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Abstract. Let A denote the generator of a strongly continuous periodic one-parameter group of bounded
linear operators in a complex Banach space H. In this work, an analog of the resolvent operator which is
called quasi-resolvent operator and denoted by Rλ is defined for points of the spectrum,some equivalent
conditions for compactness of the quasi-resolvent operators Rλ are given.Then using these, some theorems
on existence of periodic solutions to the non-linear equations Φ(A)x = f (x) are given, where Φ(A) is a
polynomial of A with complex cofficients and f is a continuous mapping of H into itself.

1. Introduction

Let α(t) be a sfrongly continuous periodic one-parameter group of bounded linear operators in a Banach
space H, A is the generator of α, D(A) is the domain of the definition of the operator A, Φ(A) is the operator
c0I + c1A + · · · + cn−1An−1 + An, where c j is a complex number, and I is the unit operator in H.

In this paper, we study existence of solutions to the nonlinear equation

Ax − λx = f (x), (1)

where λ is a complex number, f : D(A)→ H is a continuous mapping, and to the nonlinear equation

Φ(A)x = F(x), (2)

where F : D(An)→ H is a continuous mapping.
Equations (1) and (2) are abstract forms of periodic nonlinear differential equations in functional spaces.

For example, let H = C[T] be the Banach space of all complex continuous functions on T =
{
eit : −π ≤ t < π

}
with the supremum norm and α(t) is the operator α(s)x(t) = x(t + s). Then D(A) = C1(T) and Ax(t) = d

dt x(t)
is the usual derivative of x(t) [2]. The following periodic functional differential equation d

dt x(t) − λx =
f (t, x(t − ϕ1(t)), . . . , x(t − ϕm(t))), has form (1), and the following so-called periodic high-order functional
Duffing equation Φ( d

dt )x(t) = f (t, x(t − ϕ1(t)), . . . , x(t − ϕm(t))), has form (2), where f : R × Cm
→ C be a
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continuous function, f (t+2π,u1,u2, . . . ,um) = f (t,u1,u2, . . . ,um) andϕi : R→ R is a 2π-periodic C1-function,
i = 1, . . .m.

The theorem on integral for the operator A, theorems on existence of periodic solutions of a linear
differential equation of nth order with constant coefficients and systems of linear differential equations with
constant coefficients in Banach spaces are obtained in [5].In the case of an existence of periodic solutions,
evident forms of all periodic solutions of a linear differential equation of nth order with constant coefficients
and systems of linear differential equations with constant coefficients in Banach spaces are given in terms
of resolvent and quasi-resolvent operators of A. Existence of periodic solutions to equations of forms
(1) and (2) in classical Banach spaces have been studied in many works. In particular, equations of the
forms (1) and (2) for the Banach space of continuous vector-valued functions were considered in papers
[3, 4, 7, 8, 14, 15, 19],[21]-[25] and for the Banach space of all summable vector-valued functions on T
were considered in [1, 10, 18]. Our approach is based on techniques and results of the theory of periodic
one-parameter groups of bounded linear operators in Banach spaces [2, 6, 9, 17].

2. Preliminaries

Denote the group of all invertible bounded linear operators F : H → H of a complex Banach space H
by GL(H).Let T be the one-dimensional torus

{
eit : −π ≤ t < π

}
. Further we shall consider T as the additive

group Q/2πZ ' {t : −π ≤ t < π} with its euclidean topology, where Q is the field of real numbers.The
following definitions are given in [6, 17].

Definition 1.
(i)A homomorphism α : T→ GL(H) will be called a linear representation of T in H.
(ii)Linear representations α : T → GL(H) and β : T → GL(V) will be called equivalent if there exists a bounded
invertible linear operator B : H→ V such that Bα(t) = β(t)B for all t ∈ T.
(iii)A linear representation α of T in H will be called isometric if ‖α(t)x‖=‖x‖ for all t ∈ T and x ∈ H.
(iv)A linear representation α of T in H will be called strongly continuous if limt→0 α(t)x = x for all x ∈ H.

