On the Residual Algebraic Free Extension of a Valuation on K to $K(x)$

Figen Öke ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science University of Trakya TR-22030 Edirne, Turkey

Abstract

In this study the residual algebraic free extension of a valuation on a field K to $K(x)$ is studied. It is assumed that v is a valuation on K with rankv $=2$ and the residual algebraic free extension w of v to $K(x)$ with $r a n k w=3$ is defined for a special case.

1. Introduction

Defining all extensions of a valuation v on a field K to $K\left(x_{1}, \ldots, x_{n}\right)$ is an old and important problem. Residual transcendental extensions of v to $K(x)$ were described in [1-2]. All extensions of v to $K(x)$ were classified in [3]. The composite of valuations and certain extensions of them were studied in [5-6].

In this paper it is aimed to define a new kind residual algebraic free extension w of v to $K(x)$, where v is a composite valuation $v=v_{1} \circ v_{2}$ with rankv $=2$.

2. Preliminaries

Throughout this paper K is a field, v is a valuation on K, G_{v} is the value group of v, O_{v} is the valuation ring of v, M_{v} is the maximal ideal of O_{v} and $k_{v}=O_{v} / M_{v}$ is the residue field of $v, p_{v}: O_{v} \rightarrow k_{v}$ is the canonical homomorphism, U_{v} is the group of units of O_{v}. If $a \in O_{v}$ then a^{*} denotes the natural image of a in k_{v}. \bar{K} is an algebraic closure of K and \bar{v} is a fixed extension of v to $\bar{K} . G_{\bar{v}}=\overline{G_{v}}$ is the divisible closure of G_{v} and $k_{\bar{v}}=\overline{k_{v}}$ is an algebraic closure of k_{v}. If $a \in \bar{K}$ then v_{a} is the restriction of \bar{v} to $K(a)$.

It is said that two valuations v, v^{\prime} on a field K are equivalent if they have the same valuation ring i.e. $O_{v}=O_{v^{\prime}}$. The set of all valuations of K which are inequivalent in pairs will be denoted by $V(K)$ as in [4].

Let $v, v^{\prime} \in V(K)$. It is said that v dominates v^{\prime} if $O_{v} \subseteq O_{v^{\prime}}$ and $M_{v^{\prime}} \subseteq M_{v}$ and it is written as $v \leq v^{\prime}$. Then $V(K)$ is an ordered set with respect to this relation by [4]. $v \leq v^{\prime}$ if and only if there exists a group homomorphism $s: G_{v} \rightarrow G_{v^{\prime}}$ such that $v^{\prime}=s v$ then one has: $\varphi_{v}\left(v^{\prime}\right)=$ Kers. The homomorphism s is an onto mapping and it is uniquely defined in [4].

If $v \in V(K), G$ is an ordered group and $s: G_{v} \rightarrow G$ is an onto homomorphism of ordered groups then $v^{\prime}=s v$ is a valuation on K such that $G_{v^{\prime}}=G$ and $v \leq v^{\prime}$ from [4].

[^0]Let L / K be an arbitrary field extension, v be a valuation on K and w be a valuation on L. It is said that w is an extension of v to L or v is the restriction of w to K if $w(t)=v(t)$ for every $t \in K$. Then $O_{r(w)}=O_{w} \cap K=O_{v}$ is satisfied from [4].

Let w be an extension of v to $K(x) . w$ is called residual transcendental (r.t.) extension of v if k_{w} / k_{v} is a transcendental extension. If w is a r.t. extension of v to $K(x)$ then there exists a minimal pair $(a, \delta) \in \bar{K} \times G_{\bar{v}}$ with respect to K where a is seperable over K. Let $f=\operatorname{Irr}(a, K)$ be a minimal polynomial of a respect to K and $\gamma=w(f)$. Let $F=F_{0}+F_{1} f+\ldots+F_{n} f^{n}, \operatorname{deg} F_{i}<\operatorname{deg} F, i=0, \ldots, n$ be the f-expansion of F, for each $F \in K[x]$. Define

