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Abstract. The paper investigates fuzziness of quantales by means of quasi-coincidence of fuzzy points with
two parameters based on L-sets and developes two more generalized fuzzy structures, called (∈1,∈1 ∨qh)-
L-subquantale and (∈1,∈1 ∨qh)-L-filter. Some intrinsic connections between (∈1,∈1 ∨qh)-L-subquantales
and crisp subquantales are established, and relationships between (∈1,∈1 ∨qh)-L-filters of quantales and
their extensions (especially the essential connections between (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-L-
filters of quantales) are studied by employing the new characterizations of (∈1,∈1 ∨qh)-L-filters of quantales.
Also, sufficient conditions for the extension of an (∈1,∈1 ∨qh)-L-filter to be an (∈1,∈1 ∨qh)-L-filter of a quantale
are also offered. In particular, it is proved that the category GLFquant (resp., GFFQant) of (∈1,∈1 ∨qh) L-
subquantales (resp., L-filters) is of a topological construct on Quant and posses equalizers and pullbacks.

1. Introduction

Fuzzy set theory, originally proposed by Zadeh [53], has provided a useful mathematical tool for the
description of the behaviors of those systems which are too complex or uncertain to be precisely analyzed by
classical mathematical methods and tools. Furthermore, to describe those situations involving uncertainties
or ambiguities more concretely, Goguen [12] replaced the unit interval [0,1] by a lattice and proposed L-fuzzy
sets (or L-sets for short). Since than, fuzzy set theory has opened up keen insights and applications in a wide
range of scientific fields such as information systems, control engineering, expert systems, management
science, operations research, pattern recognition and others. How to apply fuzzy sets to the lattice-ordered
environment, as an important branch of this field, has attracted widespread attention of researchers and
has become a rapidly progressing research field (see [8, 10, 40, 47, 50]) in recent years since fuzzy lattices
have been widely used in engineering, computer science, topology, logic and so on ([17, 31, 32]). On the
other hand, fuzzy algebra has also become a promising topic (see [6, 7, 43–46, 49, 52]) since fuzzy algebraic
structures have been successfully applied to many other fields such as information science, coding theory,
topology logic, measure theories, etc.
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As all know, quantales with both lattice-ordered structures and algebraic structures provide a lattice
setting of the study of non-commutative C∗-algebras and constructive foundations of the study of quantum
mechanics (see [28]). In 1990, Yetter applied quantale theory to linear logic and provided a sound and
complete class of models for linear intuitionstic logic [42]. Henceforth, quantales have invoked many in-
teresting research topics in theoretical computer science [33], algebraic theory [15, 18, 51], rough set theory
[24, 41], groupoid theory [33], linear logic (see [11, 34]), topological theory [14], etc. Based on the aforemen-
tioned analysis, the study combining fuzzy sets and quantales may become a promising topic that deserves
further investigation. Recently, Ma et al. studied quantales based on fuzzy sets (see [27]). Before long,
Liang introduced L-fuzzy quantales based on L-sets in [19]. On the other hand, many researchers have
been generalizing some different types of fuzzy mathematics by the quasi-coincidence of a fuzzy point with
a fuzzy set mentioned in [30] (see [4, 25, 26, 29, 52]). Inspired by this, Xiao further generalized L-fuzzy
quantales to (∈,∈ ∨q)-L-quantales by quasi-coincidence of a fuzzy point based on an L-set and discussed
related properties (see [38]). Some results in [38] are obviously important and interesting, but not complete.
So, there are at least the following two problems need to be considered:

Question 1.1 Can we find a new kind of L-quantale that posses more abundant sheaf structures than
those of [38]?

Question 1.2 If the answer for Question 1.1 is ”yes”, then what is the characterization of it?

One of our main purposes is to answer the above questions. We define a new concept of quasi-
coincidence of a fuzzy point with two parameters on an L-set, which has broken the limitation that quasi-
coincidence of a fuzzy point with two parameters must depend on fuzzy sets. We then apply it to quantale
theory and present a more generalized structure, called (∈1,∈1 ∨qh)-L-subquantales, which provides a solid
background for the subsequent researches. This approach will be helpful for us to make a more accurate
understanding for the quantale operations occurring in fuzzy points of L-sets.

It is no doubt that filters are very important tools in many areas of classical mathematics such as
topology theory and measure theory. From a logical point of view, different filters correspond to different
sets of provable formulae (see [48]). Moreover, filters are closely related to congruence relations (see [9]).
Therefore, more and more researchers have been focusing on this topic (see [16, 20–22, 39, 45, 49]). Further-
more Wang et al. introduced fuzzy filters on quantales in [37]. Motivated by the idea of the generalized
L-fuzzy subquantales, our another main aim in this paper is to study a new kind of fuzzy filter named
(∈1,∈1 ∨qh)− L-filter which is of course a reasonable generalization of fuzzy filter in [37]. We also hope that
the fuzziness of filters can induce some new applications in the fields of logic, computer science, topology,
etc.

Now, a natural question arises:
Question 1.3 Are there any connections between (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-L-filters

of quantales?

We will in this paper discuss some intrinsic connections between (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1
∨qh)-L-filters of quantales (see Theorem 4.17 and Remark 4.18).

It is well known that category theory is not only a tool commonly used by many pure mathematicians,
but also a tie which can easily connect mathematics and theoretical computer science (see [1, 3, 36]). In the
past few years, some researchers have endeavored to establish connections between the quantale theory
and category theory. Many interesting results have been obtained (see [2, 5, 13, 23]). Inspired by this, we
will also further investigate the characterizations of (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-L-filters of
quantales based on the category theory.

The rest contents of this paper are arranged as follows: In section 2, we introduce the basic notions and
properties which will be used in the paper. Section 3 is devoted to presenting the concept of (∈1,∈1 ∨qh)-L-
subquantales of quantales and discussing related properties of them. (∈1,∈1 ∨qh)-L-filters of quantales are
studied in section 4. Finally, in section 5, we further investigate the properties of the category GLFquant
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(resp., GFFQant) of (∈1,∈1 ∨qh)-L-subquantales (resp., L-filters) of quantales.
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2. Preliminaries

We in this section mostly recall some elementary notions and facts related to quantales, L-sets and
L-quantales (see [12, 34, 38]) which will be often used in this paper.

Definition 2.1. ([33]) A quantale Q = (Q,&) is a complete lattice Q with an associative binary operation &
satisfying

a&

∨
i∈I

bi

 =
∨
i∈I

(a&bi) and

∨
i∈I

ai

 &b =
∨
i∈I

(ai&b)

for all a, b, ai, bi ∈ Q (i ∈ I), where I is an index set.

It is easy to see from Definition 2.1 that in a quantale Q, for all a, b, c ∈ Q, we have the following results.

b ≤ c =⇒ a&b ≤ a&c and b&a ≤ c&a.

Definition 2.2. ([33]) Let Q be a quantale. A subset S of Q is said to be a subquantale of Q if S is closed
under sups and &.