It is known that every strongly continuous linear representation of T on a Banach space is equivalent to
a strongly continuous isometric linear representation of T ([17],p.82). In sequel, we consider only strongly
continuous isometric linear representations. Let α be a strongly continuous linear representation of T in H,
Z be the ring of all integers, x ∈ H and n ∈ Z. Then by the theorem in ([16], p.314) the Riemann’s integral
Pn(x) := 1

2π

∫ π
−π

e−intα(t)xdt exists. Pn(x) is called the n-th Fourier coefficient of x with respect to α [3, 6, 17].

Proposition 1. Let α be a strongly continuous isometric linear representation of T in H and x, y ∈ H. Then:
1. α(t)Pn(x) = Pn(α(t)x) = eintPn(x) for all n ∈ Z, x ∈ H and t ∈ T;
2. PnPm = 0 for all m,n ∈ Z,m , n, and P2

n = Pn for all n ∈ Z;
3. ‖Pn(x)‖ ≤ ‖x‖ for all n ∈ Z and x ∈ H.
4. If Pm(x) = Pm(y) for each m ∈ Z, then x = y.

Proof. Proof is given in ([6], p.250; [13], Corollary 1).

Let n ∈ Z and put Hn := {x ∈ H : α(t)x = eintx,∀t ∈ T}. It is easily proven that Hn is a closed sublinear space

of H, Pn(x) ∈ Hn for all x ∈ H and Pn(H) ⊂ Hn. Also, for each x ∈ Hn we have Pn(x) =
1

2π

π∫
−π

e−intα(t)(x)dt =

1
2π

π∫
−π

e−inteintxdt = x. Therefore, Hn = Pn(H). For the n ∈ Z+ let us put sn(x) :=
∑n

k=−n Pk(x), σn(x) :=

s0(x)+s1(x)+···+sn(x)
n+1 ,Kn(t) = 1

n+1

(
sin (n+1)

2 t
sin t

2

)2
,Spec(x) := {in : n ∈ Z,Pn(x) , 0},Spec(H) :=

⋃
x,θ,x∈H Spec(x),H f := {x ∈

H : Spec(x) is finite}. H f is a subspace of H. In the present paper, we assume that Spec(H) is infinite. The
case of the finite Spec(H) is investigated easy and it is omitted. Let α be a strongly continuous isometric
linear representation of T in H.
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Definition 2. ([6],p.45) A point x ∈ H will be called a differentiable point of α if there exists Ax := limt→0
α(t)x−x

t
in H. Denote the set of all differentiable points of α by D(A).The operator A will be called the generator of the linear
representation α([6],p.45 ). The set Spec(H) is called the spectrum of A. The set C \ Spec(H) is called the resolvent
set of A.It is easily seen that H = D(A) if and only if Spec(H) is finite.

Proposition 2. ([13],Proposition 4]) Let α be a strongly continuous isometric linear representation of T in H. Then

(i) D(A) is a linear subspace of H, H f ⊂ D(A) and D(A) = H;
(ii) D(A) is α(T)-invariant and α(t)Ax = Aα(t)x for all t ∈ T, x ∈ D(A);

(iii) APn(x) = Pn(Ax) = inPn(x) for all n ∈ Z and x ∈ D(A).

3. Some Inequalities for Norms of the Resolvent and Quasi-Resolvent Operators

Let α be a strongly continuous isometric linear representation of T in H. The linear operator Rλ on H,
defined by

Rλ(x) = (1 − e−2πλ)−1
∫ 2π

0
e−λsα(s)xds (3)

for λ ∈ C such that λ < Spec(H), is the resolvent of the generator A at the point λ ([6],IV,2.25). Other form of
the resolvent operator is given in([11];[5],Theorem 4).

For λ = im ∈ iZ, we define the linear operator Rλ as follows

Rim(x) = (2π)−1
∫ 2π

0

(∫ t

0
e−imsα(s)xds

)
dt − (1 + π) (2π)−1

∫ 2π

0
e−imtα(t)xdt (4)

The operator Rim(x) will be called the quasi-resolvent operator of A for the point im of the spectrum of A.
The operator Rλ for λ = 0 was introduced in [13] and for every λ = im ∈ iZ in [5, 11, 12].