$$
w(F)=\inf _{i}\left(v_{a}\left(F_{i}(a)\right)+i \gamma\right)
$$

Let e be the smallest non-zero positive integer such that $e \gamma \in G_{v_{a}}$, where v_{a} is the restriction of \bar{v} to $K(a)$. Then $G_{w}=G_{v_{a}}+Z \gamma,\left[G_{w}: G_{v_{0}}\right]=e\left[G_{v_{a}}: G_{v_{0}}\right]$. There exists $h \in K[x]$ such that $\operatorname{deg} h<\operatorname{deg} f, v_{a}(h(a))=e \gamma$. Then $r=f^{e} / h$ is an element of O_{w} of the smallest order such that $r^{*} \in k_{w}$ is transcendental over k_{v}. Thus the field $k_{v_{a}}$ can be identified cannonically with the algebraic closure of k_{v} in k_{w} and $k_{w}=k_{v_{a}}\left(r^{*}\right)$ from [2].
w is called residual algebraic (r.a.) extension of v if k_{w} / k_{v} is an algebraic extension. w / v is called residual algebraic torsion (r.a.t) extension if w / v r.a. extension and G_{w} / G_{v} is a torsion group. In this case $G_{v} \subseteq G_{w} \subseteq G_{\bar{v}}$ is satisfied according to [3].

If w is a r.a. extension of v to $K(x)$ and G_{w} / G_{v} is not a torsion group then w is called a residual algebraic free (r.a.f.) extension of v. If w is a r.a.f. extension of v to $K(x)$ then rankw $=r a n k v+1$ and $w=w_{1} \circ w_{2}$ where w_{1} is a valuation of $K(x)$ and w_{2} is a valuation of $k_{w_{1}}$. If w_{1} is trivial on K then it is defined by a monic irreducible polynomial $f \in K[x]$ or w_{1} is the valuation at infinity. $k_{w_{1}}=K(a)$ where a is the suitable root of f or $k_{w_{1}}=K$ if w_{1} is the valuation at infinity. Then w is defined for each polynomial $F \in K[x]$, $F=F_{0}+F_{1} f+\ldots+F_{n} f^{n}, \operatorname{deg} F_{i}<\operatorname{deg} f, i=0, \ldots, n$ as;

$$
w(F)=\inf _{i}\left(i, v_{1}\left(F_{i}(a)\right)\right)
$$

where v_{1} is an extension of v to $k_{w_{1}}=K(a)$ and $Q \times G_{\bar{v}}$ is ordered lexicographically from [3].
If w_{1} is the r.t extension of v to $K(x)$ then $k_{w_{1}}$ has a valuation w_{2} which is trivial on k_{v}. Hence w_{1} is defined by a minimal pair $(a, \delta) \in \bar{K} x G_{\bar{v}}$. Since w_{2} is trivial over $k_{v_{a}}$ then it is defined by an irreducible polynomial $G \in k_{v_{a}}[Y]$ or it is the valuation at infinity. A monic polynomial $g \in K[x]$ such that $w_{1}(g)=m e \gamma$, $\operatorname{deg} g=m e \operatorname{deg} f$ and $\left(g / h^{m}\right)^{*}=G$ is called a lifting polynomial of G in $K[x]$. If g is the lifting polynomial in $K[x]$ of $G \neq Y$ where $Y=r^{*}$ then w is defined as follows: Let $F \in K[x], F=F_{0}+F_{1} g+\ldots+F_{n} g^{n}$, $\operatorname{deg} F_{i}<\operatorname{deg} g, i=0, \ldots, n$ then

$$
w(F)=\inf _{i}\left(\left(w_{1}\left(F_{i}\right), 0\right)+i(w(g), 1)\right)
$$

where $G_{\bar{v}} x Q$ is ordered lexicographically, $k_{w}=k_{v_{b}}$ where b is a suitable root of g from [3].