Definition 2.3. ([33]) Let Q be a quantale. A nonempty subset B of Q is said to be a filter of Q if B is an
upper set and closed under &.

Definition 2.4. ([33]) Let P and Q be quantales. A function f : P → Q is said to be a homomorphism of
quantales if f preserves arbitrary sups and the operation &.

Remark 2.5. The category of quantales and homomorphisms is denote by Quant.

Definition 2.6. ([12]) Let µ ∈ LX and a ∈ L. Then the L-set aµ, defined by aµ(x) = a ∧ µ(x), is called a-layer
of A (briefly, a layer of A).

Definition 2.7. ([38]) Let µ, ν be L-sets of a quantale Q. Then µ&ν,∨µ and µ ∨ ν are defined as (µ&ν)(x) =
sup

x=a&b
(µ(a) ∧ ν(b)), ∨µ(x) =

∨
x=∨xi

(∧µ(xi)) and (µ ∨ ν)(x) = µ(x) ∨ ν(x), respectively.

Throughout this paper, Q and L denote a quantale and a complete lattice, respectively. We consider that
1, h, t,m ∈ L and 1 < h.

The standard terminology of category theories see [1].

3. (∈1, ∈1 ∨qh)-L-Subquantales of Quantales

In this section, (∈1,∈1 ∨qh)-L-subquantales of quantales will be discussed. Meanwhile, the relationships
between (∈1,∈1 ∨qh)-L-subquantales of quantales and crisp subquantales are going to be established.

Definition 3.1. [38] An L-set of a set X with the form

µ(y) =

{
t(, 0) if y = x,
0 if y , x,

is called a fuzzy point with support x and value t, denoted by xt. Let 1 and 0 be the top and bottom
elements of L respectively. When µ(x) ≥ t (resp., µ(x) ∨ t = 1), a fuzzy point xt is called “belong to ”(resp.,
“quasi-coincident with”) an L-set µ, written as xt ∈ µ (resp., xt ∈ qµ). We say xt ∈ ∨qµ if xt ∈ µ or xt ∈ qµ.

Definition 3.2. ([38]) Let Q be a quantale and L be a complete lattice. An L-set µ of Q is called an (∈,∈ ∨q)-
L-quantale if it satisfies the following conditions:

(i) For each x, y ∈ Q and every t, s ∈ L, (x&y)t∧s ∈ ∨qµ whenever xt ∈ µ and ys ∈ µ;

(ii) For each {xi}i∈I ⊆ Q and every {ti}i∈I ⊆ L,
(∨

i∈I
xi

)
∧
i∈I

ti

∈ ∨qµ whenever {(xi)ti }i∈I ⊆ µ.
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Taking full advantages of parameters, we generalize the relations, called “ belong to” and “quasi-
coincident with”, on L-sets as follows .

Definition 3.3. For a fuzzy point xr and an L-set µ of a nonempty set X, we denote that
(i) xr ∈1 µ if µ(x) ≥ r > 1;
(ii) xrqhµ if µ(x) ∨ r ≥ h;
(iii) xr ∈1 ∨qhµ if xr ∈1 µ or xrqhµ;
(iv) xr∈1 ∨qhµ if xr∈1µ and xrqhµ.

Definition 3.4. If from the condition xt ∈1 µ we have xt ∈1 ∨qhν for all x ∈ X, r ∈ (1, 1], µ, ν ∈ LX. Then we
say that µ b(1,h) ν.

Definition 3.5. An L-set µ of Q is called an (∈1,∈1 ∨qh)-L-subquantale if it satisfies that
(1A) For every x, y ∈ Q and each m,n ∈ L, if from conditions xm ∈1 µ and yn ∈1 µwe have (x&y)m∧n ∈1 ∨qhµ;
(2A) For every {xi}i∈I ⊆ Q and each {mi}i∈I ⊆ L, if from the condition {(xi)mi }i∈I ∈1 µ we can obtain that
(
∨
i∈I

xi)∧
i∈I

mi ∈1 ∨qhµ.

Example 3.6. Let Q = {0, a, b, c, 1} and L = {0, d, e, 1}. The partial-order of Q and L, as well as the binary
operation & of Q, are given as

1

�
�
�
�

@
@
@
@

•

@
@
@@

�
�

�
�

•• •

•

0

a cb

& 0 a b c 1
0 0 0 0 0 0
a 0 b c a 1
b 0 c a b 1
c 0 a b c 1
1 1 1 1 1 1

•
1

•

•

•

d

e

0
It is then easy to verify that (Q,&) is a quantale and L is a complete lattice. Define an L-set µ of Q as

µ(1) = µ(0) = µ(c) = 1, µ(a) = µ(b) = d. Then it is not difficult to check that µ is an (∈e,∈e ∨qd)-L-subquantale.

Lemma 3.7. Suppose that µ is an L-set of Q. Then (1A) holds if and only if one of the following conditions holds:
(1B) For each x, y ∈ Q, we can obtain that µ(x&y) ∨ 1 ≥ µ(x) ∧ µ(y) ∧ h;
(1C) (µ&µ) b(1,h) µ.

Proof. (1A) ⇒ (1B) For each x, y ∈ Q, suppose that µ(x&y) ∨ 1 < m ≤ µ(x) ∧ µ(y) ∧ h. We can then acquire
that µ(x) ≥ m > 1, µ(y) ≥ m > 1 and µ(x&y) < m < h. Therefore, xm ∈1 µ, ym ∈1 µ, but (x&y)m∈1 ∨qhµ, which
contradicts (1A). Thus (1B) follows.

(1B) ⇒ (1C) Let (µ&µ)b(1,h)µ. Then there exist xm ∈1 (µ&µ) such that xm∈1 ∨qhµ. Thus, (µ&µ)(x) ≥ m >
1, µ(x) < m and µ(x) ∨m < h. It follows that µ(x) < h. If x = a&b for some a, b ∈ Q, then by (1B), we infer

µ(x) ∨ 1 ≥ µ(a) ∧ µ(b) ∧ h.

Moreover, since µ(x) < h and 1 < h, µ(x) ∨ 1 ≥ µ(a) ∧ µ(b). So we obtain that

m ≤ (µ&µ)(x) = sup
x=a&b

(µ(a) ∧ µ(b))

≤ sup
x=a&b

(µ(x) ∨ 1)

= µ(x) ∨ 1.

It is obvious a contradiction. Therefore (1C) follows.
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(1C)⇒ (1A) Consider any m,n ∈ L and x, y ∈ Q with properties xm ∈1 µ and yn ∈1 µ. Then µ(x) ≥ m > 1
and µ(y) ≥ n > 1. Hence for all z = x&y, we can acquire that

(µ&µ)(z) = sup
z=x&y

(µ(x) ∧ µ(y)) ≥ µ(x) ∧ µ(y) ≥ m ∧ n > 1.