Proposition 3. Letλ ∈ C, λ < Spec(H). Then ‖Rλ‖ ≤ dλ, where dλ =| δ(1−e−2πλ) |−1
| e−2πδ

−1 | forλ = δ+iβ, δ , 0
and dλ = 2π | 1 − e−2πλ

|
−1 for λ = δ + iβ, δ = 0.

Proof. Let λ = δ + iβ, δ , 0. Using formula (3) and isometricity of α, we have ‖ Rλ(x) ‖≤| 1 − e−2πλ
|
−1

∫ 2π

0 ‖

e−λsα(s)x ‖ ds ≤| δ(1 − e−2πλ) |−1
| e−2πδ

− 1 |‖ x ‖ . Let λ = δ + iβ, δ = 0. Similarly ‖ Rλ(x) ‖≤| 1 − e−2πλ
|
−1

∫ 2π

0 ‖

e−λsα(s)x ‖ ds ≤ 2π | 1 − e−2πλ
|
−1
‖ x ‖ .

Proposition 4. Let λ = im ∈ iZ. Then ‖ Rim ‖≤ dim = (1+2π). In particular, if Pm(x) = 0 then ‖ Rim(x) ‖≤ π ‖ x ‖.

Proof. Using formula (4) and isometricity of α, we obtain ‖ Rim(x) ‖≤ (2π)−1
∫ 2π

0

∫ t

0 dsdt ‖ x ‖ +(1 + π) ‖ x ‖=

(1 + 2π) ‖ x ‖ . Assume that Pm(x) = 0. Similarly, we have ‖ Rim(x) ‖≤ (2π)−1
∫ 2π

0 (
∫ t

0 ‖ e−imsα(s)x ‖ ds)dt ≤

(2π)−1
∫ 2π

0

∫ t

0 dsdt ‖ x ‖= π ‖ x ‖ .

Corollary 1. Let Λ = {λ1, . . . , λn} be a set of complex numbers and dλk is the real number defined in Proposition 3
and 4. Then the inequality ‖ Rλ1 Rλ2 · · ·Rλn (x) ‖≤ dΛ ‖x‖ holds, where dΛ = dλ1 dλ2 ...dλn .

Proof. It follows easily from Proposition 3 and 4 by induction.

Proposition 5. Let α be a strongly continuous isometric linear representation of T in H. Then :
(i) Rλ − Rim = (λ − im)Rλ ◦ Rim − (λ − im)−1Pm for all m ∈ Z and λ ∈ C \ Spec(H);

(ii) Rλ ◦ Rim = Rim ◦ Rλ for all λ ∈ C and m ∈ Z.

Proof. (i). Let x ∈ H, λ ∈ C \ Spec(H) and m ∈ Z. For n , m, by Theorems 3,4 in [5] and PnPm = 0 in
Proposition 1,we obtain Pn(Rλ − Rim) = (in − λ)−1Pn − (in − im)−1Pn = Pn((λ − im)RλRim − (λ − im)−1Pm).
Similarly, Pm(Rλ − Rim) = (im − λ)−1Pm − PmRim = (im − λ)−1Pm − Pm = Pm((λ − im)RλRim − (λ − im)−1Pm).
Hence Pn(Rλ(x) − Rim(x)) = Pn(im − λ)Rλ ◦ Rim(x) − (im − λ)−1Pm(x) ) for every n ∈ Z. By Proposition 1, we
obtain equality (i). A proof of (ii) is similar.

Remark 1. Equation (i) in Proposition 5 is a generalization for operators Rim of the resolvent equation ([6],p.239,IV,1.2).
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4. Conditions for Compactness of Operators Rλ

First we give a test for compactness of a set in the Banach space of a linear representation.

Theorem 1. Let α be a strongly continuous isometric linear representation of T in H, satisfying the condition
dim(Hn) < +∞ for all n ∈ Z.Then a subset S ⊂ H is relatively compact if and only if:

(i) there exists an M > 0 such that ‖ x ‖≤M for all x ∈ S;
(ii) for any ε > 0 there exists an n(ε) ∈N such that ‖ x − σn(x) ‖< ε for all n ∈N,n ≥ n(ε),and x ∈ S.

