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Abstract.
We consider Poisson’s equation on the unit square with a nonlocal boundary condition. The existence

and uniqueness of its weak solution in Sobolev space H1 is proved. A finite difference scheme approximating
this problem is proposed. An error estimate compatible with the smoothness of input data in discrete H1

Sobolev norm is obtained.

1. Introduction

Differential equations with nonlocal boundary conditions have received much attention in the last
decades (see, e.g. [3, 4, 6, 7, 13] and references therein). As a rule, nonlocal boundary condition contains
an integral term over the spatial domain (or its boundary) of some function of the problem solution. When
integral term is involved in the governing partial differential equation, it is referred as partial integro-
differential equation.

Nonlocal boundary value problems have a great theoretical and practical significance. On the one
hand, they represent interesting generalization of classical boundary value problems. On the other hand,
they can serve as mathematical models of some physical phenomena related to heat propagation, moisture
transfer in porous media, chemical diffusion, population dynamics, thermoelasticity, thermodynamics,
plasma physics, medical science, some biological and technological processes, etc. Nonlocal boundary
conditions arise mainly in the case when the data on the boundary can not be measured directly. Therefore,
these conditions are often encountered in inverse problems.

The layout of the paper is as follows. In Section 2 we introduce a nonlocal boundary-value problem
(BVP) for Poisson equation, briefly expose its properties and prove the existence and uniqueness of its weak
solution. In Section 3 we introduce meshes, finite-difference operators and discrete Sobolev-like norms and
define a finite difference scheme (FDS) approximating BVP (1)-(2). Further, we investigate the properties
of FDS (10). Section 4 is devoted to the error analysis of FDS (10). A convergence rate estimate, compatible
with the smoothness of the input data (up to a logarithmic factor of mesh-size), is obtained. In Section 5 we
consider the case when the coerciveness assumption is not met.

2010 Mathematics Subject Classification. Primary 65N12, 65N15
Keywords. Poisson equation, Nonlocal boundary condition, Sobolev space, Finite differences, Error bound
Received: 5 May 2014; Accepted: 27 July 2014
Communicated by Dragan S. Djordjević
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2. Formulation of the Problem

As a model example, we consider Poisson’s equation in the unit square Ω = (0, 1)2

−∆u = f , x = (x1, x2) ∈ Ω (1)

subject to nonlocal boundary condition

∂u
∂ν

cos (ν, xi) + αi ju =

∫
Γi j

βi j(x, x′) u(x′) dΓx′ , x ∈ Γi j, i, j = 1, 2 (2)

where Γ = ∂Ω = ∪2
i, j=1Γi j, Γi j = {x = (x1, x2) ∈ Γ | xi = j − 1}, and ν is the unit outward normal to Γ.

Boundary-value problem (1)-(2) represent linearized symmetric transmission problem of heat radiation
(see [2, 11]).

We assume that

αi j ∈ L∞(Γi j), βi j ∈ L∞(Γ2
i j). (3)

By C and ci we denote positive constants, independent of the solution of the boundary-value problem and
the mesh-size. In particular, C may take different values in the different formulas.

Let Hs(Ω) be the standard Sobolev space and H0(Ω) = L2(Ω) [1]. In the standard manner we introduce
the weak form of boundary-value problem (1)-(2): Find u ∈ H1(Ω) such that

a(u, v) = l(v), ∀ v ∈ H1(Ω), (4)

where

a(u, v) =

2∑
i=1

∫∫
Ω

∂u
∂xi

∂v
∂xi

dx1 dx2 +

2∑
i, j=1

( ∫
Γi j

αi j u v dΓ −

∫
Γi j

∫
Γi j

βi j(x, x′) u(x′) v(x) dΓx′ dΓx

)
(5)

is bilinear form associated with the boundary-value problem (1)-(2) and

l(v) =

∫∫
Ω

f v dx1 dx2 . (6)

Analogously we define the corresponding weak eigenvalue problem: Find the pair (λ,u) ∈ C × H1(Ω),
u . 0, such that

a(u, v) = λ (u, v)L2(Ω), ∀ v ∈ H1(Ω). (7)

Lemma 2.1. Under the conditions (3) the bilinear form a, defined by (5), is bounded on H1(Ω) ×H1(Ω). This form
also satisfies the Gårding’s inequality on H1(Ω), i.e. there exist positive constants m and κ such that

a(u,u) + κ‖u‖2L2(Ω) ≥ m‖u‖2H1(Ω) , ∀ u ∈ H1(Ω). (8)