It follows that (x&y)m∧n ∈1 (µ&µ). By (1C), we know that (x&y)m∧n ∈1 ∨qhµ. So condition (1A) holds. �

Lemma 3.8. Let µ be an L-set of Q. Then (2A) holds if and only if one of the following conditions holds:
(2B) For every {xi}i∈I ⊆ Q, µ(

∨
i∈I

xi) ∨ 1 ≥ (
∧
i∈I
µ(xi)) ∧ h;

(2C) ∨ µ b(1,h) µ.

Proof. The proof is similar to that of Lemma 3.7. �
From the above discussion we can immediately obtain the following results.

Theorem 3.9. An L-set µ of Q is an (∈1,∈1 ∨qh)-L-subquantale of Q if and only if it satisfies (1B) and (2B).

Theorem 3.10. An L-set µ of Q is an (∈1,∈1 ∨qh)-L-subquantale of Q if and only if it satisfies (1C) and (2C).

Remark 3.11. When 1 = 0 and h = 1, the (∈1,∈1 ∨qh)-L-subquantale of Q is just an (∈,∈ ∨q)-L-quantale of
Q mentioned in [38]. However, the converse does not hold in general. This can be seen in the following
example.

Example 3.12. Consider the quantale Q in Example 3.6. Let L = {0, c, d, e, f , 1} and the partial-order of L is
given as

•
1

�
�•
@
@•

@
@
�

�•
@
@•

@
@•
�
�

•d

f e

c

0
Define an L-set of Q as µ(1) = µ(c) = µ(0) = 1, µ(a) = f , µ(b) = e. Then it is easy to prove that µ is an

(∈e,∈e ∨q1)-L-subquantale but not an (∈,∈ ∨q)-L-quantale, as µ(a&a) = µ(b) = e � f = µ(a) ∧ µ(a).

In order to investigate the properties of (∈1,∈1 ∨qh)-L-subquantale of Q, we first give the following
notations.

µ1t = {x ∈ Q|xt ∈1 µ}, µh
t = {x ∈ Q|xtqhµ} and [µ]h

t = {x ∈ Q|xt ∈1 ∨qhµ}, where µ ∈ LQ and t, 1, h ∈ L with
properties 1 < t ≤ 1 and 1 < h.

The following theorem proclaims the relationships between (∈1,∈1 ∨qh)-L-subquantales and crisp quan-
tales of Q.

Theorem 3.13. Assume that L is a completely distributive lattice and µ is an L-set of Q. Then we have
(i) µ is an (∈1,∈1 ∨qh)-L-subquantale of Q if and only if µ1t is a subquantale of Q for all t ∈ L and 1 < t ≤ h;
(ii) µ is an (∈1,∈1 ∨qh)-L-subquantale of Q if and only if µh

t is a subquantale of Q for all t ∈ L and 0 ≤ t < h;
(iii) µ is an (∈1,∈1 ∨qh)-L-subquantale of Q if and only if [µ]h

t is a subquantale of Q for all t ∈ L and 1 < t < h.

Proof. (i) Let us first assume that µ is an (∈1,∈1 ∨qh)-L-subquantale of Q and x, y ∈ µ1t . We can obtain that
xt ∈1 µ and yt ∈1 µ, that is, µ(x) ≥ t > 1 and µ(y) ≥ t > 1. Then by (1B), we know that µ(x&y) ≥ µ(x)∧µ(y)∧h.
So we can acquire that µ(x&y) ≥ µ(x) ∧ µ(y) ≥ t > 1. Thus x&y ∈ µ1t . Similarly, we can prove that µ1t is
closed under sups.

Conversely, suppose that µ1t is a subquantale of Q and µ(x&y)∨1 < t ≤ µ(x)∧µ(y)∧h for all x, y ∈ Q, 1 <
t ≤ h. Then µ(x) ≥ t > 1, µ(y) ≥ t > 1 and µ(x&y) < t, that is, x ∈ µ1t , y ∈ µ

1

t but x&y < µ1t , which is obvious
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a contradiction. Thus (1B) holds. By the same argument, we can show that (2B) holds. Therefore, µ is an
(∈1,∈1 ∨qh)-L-subquantale of Q.

(ii) Let µ be an (∈1,∈1 ∨qh)-L-subquantale of Q and x, y ∈ µh
t , t ∈ L with the property 0 ≤ t < h. Then

xtqhµ and ytqhµ, that is, µ(x) ∨ t ≥ h and µ(y) ∨ t ≥ h. Since µ is an (∈1,∈1 ∨qh)-L-subquantale, we have
µ(x&y) ∨ 1 ≥ µ(x) ∧ µ(y) ∧ h. So we infer

(µ(x&y) ∨ t) ∨ (1 ∨ t) = (µ(x&y) ∨ 1) ∨ t
≥ (µ(x) ∧ µ(y) ∧ h) ∨ t
= (µ(x) ∨ t) ∧ (µ(y) ∨ t) ∧ (h ∨ t)
≥ h.

From t < h and 1 < h, we conclude that µ(x&y) ∨ t ≥ h, that is, x&y ∈ µh
t . Analogously, we can prove that

µh
t is also closed under sups. From this fact, we can easily know that µ is a subquantale of Q.

Conversely, assume that the given conditions hold. If there exist x, y ∈ Q such that µ(x&y) ∨ 1 < t ≤
µ(x) ∧ µ(y) ∧ h, then µ(x&y) < h, µ(x) ≥ t and µ(y) ≥ t. Taking µ(x) ≥ h and µ(y) ≥ h, we then obtain that
µ(x) ∨ t ≥ h, µ(y) ∨ t ≥ h and µ(x&y) ∨ t < h, for every t < h. Therefore, we have xtqhµ, ytqhµ and (x&y)tqhµ,
that is, x ∈ µh

t , y ∈ µ
h
t and (x&y) < µh

t . This is evident a contradiction. Thus µ satisfies (1B). In the same way,
we can show that (2B) holds. Thus µ is an (∈1,∈1 ∨qh)-L-subquantale of Q.

(iii) Let µ be an (∈1,∈1 ∨qh)-L-subquantale of Q and x, y ∈ [µ]h
t for some 1 < t < h. Then we can easily

obtain that xt ∈1 ∨qhµ and yt ∈1 ∨qhµ, that is, µ(x) ≥ t > 1 or µ(x) ∨ t ≥ h and µ(y) ≥ t > 1 or µ(y) ∨ t ≥ h.
Meanwhile, from the conditions µ(x) ∨ t ≥ h and t < h, we have µ(x) ≥ h > 1. Likewise, if µ(y) ∨ t ≥ h,
then µ(y) > 1. Therefore, we have µ(x) ∧ µ(y) ∧ h > 1. On the other hand, because µ is an (∈1,∈1 ∨qh)-L-
subquantale of Q, we can easily know that µ(x&y)∨1 ≥ µ(x)∧µ(y)∧h. So we have µ(x&y) ≥ µ(x)∧µ(y)∧h.
We now consider the following cases.
Case 1: When µ(x) ≥ t > 1 and µ(y) ≥ t > 1, we can easily obtain that

µ(x&y) ≥ µ(x) ∧ µ(y) ∧ h ≥ t > 1.

