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Representation of the Fourier Transform of Distributions in K′

p,k, k < 0.
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Abstract. In this note we give a structure theorem of the distributions in the space K′p,k, k < 0, which is a
subspace of the space of distributions which grow no faster than e|x|p , p > 1, and use this structure theorem
to give a representation of the Fourier transform of the distributions in these spaces.

The Fourier transform of members of several spaces of distributions has been studied by several authors.
Gonzalez and Negrin [5] studied the Fourier transform over the spaces S′k, k ∈ Z, k < 0 of tempered distri-
butions introduced by Horvath [2]. They have shown that the Fourier transform maps each of the spaces
S′k, k ∈ Z, k < 0 onto itself, and proved a representation theorem for the usual Fourier transform of members
of these spaces. Hayek, Gonzalez and Negrin [3] proved an inversion formula for the distributional Fourier
transform on the spaces S′k, k ∈ Z, k < 0. They applied their results to obtain a representation on S′ for any
distribution of S′k as limit of a sequence of ordinary functions. Gonzalez [4], established a structure theorem
of the members of the spaces S′k and gave a representation of the Fourier transform of these members. Sohn
and Pahk [6] introduced the spacesK

′

p,k, k ∈ Z, k < 0, p > 1, of distributions of exponential growth. Among
other things they studied the Fourier transform of members of these spaces and gave an inversion formula
for the elements of the spaces. In this work, along the lines of Barrose-Neto [1, proof of Theorem 6.2], we
establish a structure theorem for the distributions in the spaces K

′

p,k, k ∈ Z, k < 0, p > 1, then we use this
structure theorem to get a representation of the Fourier transform of the elements of these spaces.

1. Preliminaries

We use the standard notations and terminology of Horvath [2] for spaces of functions and distributions.
The space Kp,k, k ∈ Z, k < 0, p > 1 of test functions and its dual K

′

p,k, k ∈ Z, k < 0, p > 1 are as given by Sohn
and Pahk [6]. The spaceKp of functions of exponential decay consists of all functions ϕ ∈ C∞(Rn) such that

υk(ϕ) = sup
|α|≤k
x∈<n

ek|x|p
| Dαϕ(x) |< ∞; k = 1, 2, 3, .... (1)

The spaceKp with semi-norms υk, k = 1, 2, 3, ...is a Frechet space and the spaceD of test functions of compact
support is dense in Kp. As in Sohn and Pahk [6], the spaces Kp,k consist of all functions ϕ in C∞(Rn) such
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that for any α ∈ Nn and ε > 0, there exists a constant C = C( f , α, ε) > 0 such that

ek|x|p
| Dαϕ(x) |≤ ε for | x |> C. (2)

We provideKp,k with the topology defined by the family of seminorms

qk,α(ϕ) = sup
x∈Rn

ek|x|p
| Dαϕ(x) |, α ∈ Nn. (3)

It turnes out that Kp,k is a locally convex space which contains D as a dense subspace. Its strong dual is
denoted byK

′

p,k .

Sohn and Pahk [6] define convolution between elements ofK
′

p,k, k < 0, k ∈ Z. If S,T ∈ K ′

p,2pk and ϕ ∈ Kp,k

the convolution S ∗ T of S and T is defined by〈
S ∗ T, ϕ

〉
=

〈
Sx,

〈
Ty, ϕ(x + y)

〉〉
, (4)

where the right hand side is understood as the application of the distribution S to the function
〈
Ty, ϕ(x + y)

〉
∈

Kp,2pk. It turnes out that S ∗ T ∈ K ′

p,k.

Let T ∈ K ′

p,k, k ∈ Z, k < 0. The Fourie transform of T is represented, for each y ∈ Rn, by

(F T)(y) =
〈
Tx, eixy

〉
. (5)

It follows that F T is inK
′

p,k, k ∈ Z, k < 0, and the Parseval equality

〈
F T, ϕ

〉
=

〈
T,Fϕ

〉
; (6)

holds true, where Fϕ is the classical Fourier transorm of ϕ ∈ Kp,k (see [6]).

2. The Results

Theorem 2.1. Let k ∈ Z, and T ∈ K ′

p,k, k < 0. Then there exist m ∈ N and (1q)|q|≤m , q ∈ Nn continuous functions
such that

T =
∑
|q|≤m

∂q1q (7)

over Kp,k, where | 1q(x) |≤Mqe(k+n)|x|p , for all x ∈ Rn, and Mq > 0 for all | q |≤ m.