Proof. Boundedness of a follows from (3) and the trace theorem for the Sobolev spaces. Gårding’s inequality
(8) follows from the multiplicative trace inequality (see, e.g., Proposition 1.6.3 in [5])

‖u‖2L2(∂Ω) ≤ C ‖u‖L2(Ω) ‖u‖H1(Ω),

Cauchy-Schwarz and ε-inequalities, for sufficiently small ε > 0.
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If αi j > 0 and βi j (i, j = 1, 2) are sufficiently small, then the bilinear form a is coercive (i.e. κ = 0). Sufficient
conditions are

αi j(x) ≥ ε > 0, |βi j(x, x′) + βi j(x′, x)| ≤ 2
√[
αi j(x) − ε

] [
αi j(x′) − ε

]
. (9)

From Lemma 2.1 and Lax-Milgram lemma (see Theorem 1.13 in [10]) one immediately obtains the
following result.

Theorem 2.2. Under the conditions (3) and (9) the problem (4)-(6) has a unique solution u ∈ H1(Ω), and it depends
continuously on f ∈ L2(Ω).

Analogous result holds in general case (without assumption (9)) if 0 is not eigenvalue of the boundary-
value problem (7) (as consequence of Theorem 17.11 in [15]).

3. Finite Difference Approximation

Let ω̄ be a uniform mesh in Ω̄, with the step size h = 1/n, n ∈ N. We denote ω = ω̄ ∩ Ω, γ = ω̄ ∩ Γ,
γ̄i j = ω̄∩ Γi j, γi j = {x ∈ γ̄i j | 0 < x3−i < 1}, γ−i j = {x ∈ γ̄i j | 0 ≤ x3−i < 1}, γ?i j = γ̄i j \ γi j and γ? = ∪i, jγ?i j = γ \ ∪i, jγi j.
We will consider mesh functions v, w, . . . defined on ω̄ or its submeshes.

The finite difference operators are defined in the usual manner [14]:

vxi =
v+i
− v

h
, vx̄i =

v − v−i

h
,

where v±i(x) = v(x ± hei) and ei is the unit vector of the axis xi, i = 1, 2.
We define the following discrete inner products and norms:

[v,w] = h2
∑
x∈ω

v(x)w(x) +
h2

2

∑
x∈γ\γ?

v(x)w(x) +
h2

4

∑
x∈γ?

v(x)w(x),

[v,w)i = h2
∑

x∈ω∪γi1

v(x)w(x) +
h2

2

∑
x∈γ−3−i,1∪γ

−

3−i,2

v(x)w(x),

|[v]|2 = [v, v], |[v‖2i = [v, v)i, |[v]|C(ω̄) = max
x∈ω̄
|v(x)|,

|[v]|2H1(ω̄) = |[v]|2 + |[vx1 ||
2
1 + |[vx2‖

2
2,

[v,w]γ̄i j = h
∑
x∈γ̄i j

′

v(x)w(x) = h
∑
x∈γi j

v(x)w(x) +
h
2

∑
x∈γ?i j

v(x)w(x),

[v,w)γ−i j
= h

∑
x∈γ−i j

v(x)w(x), (v,w)γi j = h
∑
x∈γi j

v(x)w(x),

‖v‖2γi j
= (v, v)γi j , |[v||2γ−i j

= [v, v)γ−i j
, |[v]|2γ̄i j

= [v, v]γ̄i j ,

|v|2H1/2(γ−i j)
= h2

∑
x, x′∈γ−i j , x′,x

[v(x) − v(x′)
x3−i − x′3−i

]2

,

|[v‖2Ḧ1/2(γ−i j)
= |v|2H1/2(γ−i j)

+ h
∑
x∈γ−i j

( 1
x3−i + h/2

+
1

1 − x3−i − h/2

)
|v(x)|2.
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We also define the Steklov smoothing operators (see [10]):

T+
i f (x) =

∫ 1

0
f (x + hx′i ei) dx′i = T−i f (x + hei) = Ti f (x + 0.5hei),

T2±
i f (x) = 2

∫ 1

0
(1 − x′i ) f (x ± hx′i ei) dx′i , i = 1, 2.