3. Results

Let $v=v_{1} \circ v_{2}$ be a valuation on K such that rankv $=2$. Then $v \leqslant v_{1}$ and there exists a group homomorphism $s: G_{v} \rightarrow G_{v_{1}}$ such that $s v=v_{1}$. Here v_{1} is a valuation on K and v_{2} is a valuation on k_{v}. According to the general theory of composite valuations, there exists the exact sequence of groups:

$$
0 \rightarrow G_{v_{2}} \xrightarrow{\rho} G_{w} \xrightarrow{s} G_{v_{1}} \rightarrow 0
$$

where ρ and s are defined in a canonical way from [4].
We want to define a new kind extension w of v to $K(x)$ such that rankw $=3$. Since rankw $=3$ then $w=w_{1} \circ w_{2} \circ w_{3}$ is composite of valuations w_{1}, w_{2} and w_{3} here $r a n k w_{1}=r a n k w_{2}=r a n k w_{3}=1$. In this case there are different posibilities: Since $O_{r(w)}=O_{w} \cap K=O_{v}$ where r is the restriction map; $r: V(K(x)) \rightarrow V(K)$ then $O_{w_{1}} \cap K=K$ or $O_{w_{1}} \cap K=O_{v_{1}}$ is satisfied. If $O_{w_{1}} \cap K=K$ then w_{1} is trivial over $K, k_{w_{1}}$ is an algebraic extension of K and $w_{2} \circ w_{3}$ is an extension of v to $k_{w_{1}}$. If $O_{w_{1}} \cap K=O_{v_{1}}$ then w_{1} is a r.t. extension of v_{1} to $k_{w_{1}}$ is
a simple transcendental extension of $k_{v_{1}}^{\prime}$ where $k_{v_{1}}^{\prime}$ is an algebraic extension of $k_{v_{1}}$. There are two posibilities $O_{w_{2}} \cap k_{v_{1}}=k_{v_{1}}$ or $O_{w_{2}} \cap k_{v_{1}}=O_{v_{2}}$ when $O_{w_{1}} \cap K=O_{v_{1}}$. If $O_{w_{2}} \cap k_{v_{1}}=O_{v_{2}}$ then w_{2} is a r.t. extension of v_{2} to $k_{w_{1}}$. In this case $w_{1} \circ w_{2}$ is a r.t. extension of $v=v_{1} \circ v_{2}$ and this kind extensions are defined in [7]. If $O_{v_{2}} \cap k_{v_{1}}=O_{v_{2}}$ then $w_{1} \circ w_{2}$ is a r.t. extension of $v=v_{1} \circ v_{2}$ and w_{3} is trivial over $k_{v}, w=w_{1} \circ w_{2} \circ w_{3}$ is a r.a.f extension of second kind of $v=v_{1} \circ v_{2}$ to $K(x)$ and it can be obtained by using the definitions given in [3] and [7].

If $O_{w_{2}} \cap k_{v_{1}}=k_{v_{1}}$ then w_{2} is trivial over $k_{v_{1}}$ and $k_{w_{2}}$ is an algebraic extension of $k_{v_{1}}$. In this case w_{3} is an extension of v_{1} to $k_{w_{2}}$. This kind extension was not defined before and it can not be obtained by using the extensions known before. Using the above investigations it can be given the following theorem for the existence of the extension of v as desired:

Theorem 3.1: Let $v=v_{1} \circ v_{2}$ be a valuation of K with rankv $=2$ and w be an extension of v to $K(x)$ with rankw $=3$. Then there exist extensions w_{1} and u_{1} of v_{1} to $K(x)$ such that u_{1} is a r.a.f extension of second kind of v_{1} to $K(x)$ and $w \leqslant u_{1} \leqslant w_{1}$ is satisfied.