Proof. Since T ∈ K ′

p,k it is continuous on Kp,k, hence there exist a positive constant C and a nonnegative
integer j such that

|
〈
T, ϕ

〉
|≤ C sup

| η |≤ j
x ∈ Rn

ek|x|p
| ∂ηϕ(x) |; ∀ϕ ∈ Kp,k (8)

Moreover, for any ϕ ∈ Kp,k, x = (x1, x2, ..., xn) ∈ Rn and all α ∈ Nn one has

| ek|x|p∂αϕ(x) |≤

x1∫
−∞

dt1

x2∫
−∞

dt2...

xn∫
−∞

|
∂n

∂t1∂t2...∂tn
{ek|t|p∂qϕ(t)} | dtn. (9)
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Taking β = (1, 1, 1, ..., 1) it follows from Leibniz formula that

∂β{ek|t|p∂qϕ(t)} =
∑
α≤β

∂α(ek|t|p )∂β−α(∂qϕ(t)), (10)

(because
(β
α

)
= 1). Now, for all α = (α1, α2, ..., αn) ∈ Nn, α ≤ β, one has

| ∂α(ek|t|
p

) |≤ Cα,k,pe(k+1)|t|
p

(k < 0).

Thus , for all α ∈ Nn with α ≤ β, it follows that

| ∂β{ek|t|p∂qϕ(t)} |≤
∑
α≤β

Cα,k,pe(k+1)|t|
p

∂β−α(∂qϕ(t)) | . (11)

Therefore (by continuity of T) there exists a positive constant C1 such that

|
〈
T, ϕ

〉
|≤ C1 sup

|η|≤ j+n
|| e(k+1)|x|

p

∂ηϕ(x) ||1; ∀ϕ ∈ Kp,k. (12)

Set l = j + n and let m be the number of n-tuples q ∈ Nn which satisfy | q |≤ l. Consider the product space
(L1(Rn)m = L1(Rn) × L1(Rn) × ... × L1(Rn) (m copies) provided with the product topology, and the injection

J : Kp,k → (L1(Rn))m

J(ϕ)(x) = (e(k+1)|x|
p

∂q1ϕ(x), e(k+1)|x|
p

∂q2ϕ(x), ..., e(k+1)|x|
p

∂qmϕ(x)), (13)

where q1, q2, ..., qm are all members of Nn with | q j |≤ l, 1 ≤ j ≤ m.
Define the map LT : J(Kp,k)→ C by

LT(e(k+1)|x|
p

∂q1ϕ(x), e(k+1)|x|
p

∂q2ϕ(x), ..., e(k+1)|x|
p

∂qmϕ(x)) =
〈
T, ϕ

〉
(14)

It follows from inequality (2.6) that LT is a continuous linear functional. It follows from the Hahn-Banach
theorem that we can extend it as a continuous linear functional on all of (L1(Rn)m with the same norm. Since
the dual of L1(Rn) is L∞(Rn), it follows from the Riesz representation theorem that there exist m measurable
functions φq ∈ L∞(Rn), | q |≤ l, such that

LT(ψq1 , ψq2 , ..., ψqm ) =
∑
|q|≤ l

∫
Rn

φq(t)ψq(t)dt, (15)

for all (ψq1 , ψq2 , ..., ψqm ) ∈ (L1(Rn)m. In particular,

LT(J(ϕ)) =
〈
T, ϕ

〉
=

∑
|q|≤ l

∫
Rn

φq(t)e(k+1)|t|
p

∂qϕ(t)dt ,∀ϕ ∈ Kp,k. (16)

Hence

T =
∑
|q|≤ l

(−1)|q|∂q[e(k+1)|t|
p

φq(t)] , overKp,k. (17)
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Put hq(t) = (−1)|q|[e(k+1)|t|
p

φq(t)], | q |≤ l. Since e−(k+1)|t|
p

hq ∈ L∞(Rn) for all | q |≤ l , it follows that

T =
∑
|q|≤ l

∂qhq overKp,k. (18)

For q ∈ Nn with | q |≤ l define the function θq on Rn by

θq(x) =

x1∫
0

dt1

x2∫
0

dt2...

xn∫
0

e−(k+1)|t|
p

hq(t)dtn, x = (x1, x2, ..., xn). (19)

Since e−(k+1)|t|
p

hq(t) ∈ L∞(Rn) it follows that hq ∈ L1
loc(R

n) and θq are continuous functions on Rn (because the
partial derivatives exist and they are continuous). Moreover, for β = (1, 1, ...1) one has

∂βθq(x) = e−(k+1)|x|
p

hq a.e..