These operators commute and transform derivatives into differences, for example:

T+
i

(
∂u
∂xi

)
= uxi , T−i

(
∂u
∂xi

)
= ux̄i , T2

i

∂2u
∂x2

i

 = ux̄ixi .

We approximate the boundary-value problem (1)-(2) with the following finite difference scheme:

−∆̄hv = f̄ , x ∈ ω̄, (10)

where

∆̄hv =



vx̄1x1 + vx̄2x2 , x ∈ ω

2
h

(
vx1 − ᾱ11v + [β̄11(x, ·), v(·)]γ̄11

)
+ vx̄2x2 , x ∈ γ11

2
h

(
vx1 − ᾱ11v + [β̄11(x, ·), v(·)]γ̄11

)
+ 2

h

(
vx2 − ᾱ21v + [β̄21(x, ·), v(·)]γ̄21

)
, x = (0, 0)

and analogously at the other boundary nodes,

f̄ =


T2

1T2
2 f , x ∈ ω

T2±
i T2

3−i f , x ∈ γi j

T2±
1 T2±

2 f , x ∈ γ?
, ᾱi j =

 T2
3−iαi j , x ∈ γi j

T2±
3−iαi j , x ∈ γ?i j

and

β̄i j =



T2
3−iT

′2
3−iβi j, x ∈ γi j, x′ ∈ γi j

T2±
3−iT

′2
3−iβi j, x ∈ γ?i j , x′ ∈ γi j

T2
3−iT

′2±
3−iβi j, x ∈ γi j, x′ ∈ γ?i j

T2±
3−iT

′2±
3−iβi j, x ∈ γ?i j , x′ ∈ γ?i j

(T′3−i denotes Steklov averaging operator on the variable x′3−i).
In the sequel we will assume that the generalized solution of the problem (1)-(2) belongs to the Sobolev

space Hs(Ω), 2 < s ≤ 3, while the data satisfy the following smoothness conditions:

αi j ∈ Hs−3/2(Γi j), βi j ∈ Hs−1(Γ2
i j), i, j = 1, 2; f ∈ Hs−2(Ω). (11)

We introduce the bilinear form ah(v,w) associated with difference operator −∆̄h:

ah(v,w) = [−∆̄hv, w] =

2∑
i=1

[vxi , wxi )i +

2∑
i, j=1

[ᾱi j v,w]γ̄i j − h2
2∑

i, j=1

∑
x∈γ̄i j

′ ∑
x′∈γ̄i j

′

β̄i j(x, x′)v(x′)w(x). (12)

The following counterpart of Lemma 2.1 holds.
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Lemma 3.1. Under the conditions (11) the bilinear form ah, defined by (12), is bounded on H1(ω̄) × H1(ω̄). This
form also satisfies the discrete Gårding’s inequality on H1(ω̄), i.e. there exist positive constants m̄ and κ̄ such that

ah(v, v) + κ̄|[v]|2 ≥ m̄|[v]|2H1(ω̄). (13)

If ᾱi j > 0 and β̄i j (i, j = 1, 2) are sufficiently small then, as in the continuous case, the bilinear form
ah is coercive. When αi j and βi j satisfy the assumptions (11) and the step-size h is sufficiently small, the
conditions (9) are sufficient for this. Then there exist positive constants c1 and c2 such that

c1|[v]|2H1(ω̄) ≤ ah(v, v) = [−∆̄hv, v] ≤ c2|[v]|2H1(ω̄). (14)

From Lemma 3.1 and Lax-Milgram lemma one immediately obtains the following result.

Theorem 3.2. Under the conditions (11) and (9), for sufficiently small step-size h, the finite difference scheme (10)
has a unique solution.

4. Convergence of the Finite Difference Scheme

Let u be the solution of the BVP (1)-(2), and let v denote the solution of the FDS (10). The error z = u − v
satisfies the following conditions