Proof. Let S be a relatively compact subset of H. Then S is bounded that is there exists an M > 0 such that
‖ x ‖≤M for all x ∈ S. Suppose that (ii) of the our theorem is false. Then there exists an ε0 > 0 such that for
any integer m > 0 there exist an nm > m and an element xnm ∈ S, satisfying the condition ‖ xnm−σnm (xnm ) ‖≥ ε0.
By xnm ∈ S and relatively compactness of S, there exist a subsequence

{
x′k

}
of the sequence

{
xnm

}
and an

element xo ∈ H such that limk→∞ ‖ x′k − xo ‖= 0. We have ε0 ≤‖ x′k − σk(x′k) ‖≤‖ x′k − xo ‖ + ‖ xo − σk(xo) ‖
+ ‖ σk(xo) − σk(x′k) ‖ . According to Proposition 3 in [13], ‖ σk(xo) − σk(x′k) ‖=‖ σk(xo − x′k) ‖≤‖ xo − x′k ‖. Using
Theorem 1 in [13], we obtain ε0 ≤ 2 ‖ xo − x′k ‖ + ‖ xo − σk(xo) ‖→ 0. This is a contradiction shows that the
set S satisfies condition (ii).

Conversely, let S be a subset of H satisfying conditions (i) and (ii). For fixed n, we consider the set
Sn = {σn(x) : x ∈ S}. We note that σn(x) ∈

∑n
i=−n Hi for any f . Therefore Sn is a subset of the finite dimensional

closed subspace
∑n

i=−n Hi of H, by Proposition 3 in [13] Sn is bounded, hence Sn ⊂
∑n

i=−n Hi is bounded.
Therefore Sn is compact and so Sn is totally bounded. Let ε > 0 and

{
x1, . . . , xq

}
a finite ε-net for Sn. We show

that it is a finite 2ε-net for S. Let x be an arbitrary element of S. There exists an xi such that ‖ σn(x)− xi ‖< ε.
Then ‖ x − xi ‖≤‖ x − σn(x) ‖ + ‖ σn(x) − xi ‖< 2ε. Thus the set

{
x1, . . . , xq

}
is a 2ε-net for S. Therefore S is

relatively compact.

Remark 2. Theorem 1 was given without of proof in the paper ([12], Theorem 11).

Theorem 2. Let α be a strongly continuous isometric linear representation of T in H. Then following three conditions
are equivalent:

(i) dim(Hn) < +∞ for all n ∈ Z;
(ii) the operator Rλ is compact for any λ ∈ C;

(iii) the operator Rλ is compact for some λ ∈ C.

Proof. (i)→ (ii). First we prove that the operator R0 is compact. Consider the set B = {x ∈ H :‖ x ‖≤ 1}. We
prove that the set R0(B) satisfies conditions of Theorem 1. By Proposition 4, the operator R0 is bounded.
Hence the set R0(B) is bounded. Prove that set R0(B) satisfies condition (ii) of Theorem 1. We need the
following lemma.

Lemma 1. Let x ∈ H such that P0(x) = 0. Then α(t)R0(x) =
∫ t

0 α(s)xds + R0(x).

Proof. It is given in ([13],Lemma 2;[5],Lemma 2).

According to Lemma 1, we get α(t)R0(x) − R0(x) =
∫ t

0 α(s)xds. From this equality, using the inequality
‖x‖ ≤ 1, we obtain

‖α(t)R0(x) − R0(x)‖ ≤

∥∥∥∥∥∥
∫ t

0
α(s)xds

∥∥∥∥∥∥ ≤
∫ t

0
‖x‖ ds = |t| ‖x‖ ≤ |t| . (5)

for all x ∈ B. From this inequality, we obtain that for any ε > 0 there exists a 0 < δ < ε
2 such that

‖α(t)R0(x) − R0(x)‖ < ε
2 for all |t| < δ < π and all x ∈ B. Since Kn(t) = Kn(−t) for all t ∈ [−π, π],