So we deduce (x&y)t ∈1 µ.
Case 2: When µ(x) ∨ t ≥ h and µ(y) ∨ t ≥ h, We can acquire that

µ(x&y) ∨ t ≥ (µ(x) ∧ µ(y) ∧ h) ∨ t = (µ(x) ∨ t) ∧ (µ(y) ∨ t) ∧ (h ∨ t) ≥ h.

Therefore, we have (x&y)tqhµ.
Case 3: When µ(x) ≥ t > 1 and µ(y) ∨ t ≥ h, from the condition 1 < t < h, we can easily know that
µ(y) ≥ h > t > 1. It follows that

µ(x&y) ≥ µ(x) ∧ µ(y) ∧ h ≥ t > 1.

Hence, we conclude (x&y)t ∈1 µ.
Case 4: When µ(x) ∨ t > h and µ(y) ≥ t > 1, similar to Case 3, we have (x&y)t ∈1 µ.
So we can draw the conclusion that (x&y)t ∈1 ∨qhµ in any case, that is, x&y ∈ [µ]h

t . In the same way, we can
prove that [µ]h

t is closed under sups. Thus [µ]h
t is a subquantale of Q.

Conversely, Let [µ]h
t be a subquantale of Q for all 1 < t < h and µ(x&y) ∨ 1 < t ≤ µ(x) ∧ µ(y) ∧ h for

all x, y ∈ Q. Then we have µ(x) ≥ t > 1, µ(y) ≥ t > 1 and µ(x&y) < t ≤ h, that is, xt ∈1 µ, yt ∈1 µ but
µ(x&y)t∈1 ∨qhµ, which means that x, y ∈ [µ]h

t but x&y < [µ]h
t . This is obvious a contradiction. Whence, we

have µ(x&y) ∨ 1 ≥ µ(x) ∧ µ(y) ∧ h, that is, (1B) holds. Similarly we can show that (2B) is valid. Thus µ is an
(∈1,∈1 ∨qh)-L-subquantale. �

We now discuss the relationships of two (∈1,∈1 ∨qh)-L-subquantales of Q on binary operations & and ∨.

Theorem 3.14. Let µ and ν be two (∈1,∈1 ∨qh)-L-subquantales of Q and L be a completely distributive lattice. Then
µ&ν is an (∈1,∈1 ∨qh)-L-subquantale of Q.
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Proof. Assume that µ and ν are two (∈1,∈1 ∨qh)-L-subquantales of Q and x, y ∈ Q. Then we can obtain that

(µ&ν)(x) ∧ (µ&ν)(y) ∧ h =
∨

x=a&b

(µ(a) ∧ ν(b)) ∧
∨

y=c&d

(µ(c) ∧ ν(d)) ∧ h

=
∨

x=a&b,y=c&d

((µ(a) ∧ µ(c) ∧ h) ∧ (ν(b) ∧ ν(d) ∧ h))

≤

∨
x&y=a&b&c&d

((µ(a&c) ∨ 1) ∧ (ν(b&d) ∨ 1))

≤

∨
x&y=e& f

(µ(e) ∧ ν( f ) ∨ 1)

= (µ&ν)(x&y) ∨ 1.

So (1B) is valid.
On the other hand, let {xi}i∈I ⊆ Q. Then we have

(
∧
i∈I

(µ&ν)(xi)) ∧ h =

∧
i∈I

∨
xi=ai&bi

µ(ai) ∧ ν(bi)

 ∧ h

=
∨

xi=ai&bi


(
∧
i∈I

µ(ai)) ∧ h

 ∧
(
∧
i∈I

ν(bi)) ∧ h




≤

∨
∨xi=(∨ai)&(∨bi)

(
(µ(∨ai) ∨ 1) ∧ (ν(∨bi) ∨ 1)

)
=

∨
∨xi=(∨ai)&(∨bi)

(
(µ(∨ai) ∧ ν(∨bi)) ∨ 1

)
= (µ&µ)(∨xi) ∨ 1.

Whence, (2B) holds. Summing up the above statements, we can easily know that µ&ν is an (∈1,∈1 ∨qh)-L-
subquantale of Q. �

Theorem 3.15. Let µ and ν be two (∈1,∈1 ∨qh)-L-subquantales of Q and L be a completely distributive lattice. Then
µ ∨ ν is an (∈1,∈1 ∨qh)-L-subquantale of Q.

Proof. The proof runs parallel to that of Theorem 3.14. �

4. (∈1, ∈1 ∨qh)-L-Filters of Quantales

In this section, we investigate an (∈1,∈1 ∨qh)-L-filter of a quantale which is a generalization of an L-filter
mentioned in [37]. Furthermore, we compare (∈1,∈1 ∨qh)-L-filters of quantales with their extensions and
give the conditions which can guarantee the extension of an (∈1,∈1 ∨qh)-L-filter to be an (∈1,∈1 ∨qh)-L-filter
of a quantale. Particularly, the intrinsic connections between (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-
L-filters of quantales are established.

Definition 4.1. ([37]) An L-set F of Q is called an L-filter if it satisfies that
(i) F(1Q) = 1L;
(ii) For each x, y ∈ Q, x ≤ y implies F(x) ≤ F(y);
(iii) For every x, y ∈ Q,F(x) ∧ F(y) ≤ F(x&y).
We call the pair (Q,F) an L-filtered quantale.

In view of the characterizations of (∈1,∈1 ∨qh)-L-subquantales, we continue to study a new kind of L-filters
called (∈1,∈1 ∨qh)-L-filter.
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Definition 4.2. An L-set F of Q is said to be an (∈1,∈1 ∨qh)-L-filter if it satisfies that
(F1) For each x, y ∈ Q, from the condition x ≤ y, we can obtain that F(x) ≤ F(y);
(F2) For every x, y ∈ Q, we have F(x&y) ∨ 1 ≥ F(x) ∧ F(y) ∧ h.
The pair (Q,F) is called an (∈1,∈1 ∨qh)-L-filtered quantale.

Example 4.3. Consider the complete lattice L mentioned in Example 3.12. Let Q = {0, a, b, 1} with the
partial-order and the binary operation as follows

1

�
�

��

@
@
@@

•

@
@
@
@

�
�

�
�

• •

•

0

a b

& 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1

Defining an L-set F of Q as F(1) = 1,F(a) = f ,F(b) = d,F(0) = 0, we can easily show that F is an
(∈d,∈d ∨q f )-L-filter of Q.

Remark 4.4. If we chose F(1Q) = 1L, h = 1 and 1 = 0 in Definition 4.2, then (∈1,∈1 ∨qh)-L-filter of Q is an
L-filter of Q defined in Definition 4.1.

A natural question is whether an (∈1,∈1 ∨qh)-L-filter of Q is an L-filter of Q. The following example
gives us a negative answer.

Example 4.5. In Example 4.3, we redefine an L-set F : Q→ L by F(1) = 1,F(a) = f ,F(b) = d,F(0) = 0. Then it is
easy to check that F is an (∈d,∈d ∨qe)-L-filter of Q. On the other hand, since F(a&b) = F(0) = 0 � d = F(a)∧F(b),
it follows that F is not an L-filter of Q.