Thus

| θq(x) | =

∣∣∣∣∣∣∣∣
x1∫
0

dt1

x2∫
0

dt2...

xn∫
0

e−(k+1)|t|
p

hq(t)dtn

∣∣∣∣∣∣∣∣
≤‖ e−(k+1)|t|

p

hq ‖∞

∣∣∣∣∣∣∣∣
x1∫
0

dt1

x2∫
0

dt2...

xn∫
0

dtn

∣∣∣∣∣∣∣∣
≤| x1x2...xn |‖ e−(k+1)|t|

p

hq ‖∞, (20)

for all x = (x1, x2, ..., xn) ∈ Rn and all q ∈ Nn with | q |≤ l . Using differentiation formulas one has

ek|x|
p

∂βθq(x) =
∑
α≤β

(−1)
|α|
∂β−α[{∂αek|x|p

}θq(x)]. (21)

Also, for all α ∈ Nn, it follows that

∂α(ek|x|p ) ≤ ek|x|p
∑
γ≤α

Mα,γ | x |r(p,γ)
≤ e(k+1)|x|p , (22)

where r(p, γ) is a function of p and γ. It follows from (2.12), (2.14), (2.15) and (2.16) that,

T =
∑
|q|≤ l

∂qhq =
∑
|q|≤ l

∂q[e(k+1)|x|
p

∂βθq(x)]

=
∑
|q|≤ l

∂q[
∑
α≤β

(−1)|α|∂β−α{(∂αe(k+1)|x|
p

)θq(x)}]

=
∑
|q|≤ l

∑
α≤β

∂q∂β−α((−1)|α|{[
∑
γ≤α

Mα,γxr(p,γ)]e(k+1)|x|
p

θq(x)}

=
∑
|υ|≤ l+n

∂ν1ν(x) =
∑
|ν|≤m

∂ν1ν(x), (23)

where
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1ν(x) = e(k+1)|x|
p

(
∑
γ≤α

(−1)|α|Mα,γxr(p,γ)θq(x)), (24)

for ν = q + β − γ, and 1ν(x) = 0 otherwise, and

| 1ν(x) |≤ e(k+1)|x|p Mν | x1x2...xn |
|γ|
| x |r(p,γ)

≤Mνe(k+n)|x|p (25)

This completes the proof of the theorem.

Theorem 2.2. Let T ∈ K′p,k, 2k + 3n < 0, k ∈ Z, be given by the representation

T =
∑
|q|≤m

∂q1q; (26)

where (1q)|q|≤m , q ∈ Nn as in theorem 1. Then
∧

T, the Fourier transform of T, is given by

∧

T(y) =
〈
Tx, eixy

〉
=

∑
|q|≤m

(−iy)q ∧1q(y); y ∈ Rn, (27)

where
∧

1q(y) =
∫
Rn

1q(x) eixydx is the classical Fourier transform of 1q.

Proof. Since 1q decreases very rapidly it follows that the integral is convergent and
∧

1q exists. Using (2.19)
and polar coordinates one gets∫

Rn

| 1q(x) | dx ≤Mq

∫
Rn

e(k+n)|x|p dx;

= Mq

2π∫
0

2π∫
0

...

2π∫
0

∞∫
0

dθ1dθ2...dθn−1(1 + r2)k+nrn−1dr (28)

which converges for 2k + 3n < 0.By the Parseval equality it follows that for any T ∈ K′p,k, k + n < 0, one has〈
T,
∧

ϕ
〉

=
〈
∧

T,ϕ
〉

=

∫
Rn

〈
Tx, eixy

〉
ϕ(y)dy (29)

for all ϕ ∈ Kp.
It follows from theorem 1 that〈

T,
∧

ϕ
〉

=
∑
|q|≤m

〈
∂q1q(x),

∧

ϕ(x)
〉

=
∑
|q|≤m

〈
1q(x), ∂q ∧ϕ(x)

〉
=

∑
|q|≤m

〈
1q(x), ̂(−ix)qϕ(x)

〉
=

∑
|q|≤m

〈
1̂q(x), (−ix)qϕ(x)

〉
=

∑
|q|≤m

〈
(−ix)q1̂q(x), ϕ(x)

〉
(30)
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Substituting in the left hand side of (2.23), one gets∑
|q|≤m

〈
(−ix)q1̂q(x), ϕ(x)

〉
=

∫
Rn

∑
|q|≤m

(−ix)q1̂q(x)ϕ(x)dx

=

∫
Rn

〈
Ty, eixy

〉
ϕ(x)dx; (31)

for all ϕ ∈ Kp. Since this is true for all ϕ ∈ Kp and the functions
∑
|q|≤m

(−ix)q1̂q(x),
〈
Ty, eixy

〉
are continuous on

Rn, it follows that〈
Ty, eixy

〉
=

∑
|q|≤m

(−ix)q1̂q(x). (32)

Remark 2.3. It follows from the above theorems that, if T1,T2 ∈ K
′

p,k, k + n < 0, k ∈ Z then T̂1 ∗ T2 = T̂1.T̂2.
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