Proof: Since $v=v_{1} \circ v_{2}$ is a valuation of K with rankv $=2$ then $v \leqslant v_{1}$. There exists a homomorphism of ordered groups; $s: G_{v} \rightarrow G_{v_{1}}$ such that $s v=v_{1}$. Since $w=w_{1} \circ w_{2} \circ w_{3}$ is an extension of v to $K(x)$ it can be assumed that w_{1} is non-trivial over K. Then $O_{w_{1}} \cap K=O_{v_{1}}$ and w_{1} is a r.t. extension of v_{1} to $K(x)$, so $k_{w_{1}}=k_{v_{1}}^{\prime}\left(r^{*}\right)$ where $k_{v_{1}}^{\prime}$ is an algebraic extension of $k_{v_{1}}$ and r^{*} is transcendental over $k_{v_{1}}$. Define $i^{\prime}: G_{v_{1}} \rightarrow G_{w_{1}} \times Q$ (ordered lexicographically) such that $i^{\prime}(c)=(c, 0)$ for each $c \in G_{v_{1}} . i^{\prime}$ is an one to one group homomorphism. Then $G_{v_{1}}$ is isomorphic to a subgroup of $G_{w_{1}} \times Q$. There exists an onto homomorphism of ordered groups; $z_{1}: G_{w} \rightarrow G_{w_{1}} \times Q$, so $u_{1}=z_{1} w$ is a residual algebraic free extension of first kind of v_{1} to $K(x)$ with value group $G_{u_{1}} \cong G_{w_{1}} \times Q$ according to [6]. $u_{1}=w_{1} \circ w_{2}$ and the residue field of u_{1} is an algebraic extension of $k_{v_{1}}$. Similarly, define $i^{\prime \prime}: G_{v_{1}} \rightarrow G_{v_{1}} \times Q \times G_{w_{3}} \cong G_{u_{1}} \times G_{w_{3}}$ (ordered lexicographically), such that $i^{\prime \prime}(c)=(c, 0,0)$ for each $c \in G_{v_{1}}$, here w_{3} is an extension of v_{2} to $k_{u_{1}}$. There exists an onto homomorphism of ordered groups $z_{2}: G_{u_{1}} \cong G_{w_{1}} \times Q \rightarrow G_{w_{1}}$, then it can be defined an onto homomorphism of ordered groups $z: G_{w} \rightarrow G_{w_{1}}$ satisfying $z=z_{2} z_{1}$. Therefore $w, u_{1}, w_{1} \in V(K(x))$ such that $z_{1} w=u_{1}, z_{2} u_{1}=w_{1}, z w=w_{1}$ and $w \leqslant u_{1} \leqslant w_{1}$. Moreover according the theory of composite valuations there exists the exact sequence of groups;
$0 \rightarrow G_{w_{3}} \xrightarrow{\rho_{1}} G_{w_{2}} \circ G_{w_{3}} \xrightarrow{\rho_{2}} G_{w} \xrightarrow{z_{1}} G_{u_{1}} \xrightarrow{z_{2}} G_{w_{1}} \rightarrow 0$
where $\rho_{1}, \rho_{2}, z_{1}, z_{2}$ are defined in a canonical way.
Definition of $w=w_{1} \circ w_{2} \circ w_{3}$
In this section we will obtain the all kind r.a.f. extensions of the valuation $v=v_{1} \circ v_{2}$ on K to $K(x)$ as desired. Firstly; we can assume that K is an algebraic closed field. Let $v=v_{1} \circ v_{2}$ be a valuation on K with rankv $=2$ and $a \in K$. Each polynomial $F \in K[x]$ is uniquely written as: $F=a_{0}+a_{1}(x-a)+\ldots+a_{k}(x-a)^{k}+\ldots+a_{n}(x-a)^{n}$, where $a_{0}, a_{1}, \ldots, a_{n} \in K$. Denote $w_{1}(x-a)=d$ and $p_{w_{1}}\left(\frac{x-a}{d}\right)=t$. If k is a positive integer satisfying the equality; $w_{1}(F)=\inf _{i}\left(w_{1}\left(a_{i}(x-a)^{i}\right)\right)=w_{1}\left(a_{k}\right)+k d$ then the equality; $p_{w_{1}}\left(\frac{F}{a_{k} d^{k}}\right)=t^{k}+\frac{a_{k+1}}{a_{k}} t^{k+1}+\ldots+\frac{a_{n}}{a^{k}} t^{n-k}$ is hold. Because $w_{1}\left(\frac{a_{i}}{a_{k}} \frac{(x-a)^{i}}{d^{k}}\right)>0$ for $i<k$ and then $p_{w_{1}}\left(\frac{a_{i}}{a_{k}} \frac{(x-a)^{i}}{d^{k}}\right)=0$. Therefore it is obtained that $w_{2}\left(p_{w_{1}}\left(\frac{F}{a_{k} d^{k}}\right)\right)=w_{2}\left(p_{w_{1}}\left(\frac{(x-a)^{k}}{d^{k}}\right)\right)=$ $w_{2}\left(t^{k}\right)=k . w_{2}\left(p_{w_{1}}\left(\frac{x-a}{d}\right)\right)=1$ and then $u_{1}(x-a)=\left(w_{1}(x-a), w_{2}\left(p_{w_{1}}\left(\frac{x-a}{d}\right)\right)=(d, 1)\right)$,