Now we come to discuss the properties of (∈1,∈1 ∨qh)-L-filters of quantales.

Proposition 4.6. Let L be a distributive lattice and F ∈ LX. For all a ∈ L, if F is an (∈1,∈1 ∨qh)-L-filter of Q, so is
the layer of F.

Proof. It follows immediately from Definition 2.6 and 4.2. �

Proposition 4.7. Define an L-set F : Q→ L by F(1) , 0 and

F(x) =

{
α x ∈ A,
β x < A,

where ∅ , A ⊆ Q, α, β ∈ L with h > α > β > 1. Then A is a filter of Q if and only if F is an (∈1,∈1 ∨qh)-L-filter of Q.

Proof. Suppose that A is a filter of Q. Then by Definition 4.2, to complete the proof of the necessity, we
only need to show that (F1) and (F2) hold. Firstly, we prove that (F1) is valid. For all x, y ∈ Q with x ≤ y,
only the following two cases need to consider: (i) If F(x) = β, it is trivial. (ii) If F(x) = α, then x ∈ A. Since A
is a filter and (A,≤) is a upper set, it follows that y ∈ A. Whence, F(y) = α, which means that F(x) ≤ F(y). So
(F1) is valid. Next, for all x, y ∈ Q, we consider the following two cases to show that (F2) holds.
Case 1: If F(x) = β or F(y) = β, then by h > α > β > 1, we can obtain that F(x&y) ∨ 1 ≥ F(x) ∧ F(y) ∧ h.
Case 2: If F(x) = F(y) = α, then x, y ∈ A. Since A is a filter, we have x&y ∈ A, that is, F(x&y) = α. So
F(x&y) ∨ 1 ≥ F(x) ∧ F(y) ∧ h.
Therefore (F2) is valid. In conclusion, F is an (∈1,∈1 ∨qh)-L-filter of Q.

We now consider the sufficiency. Assume that F is an (∈1,∈1 ∨qh)-L-filter of Q. We first show that A
is an upper set. For every x ∈ A and y ∈ Q with x ≤ y, we have F(x) = α. By (F1), we can acquire that
F(x) ≤ F(y). Whence, F(y) = α, namely, y ∈ A, which means that A is an upper set. In addition, for all
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x, y ∈ A, we prove that x&y ∈ A. By the definition, we have F(x) = F(y) = α. Then by h > α > β > 1, we
have F(x&y) ∨ 1 ≥ F(x) ∧ F(y) ∧ h = α. Hence F(x&y) = α, that is, x&y ∈ A. So A is a filter of Q. �

From Theorem 4.7 we can readily obtain the following results.

Corollary 4.8. A is a filter of Q if and only if its characteristic function χA is an (∈1,∈1 ∨qh)-L-filter of Q.

Definition 4.9. Let (Q,F) and (A,G) be two (∈1,∈1 ∨qh)-L-filtered quantales. Then the mapping ϕ : Q→ A
is an order-preserving quantale homomorphism if it satisfies that
(i) ϕ is a quantale homomorphism;
(ii) For each x ∈ Q,F(x) ≤ G(ϕ(x)).

Proposition 4.10. Let (Q,F) and (A,G) be two (∈1,∈1 ∨qh)-L-filtered quantales, f : Q→ A be an order-preserving
quantale homomorphism. Then we have
(i) For a given mapping f→(F) : A→ L by a→ F( f̄ (a)) for all a ∈ A, where f̄ is the right adjoint of f , f→(F) is an
(∈1,∈1 ∨qh)-L-filter of A.
(ii) For a given mapping f←(G) : Q→ L by f←(G)(x) = G( f (x)) for all x ∈ Q, f←(G) is an (∈1,∈1 ∨qh)-L-filter of
Q.

Proof. (i) Firstly, let x, y ∈ A with x ≤ y. Then f̄ (x) ≤ f̄ (y). Since F is an (∈1,∈1 ∨qh)-L-filter of Q, we
have F( f̄ (x)) ≤ F( f̄ (y)), which implies that f→(F)(x) ≤ f→(F)(y). This shows that (F1) holds. Secondly, we
prove that (F2) is valid. In fact, for all x, y ∈ A, we have

f→(F)(x) ∧ f→(F)(y) ∧ h = F( f̄ (x)) ∧ F( f̄ (y)) ∧ h

≤ F( f̄ (x)& f̄ (y)) ∨ 1

= F( f̄ (x&y)) ∨ 1.

Therefore, f→(F) is an (∈1,∈1 ∨qh)-L-filter of A.
(ii) The proof is similar to (i). �

Proposition 4.11. Let {Fi} j∈J be a family of (∈1,∈1 ∨qh)-L-filters of Q. Define a mapping F : Q→ L by F(x) =
∧
j∈J

F j(x)

for all x ∈ Q. Then F is an (∈1,∈1 ∨qh)-L-filter of Q.

Next we investigate the extension of an (∈1,∈1 ∨qh)-L-filter of Q.

Definition 4.12. Let F ∈ LQ. Then an L-set defined by

〈F, x〉 : Q→ L, y→ F(y&x),

where x, y ∈ Q, is called a left extension of F with respect to x.

Similarly we can define the right extension of F with respect to x. If 〈F, x〉 is both a left extension and a
right extension of F with respect to x, we call 〈F, x〉 is an extension of F with respect to x, denoted by < F >x .

To build relationships between (∈1,∈1 ∨qh)-L-filter F and the extension of F with respect to x, we need
to consider the next problem. Is the extension of an (∈1,∈1 ∨qh)-L-filter still an (∈1,∈1 ∨qh)-L-filter? The
following example shows us a negative answer.

Example 4.13. Consider the quantale Q in Example 3.6 and the complete lattice L in Example 3.12. If we
define an L-set F : Q → L by F(0) = 0,F(1) = F(c) = 1,F(a) = d,F(b) = d, then F is an (∈c,∈c ∨q f )-L-filter, but
its left extension is not an (∈c,∈c ∨q f )-L-filter for < F, b > (a&a) ∨ c = F((a&a)&b) ∨ c = e ≯ f = F(a&b) ∧ f =
(< F, b > (a)) ∧ (< F, b > (a)) ∧ f .

Next we give conditions which can guarantee the extension of an (∈1,∈1 ∨qh)-L-filter to be an (∈1,∈1 ∨qh)-
L-filter.
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Theorem 4.14. Let Q be an commutative and idempotent quantale and F be an (∈1,∈1 ∨qh)-L-filter. Then for all
x ∈ Q, the left (resp., right) extension of F with respect to x is an (∈1,∈1 ∨qh)-L-filter of Q.