1
2π

∫ π
−π

Kn(t)dt = 1 and sin δ
2 ≤ sin t

2 for all t ∈ [δ, π), using Proposition 3 in [13] and Proposition 4,
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inequalities (5) and Kn(t) = 1
n+1

(
sin (n+1)

2 t
sin t

2

)2
≤

1
(n+1) sin2 δ

2
for all t ∈ [δ, π], we obtain ‖σn(R0x) − R0x‖ =∥∥∥ 1

2π

∫ π
−π

Kn(t)α(t)R0xdt − 1
2π

∫ π
−π

Kn(t)R0xdt
∥∥∥ ≤ 1

2π

∫
−δ

−π
‖Kn(t)(α(t)R0x − R0x)‖ dt+ 1

2π

∫ δ
−δ
‖Kn(t)(α(t)R0x − R0x)‖ dt+

1
2π

∫ π
δ
‖Kn(t)(α(t)R0x − R0x)‖ dt ≤ 1

π

∫ π
δ
‖Kn(t)‖ ‖α(t)R0x − R0x‖ dt + 1

2π

∫ δ
−δ
‖Kn(t)‖ ‖α(t)R0x − R0x‖ dt ≤

1
π(n+1) sin2 δ

2

∫ π
δ
‖α(t)R0x − R0x‖ dt + 1

2π

∫ δ
−δ

Kn(t) |t| dt ≤ 2‖R0(x)‖
(n+1) sin2 δ

2
+ δ ≤ 2(2π+1)

(n+1) sin2 δ
2

+ δ =
2(2π+1)

(n+1) sin2 ε
4

+ ε
2 for all x ∈ B.

On the other hand, there exists an n ∈N,n > n0 such that 2(2π+1)
(n+1) sin2 ε

4
< ε

2 for all n > n0.Hence, we obtain that
‖σn(R0x) − R0x‖ < ε for all n > n0 and all x ∈ B.This shows that the set R0(B) satisfies the condition (ii) of
Theorem 1,so it is relatively compact and the operator R0 is compact.

Let λ < iZ. Using Proposition 5, we obtain Rλ = R0 − λRλ ◦ R0 + 1
λP0. Since R0 is compact, the operator

(Rλ ◦ R0) is also compact. The operator P0 is compact as a projection operator onto the finite-dimensional
subspace H0. Therefore the operator Rλ is compact. Similarly, using Proposition 5, we obtain that the
operator Rim is also compact. The implication (ii)→ (iii) is obvious. (iii)→ (i). Let Rλ be a compact operator
for some λ ∈ C. Assume that λ < iZ. According to Theorem 3 in [5], since Rλ(x) = (im − λ)−1x for all
x ∈ Hm and all m ∈ Z, we have Rλ(Hm) = Hm. Using compactness of Rλ and Theorem 8.1.13 in ([20], p.288)
we obtain that dim(Hm) < +∞ for all m ∈ Z. In the case λ ∈ iZ, using Theorem 3 in [5], we obtain that
dim(Hm) < +∞ for all m ∈ Z. The proof is completed.

5. Theorems on Existence of a Solution to a Periodic Nonlinear Differential Equation in a Banach Space

Theorem 3. Let α be a strongly continuous isometric linear representation of T in H, a ∈ H and λ ∈ C.

(i) Assume that λ < Spec(H). Then the equation Ax−λx = a has the unique solution x = −Rλ(a) for every a ∈ H,
where Rλ has the form (4);

(ii) Assume that λ ∈ Spec(H), λ = im for some m ∈ Z. Then the equation Ax− imx = a has a solution if and only if
Pm(a) = 0. In the case Pm(a) = 0, a general solution of the equation Ax− imx = a has the form x = −Rim(a) + c,
where Rim has the form (5) and c is an arbitrary element of Hm.

Proof. It is given in ([5],Theorem 7).

Now we consider a solution to the nonlinear equation Ax − λx = f (x) in H, where λ is a complex number
and f : H→ H is a continuous mapping.