Hence;

$$
\left.u_{1}(F)=\left(w_{1}\left(a_{k}(x-a)^{k}\right)\right), k\right)=\inf _{i}\left(w_{1}\left(a_{i}(x-a)^{i}, i\right)\right)
$$

Then it is obtained that; $p_{w_{2}}\left(\frac{p_{w_{1}}\left(F / a_{k} d^{k}\right)}{t^{k}}\right)=p_{w_{2}}\left(\frac{\left.p_{w_{1}}(x-a)^{k} / d^{k}\right)}{t^{k}}\right)$
and so; $w_{3}\left(p_{w_{2}}\left(\frac{p_{w_{1}}\left(F / a_{k} d^{k}\right)}{t^{k}}\right)\right)=w_{3}\left(p_{w_{2}}\left(\frac{p_{w_{1}}\left(\frac{F /(x-a)^{k}}{k_{k}}\right)}{t^{k}}\right)\right.$.
Using the above conclusions for each $F=a_{0}+a_{1}(x-a)+\ldots+a_{k}(x-a)^{k}+\ldots+a_{n}(x-a)^{n} \in K[x]$,

$$
\begin{gathered}
\left(w_{1} \circ w_{2} \circ w_{3}\right)(F)=\left(w_{1}\left(a_{k}(x-a)^{k}\right), 0,0\right)+(0, k, 0)+\left(0,0, w_{3}\left(p_{u_{1}}\left(a_{k}\right)\right)\right) \\
=\inf _{i}\left(\left(w_{1}\left(a_{i}\right), 0,0\right)+i(d, 1,0)+\left(0,0, w_{3}\left(p_{v_{1}}\left(a_{i}\right)\right)\right)=\inf _{i}\left(\left(v_{1}\left(a_{i}\right), 0,0\right)+i(d, 1,0), v_{2}\left(p_{v_{1}}\left(a_{i}\right)\right)\right)\right.
\end{gathered}
$$

is obtained.
Now, let (K, v) be an arbitrary valued field, \bar{K} be its algebraic closure, \bar{v} be a fixed extension of v to \bar{K}. If w is an extension of v to $K(x)$ then denote \bar{w} the common extension of \bar{v} and w to $\bar{K}(x)$. Since w_{1} is a r.t. extension of v_{1} and w_{2} is trivial over $k_{v_{1}}$ then w_{1} is defined by a minimal pair $(a, \delta) \in \bar{K} \times G_{\bar{v}_{1}}, k_{w_{1}}=k_{v_{1}}^{\prime}\left(r^{*}\right)$, where $k_{v_{1}}^{\prime}$ is a finite extension of $k_{v_{1}}, r^{*}=Y$ is transcendental over $k_{v_{1}}^{\prime}$ and w_{2} is defined by an irreducible polynomial $G \in k_{v_{1}}[Y]$ or is the valuation at infinity. Let $g \in K[x]$ be the lifting polynomial of $G \neq Y$. Each polynomial $F \in K[x]$ is uniquely written as; $F=F_{0}+F_{1} g+\ldots+F_{n} g^{n}, F_{i} \in K[x], \operatorname{deg} F_{i}<\operatorname{deg} g, i=0, \ldots, n$ and then $u_{1}(F)=\left(w_{1} \circ w_{2}\right)(F)=\inf _{i}\left(w_{1}\left(F_{i} g^{i}\right), i\right)=\left(w_{1}\left(F_{k} g^{k}\right), k\right)$, where $u_{1}(g)=\left(w_{1}(g), 1\right), k$ is the positive integer satisfying that equality. The equalities $w_{2}\left(p_{w_{1}}\left(\frac{F}{F_{k} g^{k}}\right)\right)=k, p_{w_{2}}\left(\frac{p_{w_{1}}\left(\frac{F}{F_{k^{n n k}}}\right)}{G^{k}}\right)=p_{w_{2}}\left(\frac{p_{w_{1}}\left(\frac{g^{k}}{G^{k}}\right)}{G^{k}}\right)$ are satisfied.

