt) =

1
2π

π∫
−π

(
∑

n∈Z
r|n|e−intα(t)(x))dt =

1
2π

π∫
−π

Pr(−t)α(t)(x)dt. From the last equality and (ii) of Theorem 3.1, we get

Aα
r (x) =

1
2π

π∫
−π

Pr(t)α(t)(x)dt for every 0 ≤ r < 1.

The operator Aα
r is called the rth Abel-Poisson mean operator of the family {Fαn}.

Theorem 4.2. Let α be an isometric strongly continuous representation of T in H and x ∈ H. Then, the indexed
family {Fαn(x)}n∈Z of Fourier coefficients of x is Abel-Poisson summable to x.

Proof. Since α is an isometric strongly continuous representation of T in H, we have lim
t→0

α(t)(x) = x. Then,

for every ε > 0 there exists a 0 < ρ < π such that

‖α(t)(x) − x‖ <
ε
2

(1)

for all 0 ≤ |t| < ρ. Hence (ii) and (iv) of Theorem 3.1, for
ε

4(1 + ‖x‖)
> 0 there exists a δ > 0 such that every

r, 0 < 1 − δ < r < 1 and 0 < ρ < |t| ≤ π, we have

0 < Pr(t) <
ε

4(1 + ‖x‖)
(2)

Hence considering (1),(2), Theorem 4.1 and Theorem 3.5.5 in [4], we get that

‖Aα
r (x) − x‖ = ‖

1
2π

π∫
−π

Pr(t)α(t)(x)dt − x‖ = ‖
1

2π

π∫
−π

Pr(t)(α(t)(x) − x)dt‖

≤
1

2π

π∫
−π

‖Pr(t)(α(t)(x) − x)‖dt

≤
1

2π

∫
0<ρ<|t|≤π

Pr(t)‖α(t)(x) − x‖dt +
1

2π

∫
0<|t|≤ρ

Pr(t)‖α(t)(x) − x‖dt

<
1

2π

∫
0<ρ<|t|≤π

ε
4(1 + ‖x‖)

‖α(t)(x) − x‖dt +
1

2π

∫
0<|t|≤ρ

Pr(t)
ε
2

dt
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<
1

2π

∫
0<ρ<|t|≤π

ε
4(1 + ‖x‖)

(‖α(t)(x)‖ + ‖x‖) dt +
1

2π
ε
2

∫
0<|t|≤ρ

Pr(t)dt

<
1

2π
ε

4(1 + ‖x‖)
2‖x‖2π +

1
2π

ε
2

2π < ε

Remark 4.1. Theorem 4.2 is stated without proof in ([7], Theorem 9).

Remark 4.2. Special cases of this Theorem are given for the Fourier series of functions in a homogeneous Banach
spaces on T, C(T) and L1(T) respectively in ([5],p.16) and ([12],p.56), where L1(T) is the space of all complex-valued

Lebesque integrable functions on T with the norm ‖ f ‖L1 =
1

2π

π∫
−π

| f (t)|dt.

Proposition 4.3. Let α be an isometric strongly continuous representation of T in H. Then, the operator Aα
r is a

linear and
∥∥∥Aα

r (x)
∥∥∥ ≤ ‖x‖ for all x ∈ H and all r ∈ d0, 1).

Proof. The operator Aα
r ’s linearity is clear. On the other hand, since α is an isometric strongly continuous

linear representation, we have ‖α(t)(x)‖ = ‖x‖ for all x ∈ H. Therefore, by Theorem 4.1 and Theorem 3.5.5 in

[4], we get that
∥∥∥Aα

r (x)
∥∥∥ = ‖

1
2π

π∫
−π

Pr(t)α(t)(x)dt‖ ≤
1

2π

π∫
−π

Pr(t) ‖α(t)(x)‖ dt = ‖x‖
1

2π

π∫
−π

Pr(t)dt = ‖x‖

Now,we give some tests for compactness of a set in H in terms of the rth Abel-Poisson mean operator Aα
r .

Before the proof and statement of these tests, we give some informations which we will use in the following

proof. Let Hn := {x : x ∈ H and α(t)(x) = eintx, ∀t ∈ [−π, π)} for any n ∈ Z, and
n∑

k=m

Hk be linear subspace of

H spanned by the subset
n⋃

k=m

Hk ⊂ H for m,n ∈ Z such that m ≤ n. It is easily seen that Hn is a closed linear

subspace of H, and so
n∑

k=m

Hk is closed. Also
n∑

k=m

Hk is finite dimensional if each Hk is finite dimensional.