Theorem 4. Let α(t) be a strongly continuous isometric linear representation of T in H, λ ∈ C, λ < Spec(H) and
dim(Hn) < +∞ for all n ∈ Z. Assume that f1 : H → H and f2 : H → H are continuous functions satisfying the
following conditions:

(i) there exists a real number M1 > 0 such that M1 < d−1
λ and

∥∥∥ f1(x)
∥∥∥ ≤ M1 ‖x‖ for all x ∈ H, where dλ is as in

Proposition 3;

(ii) there exists a real number M2 > 0 such that
∥∥∥ f2(x)

∥∥∥ ≤M2 for all x ∈ H.
Then the equation Ax − λx = f1(x) + f2(x) has a solution.

Proof. According to Theorems 3,4 in [5], a solution of the equation Ax − λx = f1(x) + f2(x) is reduced to
that for equation x = −Rλ( f1(x) + f2(x)). We prove that the operator −Rλ( f1 + f2) satisfies the condition
of the Schauder’s fixed point theorem. For r > 0 put Br = {x ∈ H : ‖x‖ ≤ r}. We choose dλM2

1−dλM1
≤ r.

Then, using inequalities M1 < d−1
λ ,

∥∥∥ f1(x)
∥∥∥ ≤ M1 ‖x‖ and

∥∥∥ f2(x)
∥∥∥ ≤ M2 in our theorem, we obtain that∥∥∥−Rλ( f1(x) + f2(x))

∥∥∥ ≤ dλ(M1r + M2) ≤ r for all x ∈ Br that is the operator −Rλ( f1 + f2) is a mapping of Br into
Br. Since the operator Rλ is compact, the operator −Rλ( f1 + f2) is continuous and the set −Rλ( f1 + f2)(Br) is
conditionally compact, according to Shauder’s theorem, the equation −Rλ( f1 + f2)(x) = x has a solution and
the theorem is proved.
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Corollary 2. Let α(t) be a strongly continuous isometric linear representation of T in H, λ ∈ C, λ < Spec(H) and
dim(Hn) < +∞ for all n ∈ Z. Assume that B : H → H is a bounded linear operator such that ‖B‖ < d−1

λ . Then the
equation Ax − λx − Bx = a has a solution for every a ∈ H.

Proof. It is a particular case of Theorem 4.

Theorem 5. Let α(t) be a strongly continuous isometric linear representation of T in H, λ = im ∈ Spec(H),m ∈ Z
and dim(Hn) < +∞ for all n ∈ Z. Assume that f1 : H → H and f2 : H → H are continuous functions satisfying the
following conditions:

(i) there exists a real number M1 > 0 satisfying M1 < d−1
λ and

∥∥∥ f1(x)
∥∥∥ ≤ M1 ‖x‖ for all x ∈ H, where dλ is as in

Proposition 3;
(ii) there exists a real number M2 > 0 satisfying

∥∥∥ f2(x)
∥∥∥ ≤M2 for all x ∈ H.

(iii) Pm( f1(x) + f2(x)) = 0 for all x ∈ H.

Then the equation Ax − λx = f1(x) + f2(x) has a solution.

Proof. It is similar to proofs of Theorems 3(ii) and 4.

Let α(t) be a strongly continuous isometric linear representation of T in H, A is the generator of α and Φ(A)
is the operator

Φ(A) = c0I + c1A + · · · + cn−1An−1 + An, (6)

where n > 0, ci is a complex number (i = 0, . . . ,n − 1) and I is the unit operator in H. Denote the set of all
x ∈ D(A) such that Ax ∈ D(A) by D(A2). Similarly, denote the set of all x ∈ D(An−1) such that Ax ∈ D(A) by
D(An).

Proposition 6. Let α be a strongly continuous isometric linear representation of T in H and n ∈ Z,n ≥ 1. Then
D(An) = Rλ1 Rλ2 · · ·Rλn (H) for all λi ∈ C, i = 1, 2, . . .n.

Proof. It follows from Theorem 4 in [5] by induction.

Now we consider a solution to equation (2). This equation may be written in the form

(λ1I − A) . . . (λnI − A)x = (−1)n f (x). (7)

Proposition 7. Let Φ(A) be the linear operator (6), λ1, . . . , λn are complex roots of the polynomial Φ(λ).