Proof. We only need to consider the case of left extension of F with respect to x, since the case of
right extension of F is similar. Assume that F is an (∈1,∈1 ∨qh)-L-filter of Q. For all a, b ∈ Q with a ≤ b, we
have a&x ≤ b&x. Since F is an (∈1,∈1 ∨qh)-L-filter of Q, it follows from (F1) that F(a&x) ≤ F(b&x), that is,
〈F, x〉(a) ≤ 〈F, x〉(b). On the other hand, for each a, b ∈ Q, we have

(〈F, x〉(a&b)) ∨ 1 = F((a&b)&x) ∨ 1
= F((a&b)&(x&x)) ∨ 1
= F((a&x)&(b&x)) ∨ 1
≥ F(a&x) ∧ F(b&x) ∧ h
= (〈F, x〉(a)) ∧ (〈F, x〉(b)) ∧ h.

Therefore, (F2) follows. Summing up the above statements, we can know that 〈F, x〉 is an (∈1,∈1 ∨qh)-L-filter
of Q. �

Proposition 4.15. Assume that F is an (∈1,∈1 ∨qh)-L-filter of Q and x, y ∈ Q with x ≤ y. Then we have
〈F, x〉 ≤ < F, y >.

Proposition 4.16. Let F and G be two (∈1,∈1 ∨qh)-L-filters of Q and F ≤ G. Then we have 〈F, x〉 ≤ < G, x > for
each x ∈ Q.

From the aforementioned discussion, we know that an (∈1,∈1 ∨qh)-L-subquantale and an (∈1,∈1 ∨qh)-
L-filter are two important substructures of quantales which characterize the properties of quantales. And
we naturally want to know if there exist some relationships between them. Next, we will concentrate on
considering this problems.

Theorem 4.17. An (∈1,∈1 ∨qh)-L-filter of Q is an (∈1,∈1 ∨qh)-L-subquantale of Q.

Proof. Let F be an (∈1,∈1 ∨qh)-L-filter. By the definition, it is easy to show that F satisfies (2B). For any
{xi}i∈I ⊆ Q and i ∈ I, by (F2), we have F(∨xi) ≥ F(xi). Consequently, we can obtain that F(∨xi) ≥ ∧F(xi). It
follows that F(∨xi) ∨ 1 ≥ F(∨xi) ≥ ∧F(xi) ≥ (∧F(xi)) ∧ h. Therefore, (2B) is valid. �

Remark 4.18. In general, the converse of Theorem 4.17 may not hold. For instance, in Example 3.12, µ is
an (∈e,∈e ∨qd)-L-subquantale but not an (∈e,∈e ∨qd)-L-filer of Q.

Then the following problem is obvious worth to consider.

Open problem 4.19. Can we give some reasonable conditions which guarantee an (∈1,∈1 ∨qh)-L-subquantale
to be an (∈1,∈1 ∨qh)-L-filter of a quantale?

5. The category of (∈1, ∈1 ∨qh)-L-subquantales (resp., L-filters) over quantales

We further introduce the characterizations of (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-L-filters of
quantales by means of category theories, in this section.

In what follows we will use the symbol GLFquant (resp., GFFQuant) to represent the category of
(∈1,∈1 ∨qh)-L-subquantales (resp., L-filters) and order-preserving quantale homomorphisms.

Theorem 5.1. Let L be a completely distributive lattice. Then GLFquant is of a topological construct on Quant.
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Proof. Let {(Qi, µi)}i∈I ∈ Ob(GLFquant) and { fi : Q → Qi}i∈I be a family of quantale homomorphisms.
Define an L-set as follows

µ : Q→ L, x→
∧
i∈I

µi( fi(x)).

To prove GLFquant is topological, we just need to show that { fi : (Q, µ)→ (Qi, µi)}i∈I is the unique GLFquant
initial lift of { fi : Q→ Qi}i∈I.

Step 1 We show that { fi : (Q, µ)→ (Qi, µi)}i∈I is a GLFquant initial lift of { fi : Q→ Qi}i∈I.
We first prove that (Q, µ) belongs toOb(GLFquant). Let x, y ∈ Q, considering {(Qi, µi)}i∈I ∈ Ob(GLFquant),

we can obtain that {µi}i∈I are (∈1,∈1 ∨qh)-L-quantales of {Qi}i∈I. Further, since L is a complete distributive
lattice, it follows that

µ(x&y) ∨ 1 = (
∧
i∈I

µi( fi(x&y))) ∨ 1

=
∧
i∈I

(µi( fi(x)& fi(y)) ∨ 1)

≥

∧
i∈I

(µi( fi(x)) ∧ µi( fi(y)) ∧ h)

= (
∧
i∈I

µi( fi(x))) ∧ (
∧
i∈I

µi( fi(y))) ∧ h

= µ(x) ∧ µ(y) ∧ h.

Therefore, (1B) follows. By the same argument, we can show that (2B) holds. Thus µ is an (∈1,∈1 ∨qh)-L-
subquantale of Q. By the definition, we can then easily know that (Q, µ) belongs toOb(GLFquant). We then
show that fi ∈ Mor(GLFquant)for every i ∈ I. Let x ∈ Q. Then µ(x) =

∧
i∈I
µi( fi(x)) ≤ µi( fi(x)). In addition,

fi : Q → Qi are quantale homomorphisms. Thus fi ∈ Mor (GLFquant) for each i ∈ I. On the other hand,
assume that (Q1, ν) is an object of GLFquant, 1 : Q1 → Q is a quantale homomorphism such that 1i = fi ◦ 1
for all i ∈ I and 1i ∈ Mor (GLFquant), then we have ν(x) ≤ µi(1i(x)) for all i ∈ I and x ∈ Q1. It follows that

ν(x) ≤
∧
i∈I

(µi(1i(x))) =
∧
i∈I

(µi( fi ◦ 1)(x)) =
∧
i∈I

(µi( fi(1(x)))) = µ(1(x)).

Whence 1 ∈ Mor (GLFquant). Based on the above conclusions, we can know that { fi : (Q, µ) → (Qi, µi)}i∈I
is a GLFquant initial lift of { fi : Q→ Qi}i∈I.

Step 2 We show the uniqueness of the initial lift.
If { fi : (Q, µ̄) → (Qi, µi)}i∈I is also a GLFquant initial lift of { fi : Q → Qi}i∈I which is different from

{ fi : (Q, µ) → (Qi, µi)}i∈I, then fi : (Q, µ̄) → (Qi, µi)} ∈ Mor(GLFquant). It is immediate that µ̄(x) ≤ µi( fi(x))
for every i ∈ I and x ∈ Q. Thus µ̄(x) ≤

∧
i∈I
µi( fi(x)) = µ(x), i.e., µ̄ ≤ µ. On the other hand, for the

GLFquant object (Q, µ) and Quant morphism idQ : Q → Q, since { fi : (Q, µ̄) → (Qi, µi)}i∈I is a initial lift of
{ fi : Q→ Qi}i∈I, we have fi ◦ idQ = fi ∈ Mor(GLFquant)and idQ : (Q, µ)→ (Q, µ̄) ∈ Mor(GLFquant). Thus,
for all x ∈ Q, µ(x) ≤ µ̄(idQ(x)) = µ̄(x), which means µ ≤ µ̄. Therefore, µ = µ̄.