−∆̄hz = ψ, x ∈ ω̄, (15)

where

ψ =



∑
i=1

ηi, x̄i , x ∈ ω,

2
h

(η1 + ζ11 + χ11) + η̃2, x̄2 , x ∈ γ11,

2
h

(
η̃1 + ζ̃11 + χ11

)
+

2
h

(
η̃2 + ζ̃21 + χ21

)
, x = (0, 0),

and analogously at the other boundary nodes,

ηi = T+
i T2

3−i

(
∂u
∂xi

)
− uxi , x ∈ ω,

η̃i = T+
i T2±

3−i

(
∂u
∂xi

)
− uxi , x ∈ γ−3−i,1 / x ∈ γ−3−i,2,

ζi j = (T2
3−iαi j)u − T2

3−i(αi ju), x ∈ γi j,

ζ̃i j = (T2±
3−iαi j)u − T2±

3−i(αi ju), x ∈ γ?i j ,

χi j =

∫
Γi j

T2
3−iβi j(x, x′)u(x′) dΓ − h

∑
x′∈γi j

T2
3−iT

′2
3−iβi j(x, x′)u(x′) −

h
2

∑
x′∈γ?i j

T2
3−iT

′2±
3−iβi j(x, x′)u(x′), x ∈ γi j,

χi j =

∫
Γi j

T2±
3−iβi j(x, x′)u(x′) dΓ − h

∑
x′∈γi j

T2±
3−iT

′2
3−iβi j(x, x′)u(x′) −

h
2

∑
x′∈γ?i j

T2±
3−iT

′2±
3−iβi j(x, x′)u(x′), x ∈ γ?i j .

Let us further denote η̃i = ηi + η̄i, where

η̄i = ±
h
3

T+
i

(
∂2u

∂x3−i∂xi

)
, x ∈ γ3−i,1 / x ∈ γ3−i,2,

We shall prove a suitable a priori estimate for the FDS (15). For this purpose we need the following
auxiliary lemmas:
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Lemma 4.1. (see [9]) The following inequality holds true:∣∣∣∣ [v, wx3−i )γ−i j

∣∣∣∣ ≤ C|[v‖Ḧ1/2(γ−i j)
|[w]|H1(ω̄).

Lemma 4.2. (see [9]) Let v be a mesh function on ω̄, then

|[v]|C(ω̄) ≤ C
√

log 1
h |[v]|H1(ω̄).

Theorem 4.3. Let the conditions (9) and (11) hold. Then, for sufficiently small step-size h, the FDS (15) is stable in
the sense of a priori estimate

|[z]|H1(ω̄) ≤ C
[ 2∑

i=1

|[ηi‖i +

2∑
i, j=1

(
‖ζi j‖γi j + |[χi j]|γ̄i j + h |[η̄i‖Ḧ1/2(γ−3−i, j)

)
+ h

√
log 1

h

2∑
i, j=1

∑
x∈γ?i j

|ζ̃i j(x)|
]
. (16)

Proof. Taking inner product of (15) with z and performing partial summation one obtains:

[−∆hz, z] = [ψ, z] = −

2∑
i=1

[ηi, zxi )i +

2∑
i, j=1

{
−

h
2

[η̄i, zxi )γ3−i, j + (ζi j, z)γi j + [χi j, z]γ̄i j +
h
2

∑
x∈γ?i j

ζ̃i j(x) z(x)
}
.

Result follows applying Lemmas 4.1 and 4.2, inequality Cauchy-Schwarz and inequality (14).

Theorem 4.4. Let the assumptions of Theorem 4.3 hold. Then the solution of FDS (10) converges to the solution of
BVP (1)-(2) and the convergence rate estimates

|[u − v]|H1(ω̄) ≤ Chs−1
√

log 1
h

(
1 + max

i, j
‖αi j‖Hs−3/2(Γi j) + max

i, j
‖βi j‖Hs−1(Γ2

i j)

)
‖u‖Hs(Ω), 2.5 < s < 3 (17)

and

|[u − v]|H1(ω̄) ≤ Ch
(
log 1

h

)3/2 (
1 + max

i, j
‖αi j‖H3/2(Γi j) + max

i, j
‖βi j‖H2(Γ2

i j)

)
‖u‖H3(Ω), s = 3 (18)

hold.

Proof. To prove the theorem it is sufficient to estimate the right-hand side terms in (16). The term ηi at the
internal nodes of the mesh ω̄ can be estimated using Bramble-Hilbert lemma (see Theorem 2.27 in [10]), in
the same manner as in the case of the Dirichlet BVP (see Sections 2.3 and 2.6 in [10]):

h2
∑

x∈ω∪γi1

η2
i ≤ Ch2s−2

‖u‖2Hs(Ω), 1 < s ≤ 3.