(i) Assume that λ1, . . . , λn < iZ. Then an element x0 ∈ D(An) is a solution to equation (7) if and only if it is a
solution to the equation

x = (−1)nRλ1 . . .Rλn ( f (x)); (8)

(ii) Assume that λ1 = im1, . . . , λr = imr ∈ iZ, where r > 0, λr+1, . . . , λn < iZ and Pm1 f (x) = · · · = Pmr f (x) = 0 for
all x ∈ H. Then an element x0 ∈ D(An) is a solution to equation (7) if and only if it is a solution to equation (8).

Proof. (i) Assume that x0 ∈ D(An) is a solution to equation (7). By Theorem 4-(iii) in [5], applying operators
Rλ1 , . . . ,Rλn to equality (7), we obtain x0 = (−1)nRλ1 . . .Rλn ( f (x0)). Conversely, assume that x0 ∈ D(An) such
that x0 = (−1)nRλ1 . . .Rλn ( f (x0)). According to Proposition 6, Rλ1 . . .Rλn ( f (x0)) is an element of D(An). By
Theorem 4-(iii) in [5], applying operators (λ1I − A), . . . , (λnI − A) to x0 = (−1)nRλ1 . . .Rλn ( f (x0)), we obtain
(λ1I − A) . . . (λnI − A)x0 = (−1)n f (x0).

(ii) Let λ1 = im1, . . . , λr = imr ∈ iZ, where r > 0, λr+1, . . . , λn < iZ and Pm1 f (x) = · · · = Pmr f (x) = 0 for all
x ∈ H. Assume that x0 ∈ D(An) is a solution to equation (7). By Theorem 4-(ii) in [5], applying Rλr+1 , . . . ,Rλn

to equality (7), we obtain (λ1I − A) . . . (λrI − A)x0 = (−1)nRλr+1 . . .Rλn f (x0). From Theorem 4 in [5] and
Pm1 f (x0) = 0, we get Pm1 (Rmr+1

λr+1
. . .Rλn f (x0)) = Rλr+1 . . .Rλn Pm1 f (x0) = 0. According to Theorem 1, we have

(λ2I − A) . . . (λrI − A)x0 = (−1)nRλ1 Rλr+1 . . .Rλn f (x0). Similarly, by induction, x0 = (−1)nRλ1 . . .Rλn ( f (x0)).
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Proposition 8. Assume that Φ(A) is the linear operator (6), a ∈ H, λ1, . . . , λk are different complex roots of the
polynomial Φ(λ) and si is the multiplicity of λi, s1 + · · · + sk = n.

(i) If λ1, . . . , λk < iZ, then for any a ∈ H there exists the unique solution to equation

Φ(A)x = a (9)

in H and it is x = (−1)nRs1
λ1
. . .Rsk

λk
(a).

(ii) If λ1 = im1, . . . , λr = imr ∈ iZ, where r > 0, and λr+1, . . . , λk < iZ, then a solution to equation (9) exists if and
only if

Pm1 (a) = · · · = Pmr (a) = 0. (10)

For a ∈ H, satisfying condition (10), a general solution to equation (9) is

x = (−1)nRs1
λ1
. . .Rsr

λr
Rsr+1
λr+1

. . .Rsk
λk

(a) + b1 + · · · + br,

where bk is an arbitrary element of Hmk =
{
x ∈ H : α(t)x = eimktx, ∀ t ∈ T

}
.

Proof. It follows from Proposition 7, Theorem 3 and Theorems 3,4 in [5].

We consider a solution to the nonlinear equation Φ(A)x = f (x) in H, where Φ(A) is the linear operator (6)
and f : H→ H is a continuous mapping.