Theorem 4.4. Let α be a strongly continuous isometric linear representation of T in H and dim(Hn) < +∞ for all
n ∈ Z. Then, a subset S ⊂ H is relatively compact if and only if:

(i) there exists an M > 0 such that ‖ x ‖≤M for ∀x ∈ S;
(ii) for any ε > 0 there exists r(ε),0 < r(ε) < 1 such that ‖ x − Aα

r (x) ‖< ε for ∀r : r(ε) < r < 1 and ∀x ∈ S.

Proof. Assume that S is a relatively compact subset of H. Then, S̄ is a compact subset of H and by Lemma 2.5.2
in [9], S̄ is a closed and bounded subset of H. Hence being S ⊂ S̄ shows that S is a bounded subset of H, that is
there exists an M > 0 such that ‖x‖ ≤M for all x ∈ S (i). Suppose that condition (ii) of the our theorem is false.
Then, there exists εo > 0 such that for any 0 < δ < 1, there exists an rδ, 0 < δ < rδ < 1 and an element xδ ∈ S,
for which the inequality εo ≤ ‖xδ−Aα

rδ (xδ)‖ holds. So, there exist two sequences {rn} ⊂ (0, 1) and {xn} ⊂ S such

that
n

n + 1
< rn < 1 and εo ≤ ‖xn − Aα

rn
(xn)‖ for all n ∈N. It is clear that lim

n→+∞
rn = 1. By xn ∈ S and relatively

compactness of S, there exists a subsequence
{
xkn

}
of the sequence {xn} and an element xo ∈ H such that

lim
n→+∞

xkn = xo. Since, lim
r→1−

Aα
r (xo) = xo and lim

n→+∞
rn = 1, we have lim

n→+∞
Aα

rkn
(xo) = xo. According to Proposition

4.3, ‖ Aα
rkn

(xo)−Aα
rkn

(xkn ) ‖≤‖ Aα
rkn

(xo−xkn ) ‖≤‖ xo−xkn ‖ for all n ∈N. Therefore, lim
n→+∞

‖ Aα
rkn

(xo)−Aα
rkn

(xkn ) ‖= 0.
Consequently, the inequality εo ≤ ‖xkn −Aα

rkn
(xkn )‖ ≤ ‖xkn − xo ‖ + ‖ xo −Aα

rkn
(xo)‖+ ‖Aα

rkn
(xo)−Aα

rkn
(xkn )‖ for all

n ∈N gives contradiction 0 < εo ≤ 0. Thus the set S satisfies condition (ii).
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Let ε > 0 and S be a subset of H satisfying conditions (i) and (ii). Then there exists an M > 0 such that
‖x‖ ≤M for ∀x ∈ S and there exists r(ε), 0 < r(ε) < 1 such that

‖x − Aα
r (x)‖ <

ε
3

(3)

for ∀r : r(ε) < r < 1 and ∀x ∈ S. For fixed r, r(ε) < r < 1 there exists an n ∈ N such that 2Mrn+1(1 − r)−1 <
ε
3

.

Let n be a such natural number and Sn := {
n∑

m=−n
r|m|Fαm(x) : x ∈ S}. From Proposition 2 in [8], it is known that

α(t)(Fαm(x)) = eimtFαm(x). Hence, Fαm(x) ∈ Hm for all x ∈ H and m ∈ Z, and so
n∑

m=−n
r|m|Fαm(x) ∈

n∑
i=−n

Hi. On the

other hand,

n∑
m=−n

r|m| =
−1∑

m=−n

r|m| +
n∑

m=0

r|m| = (1 − rn+1)(1 − r)−1 + (r − rn+1)(1 − r)−1

= (1 + r − 2rn+1)(1 − r)−1. (4)

Using the boundedness of S and the inequality
∥∥∥Fαm(x)

∥∥∥ ≤ ‖x‖, we obtain∥∥∥Fαm(x)
∥∥∥ ≤M (5)

for all x ∈ S and m ∈ Z. Hence, using inequalities (4) and (5), we get that∥∥∥∥∥∥∥
n∑

m=−n

r|m|Fαm(x)

∥∥∥∥∥∥∥ ≤
n∑

m=−n

r|m|
∥∥∥Fαm(x)

∥∥∥ ≤ ‖x‖ n∑
m=−n

r|m| ≤M
(
1 + r − 2rn+1

)
(1 − r)−1 .