At the boundary nodes ηi satisfy the same assumptions as at the internal nodes, but for 2 < s ≤ 3. Hence

h2
∑

x∈γ−3−i,1∪γ
−

3−i,2

η2
i ≤ Ch2s−2

‖u‖2Hs(Ω), 2 < s ≤ 3.

From these inequalities follows

|[ηi‖i ≤ Chs−1
‖u‖Hs(Ω), 2 < s ≤ 3. (19)

Let us set χi j = χ̄i j + χ̂i j, where

χ̄i j =

∫
Γi j

T2
3−iβi j(x, x′)u(x′) dΓ − h

∑
x′∈γ̄i j

′

T2
3−iβi j(x, x′)u(x′), x ∈ γi j,

χ̄i j =

∫
Γi j

T2±
3−iβi j(x, x′)u(x′) dΓ − h

∑
x′∈γ̄i j

′

T2±
3−iβi j(x, x′)u(x′), x ∈ γ?i j .
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χ̂i j = h
∑

x′∈γi j

(
T2

3−iβi j(x, x′) − T2
3−iT

′2
3−iβi j(x, x′)

)
u(x′)

+
h
2

∑
x′∈γ?i j

(
T2

3−iβi j(x, x′) − T2
3−iT

′2±
3−iβi j(x, x′)

)
u(x′), x ∈ γi j,

χ̂i j = h
∑

x′∈γi j

(
T2±

3−iβi j(x, x′) − T2±
3−iT

′2
3−iβi j(x, x′)

)
u(x′)

+
h
2

∑
x′∈γ?i j

(
T2±

3−iβi j(x, x′) − T2±
3−iT

′2±
3−iβi j(x, x′)

)
u(x′), x ∈ γ?i j .

Terms analogous to ζi j, ζ̃i j, χ̄i j and η̄i have been estimated in [8, 11] whereby it follows that:

‖ζi j‖γi j ≤ Chs−1
‖αi j‖Hs−3/2(Γi j)‖u‖Hs(Ω), 2 < s ≤ 3, (20)

2∑
i, j=1

∑
x∈γ?i j

|ζ̃i j(x)| ≤ Ch max
i, j
‖αi j‖Hs−3/2(Γi j)‖u‖Hs(Ω), s > 2, (21)

|[χ̄]|γ̄i j ≤ Chs−1
∥∥∥βi j

∥∥∥
Hs−1(Γ2

i j)
‖u‖Hs(Ω), 2 < s ≤ 3, (22)

‖η̄i‖Ḧ1/2(γ−3−i, j)
≤ Chs−2

√
log 1

h ‖u‖Hs(Ω), 2.5 < s < 3 (23)

and

‖η̄i‖Ḧ1/2(γ−3−i, j)
≤ Ch

(
log 1

h

)3/2
‖u‖Hs(Ω), s = 3. (24)

To estimate χ̂ let us consider a function U(xk) of one variable xk ∈ [0, 1], k = 1, 2. Then the expression
U(xk) − T2

k U(xk) is a bounded linear functional of U ∈ Hs−1(0, 1), s > 1.5, which vanishes for U = 1 and
U = xk. Using the Bramble-Hilbert lemma one obtains

|U(xk) − T2
k U(xk)| ≤ Chs−1.5

‖U‖Hs−1(xk−h,xk+h), 1.5 < s ≤ 3.

Analogously, using inequality [12]

‖U‖L2(0,h) ≤ Ch1/2
‖U‖Hr(0,1), r > 0.5

one obtains

|U(0) − T2+
k U(0)| ≤ Ch1/2

‖U‖H1(0,h) ≤ Ch ‖U‖Hs−1(0,1), s > 2.5.

Analogous bound holds for |U(1) − T2−
k U(1)|. From these inequalities we immediately obtain

|χ̂(x)| ≤ Chs−1
‖T2

3−iβ(x, ·)‖Hs−1(Γi j)‖u‖C(Ω̄), x ∈ γi j, 2.5 < s ≤ 3

and

|χ̂(x)| ≤ Chs−1
‖T2±

3−iβ(x, ·)‖Hs−1(Γi j)‖u‖C(Ω̄), x ∈ γ?i j , 2.5 < s ≤ 3.