Hence $w_{3}\left(p_{w_{2}}\left(\frac{p_{w_{1}}\left(\frac{F}{F_{G^{h k n}}}\right)}{\mathrm{G}^{k}}\right)=w_{3}\left(p_{u_{1}}\left(\frac{F}{g^{k}}\right)\right)\right.$ and $p_{u_{1}}\left(F_{k}(x)\right)=p_{u_{1}}\left(F_{k}(b)\right)$, where b is a suitable root of $g \in K[x]$. Then we have;

$$
w(F)=\left(u_{1}(F), w_{3}\left(p_{u_{1}}\left(F / g^{k}\right)\right)=\left(w_{1}\left(F_{k}\right), 0,0\right)+k\left(w_{1}(g), 1,0\right)+\left(0,0, w_{3}\left(p_{u_{1}}\left(F / g^{k}\right)\right)\right) .\right.
$$

Therefore;

$$
\begin{aligned}
& w(F)=\left(w_{1} \circ w_{2} \circ w_{3}\right)(F)=\inf _{i}\left(\left(w_{1}\left(F_{i}\right), 0,0\right)+i\left(w_{1}(g), 1,0\right)\right)+\left(0,0, w_{3}\left(p_{u_{1}}\left(F_{k}(b)\right)\right)\right) \\
& =\inf _{i}\left(\left(w_{1}\left(F_{i}\right), 0,0\right)+i\left(w_{1}(g), 1,0\right)+\left(0,0, v_{2}^{\prime}\left(p_{u_{1}}\left(F_{i}(b)\right)\right)\right)\right.
\end{aligned}
$$

where $w_{3}=v_{2}^{\prime}$ is an extension of v_{2} to $k_{u_{1}}=k_{v_{b}}$.
Let v_{2} be a valuation defined by $r *=Y$. Then each $F \in K[x]$ is uniquely written as; $F=F_{0}+F_{1} f+\ldots+$ $F_{k} f^{k}+\ldots+F_{n} f^{n}$ and u_{1} is defined as; $u_{1}(F)=\left(w_{1} \circ w_{2}\right)(F)=\left(w_{1}\left(F_{k} f^{k}\right),\left[\frac{k}{e}\right]\right)=\inf _{i}\left(w_{1}\left(F_{i} f^{i}\right),\left[\frac{i}{e}\right]\right), w_{1}(f)=w_{1}\left(h^{1 / e}\right)$, $w_{1}(F)=w_{1}\left(F_{k} f^{k}\right)=w_{1}\left(F_{k} h^{k / e}\right)$,

$$
p_{w_{1}}\left(F / F_{k} h^{k / e}\right)=\sum_{t=0}^{n-k} p_{w_{1}}\left(\frac{F_{k+t}}{F_{k}} h^{t / e}\right)\left(r^{*}\right)^{\frac{k+t}{e}}, p_{w_{2}}\left(p_{w_{1}}\left(\frac{F}{F_{k} h^{k / e}}\right) / r^{r^{k / e}}\right)=p_{w_{2}}\left(\frac{\left.p_{w_{1}} \frac{F / f^{k}}{F_{k}}\right)}{r^{k / e}}\right) \text { and } \operatorname{so} w_{3}\left(p_{w_{2}}\left(\frac{p_{w_{1}}\left(\frac{F}{F_{k} k / e}\right)}{r^{k / e}}\right)\right)=w_{3}\left(p_{u_{1}}\left(\frac{F}{f^{k}}\right)\right)
$$