Theorem 6. Let α(t) be a strongly continuous isometric linear representation of T in H such that dim(Hk) < +∞ for
all k ∈ Z and Φ(A) is the linear operator (6) such that λi < iZ for all i = 1, 2, . . . ,n. Assume that f1 : H → H and
f2 : H→ H are continuous functions satisfying the following conditions:

(i) there exists a real number M1 > 0 such that M1 < (dλ1 dλ2 · · · dλn )−1 and
∥∥∥ f1(x)

∥∥∥ ≤M1 ‖x‖ for all x ∈ H, where
dλ is as in Proposition 3;

(ii) there exists a real number M2 > 0 such that
∥∥∥ f2(x)

∥∥∥ ≤M2 for all x ∈ H.

Then the equation Φ(A)x = f1(x) + f2(x) has a solution.

Proof. It follows from Theorem 4 by induction.

Theorem 7. Let α(t) be a strongly continuous isometric linear representation of T in H such that dim(Hk) < +∞ for
all k ∈ Z and Φ(A) is the linear operator (6) such thatλ1 = im1, . . . , λr = imr ∈ iZ, where r > 0, andλr+1, . . . , λn < iZ.
Assume that f1 : H→ H and f2 : H→ H are continuous functions satisfying the following conditions:

(i) there exists a real number M1 > 0 such that M1 < (dλ1 dλ2 · · · dλn )−1 and
∥∥∥ f1(x)

∥∥∥ ≤M1 ‖x‖ for all x ∈ H;

(ii) there exists a real number M2 > 0 such that
∥∥∥ f2(x)

∥∥∥ ≤M2 for all x ∈ H.
(iii) Pmi ( f1(x) + f2(x)) = 0 for all x ∈ H and i = 1, . . . , r.

Then the equation Φ(A)x = f1(x) + f2(x) has a solution.

Proof. It follows from Theorems 4 and 5 by induction.

Now we consider the existence and uniqueness of a solution of equation (7).

Theorem 8. . Let α(t) be a strongly continuous isometric linear representation of T in H and λ ∈ C, λ < iZ.
Assume that f : D(A) → H is a function such that there exists a real number M > 0 satisfying M < d−1

λ and∥∥∥ f (x) − f (y)
∥∥∥ ≤ M

∥∥∥x − y
∥∥∥ for all x, y ∈ D(A), where dλ is as in Proposition 3. Then the equation Ax − λx = f (x)

has the unique solution.
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Proof. According to Proposition 7, equation Ax−λx = f (x) has a unique solution if and only if so for equation
x = −Rλ f (x). We prove that the operator −Rλ f is a contracting mapping. We have ‖−Rλ f (x)− (−Rλ f (y))‖ =
‖Rλ( f (x) − f (y))‖ < dλM‖x − y‖. Since dλM < 1, the operator −Rλ f is a contracting mapping. Hence the
equation x = −Rλ f (x) has a unique solution.

Remark 3. Results, which are similar to Theorem 8, are true for the case λ ∈ iZ and for the equation Φ(A)x = f (x).

We note that the above results on periodic solutions are applicable also to functional differential equations
of first-order. Let H = C[T] be the Banach space of all complex continuous 2π-periodic functions with the
norm ‖ x ‖= maxt∈T | x(t) |, and α(t) is the operator α(s)x(t) = x(t + s), where T = R/Z ≈ [0, 2π). Then α(t)
(t ∈ T) is a strongly continuous periodic one-parameter group of bounded linear operators on C[T].Let A
be the generator of the group α(t), t ∈ T.It is known that A = d

dt and x(t) ∈ D(A) if and only if d
dt x(t) ∈ C[T].

We consider the following differential equation in C[T] with multiple deviating arguments

d
dt

x(t) − λx(t) = f (t, x(t − ϕ1(t)), . . . , x(t − ϕm(t))) (11)

where λ ∈ C, f : R × Cm
→ C be a continuous function, f (t + 2π,u1,u2, . . . ,um) = f (t,u1,u2, . . . ,um)

and ϕi : R → R is a 2π-periodic C1-function, i = 1, . . .m.Since the mapping F : C[T] → C[T], defined by
x(t)→ f (t, x(t−ϕ1(t)), . . . , x(t−ϕm(t))), is continuous, the Eq(11) has the form (Ax−λx = f (x)) : d

dt x(t)−λx(t) =
F(x).Hence the above results on periodic solutions are applicable to the Eq(11).
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