Based on Step 1 and Step 2, we can now complete the proof of Theorem 5.1. �
Similar to the proof of Theorem 5.1, from Theorem 4.17 and the definition of the category GFFQuant

we can also obtain the following result about GFFQuant.

Corollary 5.2. Let L be a completely distributive lattice. Then GFFQuant is is of a topological construct on Quant.

Theorem 5.3. GLFquant has equalizers.
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(Q1, µ1) (Q2, µ2)
f

1
(Q3, µ3) e

(Q′3, µ
′

3)

e′e

---
?

@
@
@
@@R

Proof. Suppose that (Q1, µ1), (Q2, µ2) ∈Ob(GLFquant), f and 1 are GLFquant morphisms from (Q1, µ1)
to (Q2, µ2). Define Q3 = {x ∈ Q1| f (x) = 1(x)} with the binary operation & as the same as that of Q1. If
e : Q3 → Q1 is an embedding and µ3 = µ1 ◦ e. We next show that ((Q3, µ3), e) is the equalizer of f and 1.

Step 1 We first show that Q3 is a subquantale of Q1.
Assume that x, y ∈ Q3. Then we have f (x) = 1(x) and f (y) = 1(y). It follows that f (x&y) = f (x)& f (y) =

1(x)&1(y) = 1(x&y). Whence we can acquire that x&y ∈ Q3. Analogously, for all xi ∈ Q3, we have ∨xi ∈ Q3.
Thus Q3 is a subquantale of Q1.

Step 2 We then show that (Q3, µ3) ∈ Ob(GLFquant).
Since µ3 = µ1 ◦ e, µ1 is an (∈1,∈1 ∨qh)-L-subquantale of Q1 and e is embedding, for all x, y ∈ Q3, we have

µ3(x&y) ∨ 1 = (µ1 ◦ e)(x&y) ∨ 1
= µ1(x&y) ∨ 1
≥ µ1(x) ∧ µ1(y) ∧ h
= µ1(e(x)) ∧ µ1(e(y)) ∧ h
= µ3(x) ∧ µ3(y) ∧ h.

Similarly,µ3(
∨
i∈I

xi)∨1 ≥ (
∧
i∈I
µ3(xi))∧h for each {xi}i∈I ⊆ Q3. Therefore, we can obtain that (Q3, µ3) ∈Ob(GLFquant).

Step 3 We further prove that e ∈ Mor(GLFquant).
From the definition of e and µ3 with µ3 = µ1 ◦ e, we can easily know that e is a quantale homomorphism

from Q3 to Q1. For all x ∈ Q3, we haveµ3(x) = (µ1◦e)(x) = µ1(e(x)). We then acquire that e ∈ Mor(GLFquant).
Step 4 We finally show that GLFquant has equalizers.
Suppose that (Q′3, µ

′

3) ∈Ob(GLFquant) and e′ is a GLFquant morphism from (Q′3, µ
′

3) to (Q1, µ1) satisfying
f ◦ e′ = 1 ◦ e′. Define a mapping ē : Q′3 → Q3 and ē = e′. We next focus on showing that ē is a GLFquant
morphism from (Q′3, µ

′

3) to (Q3, µ3) and e = e′ ◦ ē. Firstly, let x ∈ Q3. By f ◦ e′ = 1 ◦ e′, we can obtain that
f (e′(x)) = 1(e′(x)) for each x ∈ Q3. So we have e′(x) ∈ Q3, which means that ē = e′ is well defined. Secondly,
let x, y ∈ Q′3. Since e′ is a quantale homomorphism, we have

ē(x&y) = e′(x&y) = e′(x)&e′(y) = ē(x)&ē(y).

By the same argument, we can show that ē(
∨
i∈I

xi) =
∨
i∈I

ē(xi). We can then acquire that ē is a quantale

homomorphism. Thirdly, assume that x ∈ Q′3. Since e′ is a GLFquant morphism from (Q′3, µ
′

3) to (Q1, µ1), it
follows that µ′3(x) ≤ µ1(e′(x)). We then have

µ′3(x) ≤ µ1(e′(x)) = µ1(e(e′(x))) = (µ1 ◦ e)(e′(x)) = µ3(e′(x)) = µ3(ē(x)).

Namely, ē is a GLFquant morphism from (Q′3, µ
′

3) to (Q3, µ3). At last, from the assumption, we can easily
know that e′ = e ◦ ē and the uniqueness of ē is obvious. This completes the proof.

Analogously, we can also obtain the following result. �

Corollary 5.4. GFFquant has equalizers.

Theorem 5.5. Let L be a completely distributive lattice. Then the category GLFquant has pullbacks.
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Proof. Assume that (Q1, µ1), (Q2, µ2), (Q3, µ3) ∈ Ob(GLFquant), f is a GLFquant morphism from (Q1, µ1) to
(Q3, µ3) and 1 is a GLFquant morphism from (Q2, µ2) to (Q3, µ3). Define H = {(x, y) ∈ Q1 × Q2| f (x) = 1(x)}.
The binary operations & and ∨ of H are defined as

(x, y)&(µ, ν) = (x&µ, y&ν), (x, y) ∨ (µ, ν) = (x ∨ µ, y ∨ ν),

where (x, y), (µ, ν) ∈ H ×H. By the definition, it is easy to check that H is a quantale. Define four mappings
as
µ : H → L

(x, y) → µ1(x) ∧ µ2(y),
p1 : H → Q3

(x, y) → x,
p2 : H → Q2

(x, y) → Y,
p0 : H → Q3

(x, y) → ( f ◦ p1)(x, y) = (1 ◦ p2)(x, y).
To show that the category GLFquant has pullbacks, we only need to show that ((H, µ), {pi}i=0,1,2) is the limit
of f and 1.

Step 1 We proved that (H, µ) ∈ ObGLFquant.
Since (Q1, µ1), (Q2, µ2) ∈ Ob(GLFquant), µ1 and µ2 are (∈1,∈1 ∨qh)-L-subquantale of Q1 and Q2, respec-

tively. Let (x, y), (u, v) ∈ H. We have

µ((x, y)&(u, v)) ∨ 1 = µ(x&u, y&v) ∨ 1
= (µ1(x&u) ∧ µ2(y&v)) ∨ 1
= (µ1(x&u) ∨ 1) ∧ (µ2(y&v) ∨ 1)
≥ (µ1(x) ∧ µ1(u) ∧ h) ∧ (µ2(y) ∧ µ2(v) ∧ h)
= (µ1(x) ∧ µ2(y)) ∧ (µ1(u) ∧ µ2(v)) ∧ h
= µ(x, y) ∧ µ(u, v) ∧ h.