Therefore, Sn is a bounded subset of the finite dimensional linear subspace
n∑

i=−n

Hi, so S̄n is bounded. Hence,

S̄n is compact by Theorem 2.5.3 in [9], and so Sn is totally bounded. Let
{
x1, . . . , xq

}
be a finite

ε
3

-net for Sn

for any ε > 0. We show that the set
{
x1, . . . , xq

}
is a finite ε-net for S. Let x be an arbitrary element of S. Since

n∑
m=−n

r|m|Fαm(x) ∈ Sn, there exists an xi, i ∈ {1, · · · , q} such that

‖

n∑
m=−n

r|m|Fαm(x) − xi ‖<
ε
3
. (6)

Using the equality Aα
r (x) =

∑
n∈Z

r|n|Fαn(x), the equality∑
|m|>n

r|m| = 2rn+1(1 − r)−1 (7)

and (4), we get that the following inequality

‖ Aα
r (x) −

n∑
m=−n

r|m|Fαm(x) ‖ =

∥∥∥∥∥∥∥∑m∈Z r|m|Fαm(x) −
n∑

m=−n

r|m|Fαm(x)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∑
|m|>n

r|m|Fαm(x)

∥∥∥∥∥∥∥ ≤ ∑
|m|>n

r|m|
∥∥∥Fαm(x)

∥∥∥
≤ ‖x‖

∑
|m|>n

r|m| ≤ 2Mrn+1(1 − r)−1 <
ε
3

(8)
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From the inequalities (3), (6) and (8), we get ‖ x − xi ‖≤‖ x − Aα
r (x) ‖ + ‖ Aα

r (x) − xi ‖≤‖ x − Aα
r (x) ‖ + ‖

Aα
r (x) −

n∑
m=−n

r|m|Fαm(x) ‖ + ‖
n∑

m=−n
r|m|Fαm(x) − xi ‖< ε. Thus the set

{
x1, . . . , xq

}
is a ε-net for S. Consequently, S

is relatively compact by Lemma 8.8.2 in [9].

Theorem 4.5. Let α be a strongly continuous isometric linear representation such that dim(Hn) < +∞ for all n ∈ Z
and S ⊂ H. Then S is relatively compact if and only if the following conditions are satisfied

(i) S is bounded subset of H,
(ii) For every ε > 0 there exists a positive number 0 < δ < π such that ‖α(t)(x) − x‖ < ε for all 0 < |t| < δ(ε) and

x ∈ S.

Proof. Let ε > 0 and S is relatively compact in H. Since S is totally bounded, S is bounded.(i) Let
{x1, x2, ..., xm} ⊂ H be an

ε
3

-net for S. Since lim
t→0

α(t)(xk) = xk for k ∈ {1, 2, ...,m} there exists a δk ≡ δk(
ε
3

) > 0

such that ‖α(t)(xk) − xk‖ <
ε
3

for all |t| < δk. Let δ := min{δ1, ..., δm}. Since S ⊂
m⋃

k=1

B(xk;
ε
3

), if x ∈ S,

there exists an l ≡ l(x), l ∈ {1, 2, ...,m} such that x ∈ B(xl;
ε
3

) i.e. ‖x − xl‖ <
ε
3

. Then, ‖α(t)(x) − x‖ ≤
‖α(t)(x)−α(t)(xl)‖+‖α(t)(xl)−xl‖+‖xl−x‖ ≤ ‖α(t)(x−xl)‖+‖α(t)(xl)−xl‖+‖xl−x‖ ≤ ‖α(t)(xl)−xl‖+2‖xl−x‖ < ε
for all |t| < δ and x ∈ S. (ii)

S satifies the conditions (i) and (ii). Let ε > 0 and δ ≡ δ(ε) > 0 such that 0 < δ < π and ‖α(t)(x) − x‖ < ε
for all 0 < |t| < δ(ε) and x ∈ S. Since S is a bounded subset of H, there exists an M > 0 such that ‖x‖ < M for
all x ∈ S. By Theorem 3.1-iv. there exists an r(ε) > 0 such that

∫
π≥|t|≥δ

Pr(t)dt <
επ
2M

for all r(ε) < r < 1. Hence

by Theorem 3.1 and Theorem 4.4

‖Aα
r (x) − x‖ =

∥∥∥∥∥∥∥∥ 1
2π

π∫
−π

Pr(t)α(t)(x)dt − x

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥ 1
2π

π∫
−π

Pr(t) (α(t)(x) − x) dt

∥∥∥∥∥∥∥∥
≤

1
2π

∫
|t|≥δ

Pr(t)‖α(t)(x) − x‖dt +
1

2π

∫
|t|<δ

Pr(t)‖α(t)(x) − x‖dt

<
1

2π

∫
|t|≥δ

Pr(t) (‖α(t)(x)‖ + ‖x‖) dt +
1

2π

∫
|t|<δ

Pr(t)‖α(t)(x) − x‖dt

<
1

2π

∫
|t|≥δ

Pr(t)2‖x‖dt +
1

2π
ε
2

∫
|t|<δ

Pr(t)dt < ε

for all 0 < r(ε) < r < 1 and x ∈ S. Then, S satisfies the condition (ii) of Theorem 4.4. So, S is relatively
compact.