$=w_{3}\left(p_{u_{1}}\left(F_{k}(a)\right)\right)=w_{3}\left(p_{w_{2}}\left(\frac{p_{w_{1}}\left(\frac{F / f k^{k}}{f_{k}}\right)}{r^{k}}\right)\right)$. Then $w=w_{1} \circ w_{2} \circ w_{3}$ is defined as:
$w(F)=\inf _{i}\left(\left(w_{1}\left(F_{i}\right), 0,0\right)+\left(w_{1}\left(f^{i}\right),\left[\frac{i}{e}\right], 0\right)+\left(0,0, w_{3}\left(p_{u_{1}}\left(F_{i}(a)\right)\right)\right)=\inf _{i}\left(\left(w_{1}\left(F_{i}\right), 0,0\right)+\left(w_{1}\left(f^{i}\right),\left[\frac{i}{e}\right], 0\right)+\left(0,0, v_{2}^{\prime}\left(p_{u_{1}} F_{i}(a)\right)\right)\right)\right.$,
where v_{2}^{\prime} is an extension of v_{2} to $k_{u_{1}}=k_{w_{2}}$ and $\left[\frac{i}{e}\right]$ means the integral part of a real number. If w_{2} is a valuation at infinity i.e. if it is defined by $r *^{-1}$ then

$$
w(F)=\inf _{i}\left(\left(w_{1}\left(F_{i}\right), 0,0\right)+\left(w_{1}\left(f^{i}\right),-\left[\frac{i}{e}\right], 0\right)+\left(0,0, v_{2}^{\prime}\left(p_{u_{1}}\left(F_{i}(a)\right)\right)\right.\right.
$$

Theorem 3.2: Let $v=v_{1} \circ v_{2}$ be a valuation on K with rankv $=2$ and let $w=w_{1} \circ w_{2} \circ w_{3}$ be an extension of v to $K(x)$ such that rank w_{3} and w_{2} is trivial over the residue field $k_{v_{1}}$ of v_{1}. Then w is equal to one of the valuations defined in this section.

Proof: The proof is obtained using the above considerations.

References

[1] V.Alexandru - N. Popescu - A. Zaharescu, A theorem of characterization of residual transcendental extension of a valuation, J. Math. Kyoto Univ. 28 (1988), 579-592.
[2] V.Alexandru - N. Popescu - A. Zaharescu, Minimal pair of definition of a residual transcendental extension of a valuation, J. Math. Kyoto Univ. 30(2), (1990), 207-225.
[3] V. Alexandru - N. Popescu - A. Zaharescu, All valuations on K(X), J. Math. Kyoto Univ. 30(2) (1990), 281-296.
[4] N. Bourbaki, Algebre Commutative, Ch. V: Entiers, Ch. VI: Valuations, Hermann, Paris (1964).
[5] O. Endler, Valuation Theory, Springer, Berlin -Heidelberg-New York (1972).
[6] N. Popescu, C. Vraciu, On the extension of valuations on a field K to K(x)-I, Ren. Sem. Mat. Univ. Padova, 87 (1992), 151-168.
[7] N. Popescu, C. Vraciu, On the extension of valuations on a field K to K(x)-II, Ren. Sem. Mat. Univ. Padova, 96(1996), 1-14.
[8] O.F.G. Schilling, The Theory of Valuations, A.M.S. Surveys , no. 4, Providence, Rhode Island (1950).

[^0]: 2010 Mathematics Subject Classification. 2010 Mathematics Subject Classification. Primary 2J10; Secondary 12F210
 Keywords. Extensions of valuations, residual algebraic free extensions, valued fields
 Received: 23 July 2015; Accepted: 28 October 2015
 Communicated by Gradimir Milovanović and Yilmaz Simsek
 Email address: figenoke@gmail.com (Figen Öke)