Analogously, for each {(xi, yi)}i∈I ⊆ H, we can acquire that µ(
∨
i∈I

(xi, yi)) ∨ 1 ≥ (
∧
i∈I
µ(xi, yi)) ∧ h. So (H, µ) ∈

ObGLFquant.
Step 2 We further show that ((H, µ), {pi}i=0,1,2) is the natural source with respect to the functor F :

I →GLFquant on GLFquant, where I =
1 •

2 •
• 0

PPPq

���1
. We first show that {Pi}(i=0,1,2) are morphisms of

GLFquant. Indeed, for all (x, y), (u, v) ∈ H, we have p1((x, y)&(u, v)) = p1(x&u, y&v) = x&u = p1(x, y)&p1(u, v).
Analogously, for all (xi, yi)i∈I ⊆ H, it is easy to check that p1(

∨
i∈I

(xi, yi)) =
∨
i∈I

p1(xi, yi). Thus, p1 is a quantale

homomorphism. On the other hand, µ(x, y) = µ1(x) ∧ µ2(y) ≤ µ1(x) = µ1(p1(x, y)). Hence, p1 is a morphism
of GLFquant. By the same argument, p2 is also a morphism of GLFquant. For p0, let (x, y) ∈ H. Then
( f ◦ p1)(x, y) = f (p1(x, y)) = f (x) = 1(y) = 1(p2(x, y)) = (1 ◦ p2)(x, y). So p0 is well defined. Since f is a
GLFquant morphism from (Q1, µ1) to (Q3, µ3) and 1 is a GLFquant morphism from (Q2, µ2) to (Q3, µ3), for
all x ∈ Q1, y ∈ Q2, we have µ1(x) ≤ µ3( f (x)), µ2(y) ≤ µ3(1(y)). It follows that

µ(x, y) = µ1(x) ∧ µ2(y)
≤ µ3( f (x)) ∧ µ3(1(y)) ≤ µ3( f (x)) = µ3( f (p1(x, y)))
= µ3(( f ◦ p1)(x, y))) = µ3(p0(x, y)).

On the other hand, for every (x, y), (a, b) ∈ H, p0((x, y)&(a, b)) = ( f ◦ p1)((x, y)&(a, b)) = f (p1(x&a, y&b)) =
f (x&a) = f (x)& f (a) = f (p1(x, y))& f (p1(a, b)) = p0(x, y)&p0(a, b). Similarly, for all (xi, yi)i∈I ⊆ H,we can obtain
that p0(

∨
i∈I

(xi, yi)) =
∨
i∈I

p0(xi, yi). Whence p0 is a quantale homomorphism. By the definition, p0 is a morphism

of GLFquant and ((H, µ), {pi}) is the natural source with respect to the functor F : I →GLFquant, that is,
the diagram
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(H, µ)

(Q2, µ2)

(Q1, µ1)

(Q3, µ3)
? ?

-

-

H
HHH

HHH
HHHHj

p2

1

f

p1

p0

is commutative.
Step 3 Let ((H̄, µ̄), {hi}i=0,1,2) be any natural source with respect to the functor F : I →GLFquant, where

I =
1 •

2 •
• 0

PPPq

���1
. That is, the following diagram

(H̄, µ̄)

(Q2, µ2)

(Q1, µ1)

(Q3, µ3)
? ?

-

-

HHH
HHH

HHH
HHj

h2

1

f

h1

h0

is commutative. Firstly, define a mapping by

h : H̄ → H
x → (h1(x), h2(x)).

Then it is easy to show that h is well defined. In fact, since f ◦ h1 = 1 ◦ h2 = h0, we can obtain that
f (h1(x)) = 1(h2(x)) for all x ∈ H̄. Then (h1(x), h2(x)) ∈ H. Secondly, h is a GLFquant morphism from (H̄, µ̄) to
(H, µ). Indeed, by the definition of natural source, h1 is a GLFquant morphism from (H̄, µ̄) to (Q1, µ1) and
h2 is a GLFquant morphism from (H̄, µ̄) to (Q2, µ2). Thus h1 : H̄ → Q1 and h2 : H̄ → Q2 are all quantale
homomorphisms. For all x ∈ H̄, we can obtain µ̄(x) ≤ µ1(h1(x)) and µ̄(x) ≤ µ2(h2(x)). Whence, for all x, y ∈ H̄,
we can easily acquire that

h(x&y) = (h1(x&y), h2(x&y))
= (h1(x)&h1(y), h2(x)&h2(y))
= (h1(x), h2(x))&(h1(y), h2(y))
= h(x)&h(y).

With a similar argument, for all {xi}i∈I ⊆ H̄, we have h(
∨
i∈I

xi) =
∨
i∈I

h(xi). Thus h is a quantale homomorphism.

On the other hand, for each x ∈ H̄, we have

µ̄(x) ≤ µ1(h1(x)) ∧ µ2(h2(x)) = µ(h1(x), h2(x)) = µ(h(x)).

Therefore, h is a GLFquant morphism from (H̄, µ̄) to (H, µ). Thirdly, for all x ∈ H̄, we have p1(h(x)) =
p1(h1(x), h2(x)) = h1(x), which means that p1 ◦ h = h1. Analogously, we can acquire that p2 ◦ h = h2. It follows
that the following diagram



M. Zhou, S. Li / Filomat 30:6 (2016), 1525–1540 1540

(H̄, µ̄)
A
A
A
A
A
A
A
A
A
A
A
AU

h

PPPPPPPPPPPPPPPq

h2

@
@
@
@R

h1

(H, µ)

(Q2, µ2)

(Q1, µ1)

(Q3, µ3)
? ?

-

-

HH
HHH

HHH
HHHj

p2

1

f

p1

p0

is commutative. At last, the uniqueness of h is obvious. In conclusion, ((H, µ), {pi}i=0,1,2) is the limit of f and
1. Based on above results, we now completes the proof. �

Similarly, we can get the following result.

Corollary 5.6. Let L be a completely distributive lattice. Then GFFquant has pullbacks.

6. Conclusions

In the present paper, we developed two more generalized fuzzy structures, called an (∈1,∈1 ∨qh)-L-
subquantale and an (∈1,∈1 ∨qh)-L-filter of a quantale. By Example 4.13 and Theorem 4.14, we showed the
relationships between (∈1,∈1 ∨qh)-L-filters and their extensions. Particularly, we discovered some connec-
tions between (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-L-filters of quantales. At last, we further studied
the characterizations of (∈1,∈1 ∨qh)-L-subquantales and (∈1,∈1 ∨qh)-L-filters of quantales by category theory.
Related research methods in this paper may provide a useful tool for the research of fuzzy mathematics. We
also hope that our works can invoke some research topics for L-set theory and provide more applications in
the fields such as logic, engineering, computer science, information science, topology and so on. Our future
work will focus on this field. Apart from the open problems, the following topics may be explored:(1) To
consider (∈1,∈1 ∨qh)-L-ideals of quantales. (2) To study (∈1,∈1 ∨qh)-L-prime ideals of quantales. (3) To
establish (∈1,∈1 ∨qh)-L-spectrum of quantales. (4) To study about applications, especially in information
sciences and general systems.
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[14] U. Höhle, Topological representation of right-sided and idempotent quantales, Semigroup Forum doi:10.1007/s 00233-014-9634-8.
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