Theorem 4.6. Let α be a strongly continuous isometric linear representation such that dim(Hn) < +∞ for all n ∈ Z
and ∅ , S ⊂ H. Then S is relatively compact if and only if for any ε > 0 there exists a positive number ro(ε) such that
‖rAα

r (x) − x‖ < ε for all 0 < ro(ε) < r < 1 and x ∈ S.

Proof. Let S be relatively compact. Suppose that the above condition is not true. Then there exists an
εo > 0 such that for every δ > 0 there exists an rδ, 0 < δ < rδ and a xδ ∈ S such that ‖rδAα

rδ (xδ) − xδ‖ ≥ εo.

Therefore, there exists a sequence {rn} ⊂ R and a sequence {xn} ⊂ S such that 0 <
n

n + 1
< rn < 1 and

‖rnAα
rn

(xn) − xn‖ ≥ εo. Since S is relatively compact, the sequence {xn} has a convergent subsequence {xkn }

such that lim
n→+∞

xkn = xo for xo ∈ H. Considering lim
n→+∞

rn = 1,
n

n + 1
< rn < 1, lim

r→1−
Aα

r (xo) = xo and the operator
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Aα
r : H→ H is a bounded linear operator it follows that lim

n→+∞
rkn Aα

rkn
(xo) = xo. Hence,

εo ≤ ‖rkn Aα
rkn

(xkn ) − xkn‖

≤ ‖rkn Aα
rkn

(xkn ) − rkn Aα
rkn

(xo) + rkn Aα
rkn

(xo) − xo + xo − xkn‖

≤ ‖rkn (Aα
rkn

(xkn ) − Aα
rkn

(xo))‖ + ‖rkn Aα
rkn

(xo) − xo‖ + ‖xo − xkn‖

≤ |rkn |‖A
α
rkn

(xkn − xo)‖ + ‖xkn − xo‖ + ‖rkn Aα
rkn

(xo) − xo‖

≤ 2‖xkn − xo‖ + ‖rkn Aα
rkn

(xo) − xo‖

for all n ∈ N and this gives a contradiction 0 < εo ≤ 0. Therefore if S is relatively compact, for every ε > 0
there exists an 0 < r(ε) < 1 such that ‖rAα

r (x) − x‖ < ε for all 0 < r0(ε) < r < 1 and x ∈ S.

Let ε > 0. From the condition shows that
1
r

(‖x‖+ ε) > ‖Aα
r (x)‖ >

1
r

(‖x‖ − ε) for all ro(ε) < r < 1 and x ∈ S.

Let us put
1
r

= 1 + δr. Firstly, we show that S is bounded subset of H. If not, there exists a xr ∈ S such that

δr(‖xr‖ − ε) > 2ε. For xr ∈ S, from the inequality ‖Aα
r (xr)‖ >

1
r

(‖xr‖ − ε), we get ‖Aα
r (xr)‖ > ‖xr‖ + ε > ‖xr‖.

This contradicts to Proposition 4.3. So S is a bounded subset. Finally, we show that S also satisfies the
condition (ii) of Theorem 4.4. Since S is a bounded subset of H, there exists an M > 0 such that ‖x‖ ≤ M
for all x ∈ S. Hence, lim

r→1−1
(1 − r)M = 0. Therefore, there exists an 0 < r∗o(ε) < 1 such that (1 − r)M < ε

for all 0 < r∗o(ε) < r < 1. Let us take r(ε) := max{ro(ε), r∗o(ε)}. Then by considering Proposition 4.3 for all
0 < r(ε) < r < 1 and x ∈ S, we get that

‖Aα
r (x) − x‖ = ‖(1 − r)Aα

r (x) + rAα
r (x) − x‖ ≤ (1 − r)‖Aα

r (x)‖ + ‖rAα
r (x) − x‖

< (1 − r)M + ‖rAα
r (x) − x‖ < 2ε.

Since S satisfies all conditions of Theorem 4.4, S is relatively compact.
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