Summing over the nodes x ∈ γ̄i j, after obvious majoration, one obtains:

|[χ̂]|γ̄i j ≤ Chs−1
∥∥∥βi j

∥∥∥
Hs−1(Γ2

i j)
‖u‖Hs(Ω), 2.5 < s ≤ 3, (25)

The assertion follows from (16)-(25).
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5. The Case of Non-coercive Operator

Let us consider now the case when the coerciveness condition (14) is not satisfied. For the sake of
simplicity we assume that

βi j(x, x′) = βi j(x′, x), i, j = 1, 2. (26)

Hence, the operator Ah = −∆̄h is selfadjoint, its eigenvalues λh
i are real and the eigenfunctions vi(x) can be

orthonormed with regard to the inner product [· , ·]. From (12) and (13) it follows that

λh
i + κ̄ > 0, i = 1, 2, . . . ,N, N = (n + 1)2,

therefore there exists the index k, 1 ≤ k << N, such that

−κ̄ < λh
1 ≤ λ

h
2 ≤ · · · ≤ λ

h
k ≤ 0 < λh

k+1 ≤ · · · ≤ λ
h
N � n2 = h−2.

Let us introduce linear operator Ãh = Ah + κ̄Ih, where Ih is identity operator, and the corresponding bilinear
form ãh(v,w) = [Ãhv, w] = ah(v,w) + κ̃ [v, w]. Operator Ãh is selfadjoint and positive definite, so we can
define the energy norms

|[v]|2
Ãh

= [Ãhv, v] and |[v]|2
Ã−1

h
= [Ã−1

h v, v].

From (12) and (13) follows that

c3 |[v]|2H1(ω̄) ≤ |[v]|2
Ãh

= ãh(v, v) ≤ c4 |[v]|2H1(ω̄), (27)

where c3 = m̄ and c4 = c2 + κ̄.
Let us assume that 0 is not the eigenvalue of Ah. Then there exists the inverse operator A−1

h and from
(10) follows v = A−1

h f̄ . Let fi = [ f̄ , vi], i = 1, 2, . . . ,N, be Fourier’s coefficients of f̄ . Using Parseval’s equality
we immediately obtain

|[v]|Ãh
=

 N∑
i=1

(λh
i + κ̄)

 fi
λh

i

2
1/2

=

 N∑
i=1

λh
i + κ̄

λh
i

2 f 2
i

λh
i + κ̄


1/2

≤ max
i

∣∣∣∣∣∣λh
i + κ̄

λh
i

∣∣∣∣∣∣
 N∑

i=1

f 2
i

λh
i + κ̄


1/2

= max
i

∣∣∣∣∣∣λh
i + κ̄

λh
i

∣∣∣∣∣∣ |[ f̄ ]|Ã−1
h
.

For 1 ≤ i ≤ k we have∣∣∣∣∣∣λh
i + κ̄

λh
i

∣∣∣∣∣∣ =
λh

i + κ̄

|λh
i |

=
κ̄

|λh
i |
− 1 ≤

κ̄

|λh
k |
− 1,

while for i ≥ k + 1 holds∣∣∣∣∣∣λh
i + κ̄

λh
i

∣∣∣∣∣∣ =
λh

i + κ̄

λh
i

=
κ̄

λh
i

+ 1 ≤
κ̄

λh
k+1

+ 1.

In such a way, for the solution of (10) we obtained a priori estimate

|[v]|Ãh
≤ c5 |[ f̄ ]|Ã−1

h
, where c5 = max

 κ̄

|λh
k |
− 1,

κ̄

λh
k+1

+ 1

 . (28)

Applying (28) to (15) and using (27) we obtain

|[z]|H1(ω̄) ≤
c5
√

c3
|[ψ]|Ã−1

h
=

c5
√

c3
sup
w,0

[ψ, w]
|[w]|Ãh

,

whereby, in the same manner as in the proof of Theorem 4.3, one obtains a priori estimate of the form (16).
Notice that the constant C in this a priori estimate now depends on c5 (i.e. on 1/mini |λh

i |).
In such a manner, we proved the following assertion.
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Theorem 5.1. Let the conditions (11) and (26) hold and let 0 is not eigenvalue of the problem (7) nor of the difference
operator Ah = −∆̄h. Then the solution of FDS (10) converges to the solution of BVP (1)-(2) and the convergence rate
estimates (17) and (18) hold.

Remark 5.2. Since eigenvalues of the difference problem converge to the corresponding eigenvalues of the BVP when
h tends to 0 (see e.g. [14]) it is enough to assume that 0 is not eigenvalue of the problem (7) and h is sufficiently small.
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